
A Quantitative Study of Deep Learning Training on
Heterogeneous Supercomputers

Jingoo Han*, Luna Xu†, M. Mustafa Rafique§, Ali R. Butt*, Seung-Hwan Lim‡,
*Virginia Tech, †IBM Research, §Rochester Institute of Technology, ‡Oak Ridge National Laboratory

*{jingoo, butta}@cs.vt.edu, †xuluna@ibm.com, §mrafique@cs.rit.edu, ‡lims1@ornl.gov

Abstract—Deep learning (DL) has become a key technique for
solving complex problems in scientific research and discovery. DL
training for science is substantially challenging because it has to
deal with massive quantities of multi-dimensional data. High-
performance computing (HPC) supercomputers are increasingly
being employed for meeting the exponentially growing demand
for DL. Multiple GPUs and high-speed interconnect network
are needed for supporting DL on HPC systems. However, the
excessive use of GPUs without considering effective benefits leads
to inefficient resource utilization of these expensive setups. In this
paper, we conduct a quantitative analysis to gauge the efficacy
of DL workloads on the latest HPC system and identify viability
of next-generation DL-optimized heterogeneous supercomputers
for enabling researchers to develop more efficient resource
management and distributed DL middleware. We evaluate well-
known DL models with large-scale datasets using the popular
TensorFlow framework, and provide a thorough evaluation in-
cluding scalability, accuracy, variability, storage resource, GPU-
GPU/GPU-CPU data transfer, and GPU utilization. Our analysis
reveals that the latest heterogeneous supercomputing cluster
shows varying performance trend as compared to the existing
literature for single- and multi-node training. To the best of our
knowledge, this is the first work to conduct such a quantitative
and comprehensive study of DL training on a supercomputing
system with multiple GPUs.

Index Terms—Deep learning, TensorFlow, GPU Cluster, High
Performance Computing, Heterogeneous Supercomputers

I. INTRODUCTION

Deep learning (DL) [1] enabled artificial intelligence (AI)
technology is widely used in industry due to its ability
to recognize images, process natural languages, play games
better than humans, and drive cars. We also have started
witnessing the impact of DL in scientific discoveries [2],
[3] such as classifying galaxies types [4], analyzing medical
images [5], and predicting protein structure properties [6]. A
notable trend in designing supercomputers is the adoption of
extreme parallelism and heterogeneity [7], [8]. Such a trend
makes high-performance computing (HPC) systems favorable
to DL workloads. For example, Summit [9], the number one
in the Top500 list [10], is equipped with 27, 648 NVIDIA
V100 GPUs [11] (six GPUs on each node), and each is
linked to IBM PowerPC9 with dual high speed NVLink
connections [12]. This configuration enables Summit to be DL
ready and makes it “one of the most AI-capable machines
ever constructed” [13]. Similarly, Sierra [14] at Lawrence
Livermore National Laboratory and AI Bridging Cloud In-
frastructure [15] at National Institute of Advanced Industrial
Science and Technology are also built for supporting DL
workloads. In fact, five of the top ten supercomputers in 2018
have GPU-enabled heterogeneous environment as compared

to two out of the top ten supercomputers in 2017. It shows
an increasing trend of migration from traditional homogeneous
supercomputers to GPU-based heterogeneous supercomputers.
We expect this trend to continue with the high computational
demands of emerging DL workloads.

Modern supercomputers are DL friendly due to system
configuration to reduce I/O movement costs, which further
enhances computational capabilities of hardware accelerators.
In turn, they are able to meet the requirements of DL
workloads entailing transferring enormous amount of data
between compute nodes in the cluster to train models at the
desired level of accuracy. For example, in the training of
deep neural network (DNN) models over a climate data, a
single GPU training of a DL model can consume 189 MB/s,
which means the 6 GPUs on a Summit node require an
aggregated 1.14 GB/s I/O bandwidth. The training of such a
DNN model on the full Summit system therefore will require
5.23 TB/s [16]. To deliver the desired I/O bandwidth, HPC
systems employ Non-Volatile Memory Express (NVMe) SSDs
to reduce data I/O latency [17], [18] between the compute
nodes and the storage servers with high throughput parallel file
systems. Besides, compute clusters in modern HPC systems
provision large memory (e.g., 1.6 TB per node in Summit) and
high throughput interconnect, e.g., NVLink [12] that provides
25 GB/s bandwidth between a GPU and a CPU, along with
a fast communication interconnect between compute nodes,
such as 100 Gbps InfiniBand (IB) [19].

Despite significant efforts to efficiently run AI workloads
in HPC environments [20], the effectiveness of a given HPC
system for general DL workloads is highly desirable. A
number of performance studies [21]–[23] have explored cloud
environments to facilitate optimizations of industrial platforms
and enable applying best practices to improve efficiency. How-
ever, since each supercomputing facility is uniquely built, the
outcomes of these studies cannot be applied directly to HPC
setups. Deploying an HPC system requires significant human
resources and capital cost. Therefore, it is critical to clearly
understand the behavior and performance of DL applications
in current HPC systems to provide system design principles for
future generations of supercomputers, and to guide researchers
in better utilizing the available system resources for reducing
the training span.

Although the top two supercomputers are equipped with
IBM POWER processors [24] and multiple GPUs, most of the
existing DL research is conducted on Intel Xeon-based HPC
systems. Intel Xeon-based HPC systems use PCI bus between
CPU and GPU, while the latest POWER-based HPC systems

978-1-7281-4734-5/19/$31.00 ©2019 IEEE

use NVLink between CPU and GPU, providing 5 times faster
connectivity than PCIe [25]. Therefore, it is a critical factor
impacting the performance compared to the previous studies
as faster NVLink between CPU and GPU significantly reduces
communication bottleneck. Although, the existing studies [21],
[26]–[31] show that multiple GPUs and large-batch size can
improve training throughput, they do not provide insights into
the factors impacting the performance. To this end, this paper
aims at providing valuable insights into critical performance
factors, and show that the general understanding of running
DL workloads on conventional data centers cannot be applied
directly to supercomputing facilities.

We provide a quantitative study of DL training in modern
POWER-based HPC environments, i.e., Summitdev [32], and
evaluate representative DL training models with large datasets.
We use the popular TensorFlow [27] framework and train
DL networks using publicly available datasets, such as Im-
ageNet dataset [33]. Furthermore, we measured the training
throughput on a single node and multiple machines, while
varying different parameters, such as the number of GPUs,
batch size, file systems, etc., to study the impact of these
parameters on DL training performance. This paper provides
a thorough evaluation using comprehensive metrics such as
training scalability, accuracy, storage performance, GPU-CPU
data transfer, and GPU utilization. To the best of our knowl-
edge, this is the first work to quantitatively study DL training
on IBM POWER-based large-scale HPC systems. Specifically,
this paper makes the following contributions:

• We evaluate TensorFlow DL applications on a POWER8-
based heterogeneous supercomputer with high-end GPUs,
storage, and network devices to identify the performance
bottleneck in DL training;

• We compare the effect of Lustre [34] and NVMe-based
XFS file systems [35] on I/O throughput and variability
during DL training;

• We analyze CPU-to-GPU and GPU-to-CPU communica-
tion patterns by scaling our evaluation from 1 GPU to
128 GPUs (comprising 458, 752 CUDA [36] cores); and

• We analyze the impact of different DL framework pa-
rameters such as, batch size, and the number of workers
and parameter servers, on DL training throughput, and
provide key observations for improving DL training per-
formance on HPC systems.

II. BACKGROUND

In this section, we first give an overview of the architecture
of a modern HPC supercomputer. Next, we briefly introduce
a representative DL approach, convolutional neural network
(CNN), and the basics of parallel training.

A. HPC Supercomputer Architecture

DL has influenced the architecture of modern HPC systems.
The world’s fastest HPC systems use multiple GPUs for DL
computation workloads. Unlike the traditional homogeneous
systems, GPU-based heterogeneous HPC systems are more
suitable for DL workloads because GPUs provide strong

Fig. 1: Architecture of the studied HPC system.

parallel computing capabilities with higher bandwidth between
parallel threads. To alleviate I/O overhead of multi-GPU,
GPUs and CPUs are connected through high throughput, e.g.,
75 GB/s NVLink interconnect. As these supercomputers have
thousands of compute nodes, high performance networks, e.g.,
100 Gbps IB, are deployed to improve data movement between
the nodes. The latest HPC architectures have started using
NVM [37] devices as burst buffers to reduce I/O time [38].
Parallel file systems, e.g., Lustre [34], and General Parallel
File System (GPFS) [39], are used to improve I/O throughput.
Lustre has been deployed on a large number of supercom-
puters as shared storage resource for efficiently handling I/O-
intensive workloads [40], [41]. Recently, Summit has adopted
IBM’s Spectrum Scale GPFS that provides more than 2 TB/s
of bandwidth [13]. Figure 1 shows high-level architecture of
Summitdev [32] supercomputer that we use in this paper.

B. Convolutional Neural Network (CNN)

A CNN is a type of DL model that contains multiple
convolutional layers. The layers extract features from spa-
tial information of the input data, without manual feature
extraction [1], [42]. A convolution layer comprises multiple
feature maps to extract different features. A single feature
map shares the same weights and the same bias to detect the
same feature from the input images. However, other feature
maps in the same layer use their own sets of weight and
bias to extract different types of features. Each layer performs
convolution operation on the feature maps, and then forwards
these results to the next layer. Convolution requires the sum
of the element-wise multiplication for each pixel. Therefore,
training a CNN involves convolution operation with a large
number of parameters at each layer, which requires very
large number of image data and high computational capacity.
Overall, DL training involves a series of complex processes,
each adjusting parameters and processing data.

Table I shows popular CNN models. LeNet, originally
developed in 1998, has significantly less number of parameters
than other models [43]. AlexNet and ResNet-50 contain more
complex layers and parameters than LeNet, and have 61
million and 25 million parameters, respectively [44]. Although
ResNet-50 contains much deeper layers than AlexNet, its
number of parameters are much less than that of AlexNet as

TABLE I: CNN model information.

Network Convolution Fully Connected Parameter
Layers Layers Size

LeNet 2 2 60K
AlexNet 5 3 61M
ResNet-50 49 1 25M
ResNet-101 100 1 45M

(a) Data parallelism (b) Model parallelism

Fig. 2: Data and model parallelism for DNN training on multiple
GPUs.

ResNet deploys residual blocks that allow very deep networks
with a smaller number of parameters than other CNN models.

1) Parallel Training: Training a large scale deep neural
network (DNN) on a single server, even with high-end re-
sources, would take many hours [45], [46]. Therefore, it is
common practice to train such models in parallel. Figure 2
shows the two usual ways of parallelizing a DNN training,
i.e., data parallel and model parallel. Data parallel approach
partitions input data into batches, e.g., multiple images per
batch, and replicates the network model on each GPU in a
single node or multiple nodes. It essentially performs training
of the same model with different batches of data. The weights
are updated across all GPUs after each iteration. Increasing
batch size reduces weight synchronization steps because the
weight synchronization happens per batch, while very big
batch sizes have a negative effect on training convergence [26].
Conversely, model parallel approach partitions a DNN model
and assigns different portion of the DNN model’s compu-
tation to multiple GPUs. For example, filters of a layer is
split across GPUs, where each GPU performs convolutions
with different parts of the filters [47]. Each GPU requires
the output from other GPUs to synchronize results for a
layer [26]. If the size of a model is large, then it would
be challenging to upload the entire DNN model into GPU
memory. In such a case, model-parallel approach is preferred.
Previous studies have shown that the model parallel training
causes more frequent synchronization overhead than the data
parallel training [45], and data parallel approach scales better
for convolutional layers than model parallel approach [26].
Therefore, the model parallel approach is currently not widely
used. In our evaluation, we tested AlexNet and ResNet-50,
where the number of convolution layers is larger than the
number of fully connected layers. These DNN models fit into
GPU memory on our HPC systems. Hence, we selected data
parallel training for our evaluation.

2) Parallel Training in HPC: As shown in Figure 1, each
node in our evaluation environment is equipped with multiple
GPUs connected to two CPU sockets via NVLink, where

Fig. 3: Parameter server architecture for distributed deep learning.

all GPU-to-GPU and CPU-to-GPU connections go through
NVLink. We evaluate our target system for data parallel
approach at intra-node and inter-node levels. For intra-node
level, each node fetches parameters into main memory, which
are then copied into each GPU memory through NVLink. It
enables each GPU to have its own copy of the parameters
that it uses to process different part of a batch. Whenever
one iteration is finished, a master GPU, referred to as GPU0,
gathers the gradients from other GPUs through NVLink. GPU0
aggregates all gradients, and then sends the aggregate to
the CPU on the worker. Finally, the CPU pushes the single
aggregated gradient into the parameters.

For inter-node level, we adopt the widely applied parameter
server architecture [48] for distributed parameter aggregation
as shown in Figure 3. Under such a scheme, two types of nodes
are deployed, i.e., parameter server and workers. Parameter
server maintains globally shared parameters that can be shared
by multiple workers. Input data and computational workload
are distributed to multiple worker nodes. Each worker node
retrieves the latest parameters from the parameter server, reads
input data from the storage systems, processes training, and
sends updates back to the parameter server directly.

Summary: In distributed training, the total number of
iterations for training a single network model are distributed
between workers. Before performing the computation, the
model parameter W is pulled from the parameter server to all
workers. The training data subset, called mini-batch, is loaded
from the storage devices to the main memory. After decoding
and resizing the data, the data is then divided across the GPUs.
Multiple GPUs are deployed in each node for achieve further
intra-node level data parallelism, i.e., if a mini-batch has 128
images and there are four GPUs in a single compute node, then
32 images can be trained simultaneously during one iteration
by each GPU at each node. GPU0 gathers gradients from other
GPUs, and sends an aggregated gradient to the CPU. Then,
each worker pushes the updated delta W to the parameter
server to maintain the latest model parameters.

III. METHODOLOGY

Performance of DL training has been well studied on
commodity servers [28], [31] and cloud environments [27].
However, DL training has not been thoroughly studied on
the latest HPC systems (such as IBM-built heterogeneous
supercomputers), in spite of the effort and revenue invested in
building DL-ready HPC systems. Simply applying the lessons
from commodity servers and clouds to a HPC systems is not
recommended given the significant differences in the hardware
and software architecture, configurations, and scale. Thus, it is
crucial to understand how DL training performs atop state-of-
the-art DL-ready HPC systems, and to evaluate cost–benefit
trade-offs, diagnose bottlenecks, and improve hardware and
software designs to efficiently support DL training.

Existing studies reveal that DL training is compute-
intensive [49], less sensitive to data I/O [50], and suffer from
network communication overhead when scaling-out [29], [50].
In fact, modern HPC systems are being designed with these
assumptions about the DL training behavior. In our study, we
quantitatively validate these conclusions in top HPC systems
with high-end GPUs, storage systems, and network devices.
Our study aims to answer the following research questions:

• Do traditional performance understanding and assump-
tions of DL training still hold in DL capable HPC
systems? For example, do large-batch training and multi-
GPU training provide scalability?

• How much performance benefit can be achieved from the
upgrade of GPUs, modern storage and network devices
for DL applications?

• Do DL applications scale with the increasing number
of parameter nodes, worker nodes, and GPU devices?
What is the communication overhead for scaling-up and
scaling-out?

• How do workload characteristics have impact on the
performance indications?

We design our experiments to answer the above research
questions. First, we conduct our experiments on a supercom-
puter, i.e., Summitdev, that provides an early access devel-
opment platform for the top ranked supercomputer Summit
with latest configurations. Our system architecture is shown
in Figure 1. Specifically, our test bed has 54 compute nodes
where each compute node has four NVIDIA Tesla P100 GPUs
and two IBM POWER8 CPUs as shown in Table II. Each P100
GPU has 3584 CUDA cores and 16 GB memory (maximum
memory clock frequency is 715 MHz, and the peak memory
bandwidth is 732 GB/s).

We select TensorFlow deep learning framework for our
experiments because of its wide adoption in academia and
industry [51], [52]. We choose TensorFlow 1.8 with CUDA
9.0 [53] and cuDNN 7.0.3 [54]. We use the default GPU
memory option, where TensorFlow allocates GPU memory
dynamically when necessary. We focus on CNN training as
it has been well-studied with a lot of variable models, and is
proven to be easy to scale with data-parallel schemes. We se-
lect ImageNet dataset [33] in this paper for training the model

TABLE II: Specification of the evaluation environment.

Summitdev Supercomputer
Compute nodes 54
GPUs 4 NVIDIA Tesla P100
CPUs 2 IBM POWER8
Cores per CPU 10
CPU core clock 2.0 GHz
Main memory 256 GB
NVLink NVLink 1.0 (40 GB/s)
Interconnection Mellanox IB EDR (100 Gbps)
File systems Lustre, NVMe-based XFS
NVMe 800 GB NVMe per compute node

as it is widely used for DL evaluation [55], [56], and therefore,
offers a representative benchmark. There are about 1.2 million
images of 1, 000 categories for training and 50, 000 images for
validation. For training, we use TensorFlow-Slim [57] suite, a
library that provides various image categorization models.

We measure the training throughput (images per second) as
our performance metric, since it is a de facto metric used in the
DL community. We conduct experiments with data both from
locally-attached NVMe SSDs and Lustre file system to identify
the performance benefit of fast local storage. Moreover, we
record the performance variance of both scenarios as we expect
Lustre to suffer from network congestion when I/O load is
high, while local SSDs will not be affected by other users. We
conduct experiments to analyze scaling characteristics of the
studied DL workloads. We scale our workloads from 1 GPU
to 128 GPUs. For distributed training, we conduct experiments
with increasing number of workers with the fixed number of
parameter server, and increasing number of parameter servers
with fixed number of workers to study the impact for different
scaling configurations. We quantitatively study the communi-
cation overhead of scaling-up with data transfer measurements
between CPU and GPU, as well as between multiple GPUs.
Finally, to answer the last question, i.e., effects of workload
characteristics, we analyze the performance impact of model
parameters, such as batch size and data store formats, in
addition to selecting models with different characteristics, in
the evaluation of the DL models studied in this paper.

IV. EVALUATION RESULTS

We setup our experiments according to the methodology
as described in Section III. We built TensorFlow to support
the IBM POWER architecture in our platform, and configure
TensorFlow to use IP over IB for distributed training in pa-
rameter server mode. We also made necessary modifications to
TensorFlow-Slim package to support distributed training with
parameter server mode. We run each experiment five times
and report averages with 95% confidence intervals, except for
cases where negligible variation is observed between runs.

A. Overall Performance

We first give an overview of performance of the studied
workloads (Table I) in our experimental setup. As shown in
Figure 4a with the results of Lustre, LeNet [42] performance
is faster than other neural networks. This is because LeNet has
less number of layers and parameters as compared to the other

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

LeNet AlexNet ResNet-50 ResNet-101

Im
ag

es
/s

ec
Lustre NVMe

(a) Training throughput.

 0

 2

 4

 6

 8

 10

LeNet AlexNet ResNet-50 ResNet-101Va
ria

bi
lit

y
in

 tr
ai

ni
ng

 ti
m

e
(%

)

Lustre NVMe

(b) Variability in training time.

Fig. 4: Training with Lustre and NVMe.

DL models. Similarly, ResNet-101 has the worst performance
among the models as it has the biggest number of layers as
shown in Table I. The evaluation of different models on HPC
shows a similar trend to the existing studies [58]. In our fol-
lowing sections, we will breakdown the obtained performance
to investigate in detail the impact of each component in our
HPC setting on the training of the studied DL models.

The biggest highlight of DL-ready supercomputers is the
upgrade of GPUs. To test how much DL can benefit from a
top class GPU, we also tested the GPU utilization using the
studied workloads. Figure 5 shows the results. Our evaluation
shows that the GPU utilization increases with the increase
in the number of layers of DL models. LeNet shows the
lowest GPU utilization with only 2.3% whereas the utilization
goes up to 69.9% for ResNet-101. This result confirms that
the computation overhead of ResNet-101 is higher than other
CNNs, which slows down the overall training throughput.
However, we can see that the number of layers almost doubles
from ResNet-50 to ResNet-101 model, but the performance
only decreases by 7%. This is due to the high utilization of
GPU using ResNet-101 model, which significantly benefits the
training throughput. Our results show that GPU upgrade is
useful for compute-intensive models, such as ResNet, instead
of simple DL models, such as LeNet. Moreover, even with
ResNet-101, the GPU utilization is only less than 70%. It is
essential to design algorithms for models, resource managers,
workload schedulers that are able to fully utilize available high
performance GPUs. We further discuss the communication
overheads with the upgrade of numbers of GPUs in a single
node in Section IV-C.

 0
 10
 20
 30
 40
 50
 60
 70
 80

LeNet AlexNet ResNet-50 ResNet-101

GP
U

Ut
ili

za
tio

n
(%

) Lustre NVMe

Fig. 5: GPU utilization using different storage configurations.

B. Impact of Storage

As described in Section III, each node in our experimental
platform is supplied with a 800 GB NVMe SSD, and a parallel
file system (Lustre) is shared by all cluster nodes for serving
I/O requests. We first measure the I/O performance of both
storage configurations. We run the default read tests with a
2.5 GB file using the UNIX dd [59] command. We observe an
I/O read throughput of 7.2 GB/s for NVMe SSD, and 4.2 GB/s
for Lustre file system. We also observe that the performance
variance of NVMe SSD is more stable than Lustre, i.e., 7.0 ∼
7.3 GB/s for NVMe SSD, 2.0 ∼ 5.2 GB/s for Lustre. This
gives a performance variation of 0.3 GB/s for NVMe SSD as
compared to a performance variation of 3.2 GB/s for Lustre.
Note that performance of Lustre file system is dependent on
the I/O requests from all users in the system. With this raw
performance difference in mind, we now examine how high
throughput I/O devices, such as NVMe SSD, can impact the
performance of DL using different training models.

We measure the training throughput with input data in
Lustre and XFS (local file system on NVMe SSD) storage
systems respectively to identify the storage bottlenecks of
these storage systems. In our evaluation platform, Lustre is
distributed across multiple storage nodes and might create a
network bottleneck with increasing number of I/O requests
from distributed cluster nodes, whereas NVMe is mounted
using XFS file system where each node has its own NVM
that serves as a burst buffer. Therefore, storage bottleneck can
cause a performance degradation in DL training over Lustre
storage system. Figure 4a shows the results. We can observe
from the figure that training on the same dataset has a similar
performance trend for both back-end storage systems. The
performances of LeNet and AlexNet DL models using NVMe
are faster than the corresponding performances on Lustre, i.e.,
4.63% and 1.75%, respectively, while the performances of
ResNet-50 and ResNet-101 models are almost identical for
both configurations. The result shows that NVMe can enhance
the training throughput of DL models where computational
overhead is not significant.

The I/O performance of Lustre file system is heavily
dependant on the overall I/O in the system, whereas the
performance of NVMe is dependent on the I/O load at the
corresponding node. Figure 4b shows the difference between
the shortest and the longest training times using the two

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

LeNet AlexNet ResNet-50 ResNet-101

Im
ag

es
/s

ec
Single GPU

2 GPUs
3 GPUs
4 GPUs

Fig. 6: Training throughput using multiple GPUs.

configurations. While the training times on NVMe is very
stable and shows a negligible performance difference between
0.1% and 3.1%, the training time on Lustre shows a variability
between 1.3% ∼ 9.0%. This result shows that an unstable
storage system can affect DL performance because of the
variability in the training time. We expect the variance in
the case of Lustre file system to further increase when it is
being used by a large number of users with a diverse set of
workloads, thus creating more noise for the file system.

C. Impact of Scale

In the next set of experiments, we explore how DL training
scales in HPC systems with increasing number of hardware
resources. We analyze scale-up in a single node with a
maximum of 4 GPUs per node, and scale-out to the maximum
32 compute nodes in our HPC cluster. Overall, we scale DL
training to 128 distributed GPUs in our experimental setup.

1) Scale-up with Multiple GPUs on a Single node: We
evaluate the impact of varying the number of GPUs on a
single compute node on the training performance of DL
models, and show the result in Figure 6. The performance
of AlexNet, ResNet-50, and ResNet-101 is improved with
the increasing number of GPUs as computational load is
distributed between available GPUs. However, a performance
degradation is observed for LeNet when two or more GPUs
are used. LeNet does not need to distribute computation loads
to multiple GPUs because its computation workload is less
intensive than other models. As shown in Figure 5, LeNet
has a very low GPU utilization and adding more GPUs incurs
more coordination overhead than the achieved parallelism. The
training performance of AlexNet and ResNet-50 substantially
increases when two GPUs are used as compared to using
a single GPU. However, further increase in the number of
GPUs for training does not provide any performance improve-
ment because of the communication overhead between the
participating GPUs. ResNet-101 shows better scalability due
to higher computation overhead than other models. It achieves
non-linear speedup, i.e., 3.26×, with four GPUs. This result
shows a different performance trend as compared to a recent
research [49], where stronger scalability is achieved with four
V100 GPUs on a single node.

To further investigate scaling-up bottlenecks, we take a
deeper look into the communication overhead of our setup.
Figure 7 shows the NVLink connection topology between the

Fig. 7: NVLink topology used in our evaluation setup.

CPUs and GPUs in our evaluation platform. We have two
CPUs and four GPUs connected together through NVLink
with different CPU affinities. Two GPUs, i.e., GPU0 and
GPU1, are connected to the CPU0, while the other two GPUs,
i.e., GPU2 and GPU3, are connected to the CPU1 through
NVLink. NVLink provides peak unidirectional theoretical
bandwidth of 40 GB/s [60]. However, in our measurements, we
found that NVLink is only able to achieve 79% (31.77 GB/s)
and 87% (35.12 GB/s) of the theoretical peak bandwidth for
GPU-to-CPU and GPU-to-GPU communication, respectively.

To identify the communication load, we measure the size
of the transferred data through NVLink during one epoch
both for CPU-to-GPU and GPU-to-GPU communications. As
Table III shows, large amount of data is being transferred
through NVLink during DL training. The total data transfer
size is about 24 TB and 1.8 TB for AlexNet and LeNet,
respectively. The data transfer size for ResNet-50 (15 TB) is
smaller than AlexNet even though the former has much deeper
layers in its training model. Therefore, the GPU-to-GPU/GPU-
to-CPU workload is related to the parameter size of the model.
We also observed that GPU-to-CPU communication is higher
than GPU-to-GPU communication, which means that multi-
GPU environment needs to focus on GPU-to-CPU workloads
for achieving faster DL training. The ratio of GPU-CPU to
GPU-GPU communications is related to NVLink topology
(shown in Figure 7). There is a direct connection between
GPU0 and GPU1, while there is no direct connection between
GPU0 and GPU2, and between GPU0 and GPU3.

In TensorFlow, GPU0 gathers gradients from other GPUs
in each iteration and then sends the aggregated gradients to
the CPU. This scheme is effective for Intel-based systems as
they connect CPU and GPU0 using PCIe bus while GPU1/2/3
are connected directly with GPU0 via NVLink. However, in
POWER-based systems, this scheme is ineffective because
GPU2 and GPU3 cannot send data directly to GPU0. Hence,
GPU2 and GPU3 send their gradients through additional paths
e.g., through NVLink between GPU2 and CPU1, through X-
BUS between CPU1 and CPU0, and through NVLink between
CPU0 and GPU0, which requires additional hops. According
to our measurements, bandwidth between GPU0 and GPU1
is 35.12 GB/s, while bandwidth between GPU0 and GPU2
is 21.47 GB/s. Roughly 40% bandwidth degradation occurs
due to the indirect connection between two GPUs, i.e., GPU0
and GPU2, and GPU1 and GPU3. When only two GPUs (e.g.,
GPU0 and GPU1) are used, there is no such additional transfer

TABLE III: Total data transfer (GB) through NVLink using 4 GPUs.

GPU-to-CPU GPU-to-GPU Total
LeNet 1520 326 1846

AlexNet 20355 3832 24187
ResNet-50 13136 1948 15084

bottleneck. However, when four GPUs are used, GPU0 has to
wait for a longer period of time to receive gradients from
GPU2 and GPU3. Thus, the current multi-GPU environment
of our target HPC system does not provide scalability for DL
training with TensorFlow framework. This observation advo-
cates developing new workflow schemes that incorporate GPU
connection topology in making task assignments decisions.

2) Scale-out with Multiple nodes: One of the common
approaches for distributed training is to use the standard
distributed TensorFlow which consists of multiple parameter
servers and workers. One or more parameter servers aggregate
gradients and broadcast corresponding updates to the worker
nodes. Each worker then executes computational parts, such
as convolution operation, of the DL model. The native dis-
tributed TensorFlow framework uses protocol buffer [61] based
Google’s remote procedure call (gRPC) [62] for efficient high
performance communication between the compute nodes.

We employ the standard distributed TensorFlow framework
with multiple parameter servers and workers and study the
impact of cluster configurations on distributed DL throughput.
We varied the number of parameter servers or workers in
this set of experiments, while other options, such as back-
end storage, are fixed. Each scenario was executed on parallel
file system with a fixed batch size of 128 images per node.
We do not include AlexNet in our scalability study due to the
occurrence of a well-known NaN (Not a Number) [63] error
with TensorFlow.

a) Scalability with Multiple Workers: Figure 8a shows
the training throughput when the number of compute nodes
increases 32 nodes using a separate parameter server. LeNet
shows a scalable performance improvement up to 1211%, and
ResNet-50 also shows performance improvement of 94% ∼
1094%, as compared to the single-worker training. ResNet-
101 shows a similar performance trend, i.e., 93% ∼ 1012%
improvement, as compared to the single-worker training. The
ResNet models show less performance improvement with 32
nodes as compared to LeNet. This is because LeNet has lower
checkpointing overhead with less parameters as compared
to ResNet models. Although the training is scalable, the
checkpointing mechanism is not scalable with multi-node. In
our experiment, checkpointing with Tensorflow takes about 5
seconds in LeNet, but it takes about 70 seconds in ResNet-
101. This result shows that although high speed network can
provide scale-out performance, it is critical to develop scalable
checkpointing techniques for models that have a large number
of parameters to deliver high scalability.

Accuracy: Existing studies [64], [65] show that training
with large batches using multiple nodes results in slow con-
vergence. Our experiments also confirm this trend as shown in
figure 8b. However, distributed training is still promising and

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

1 2 4 8 16 32

Im
ag

es
/s

ec

Number of Workers

LeNet ResNet-50 ResNet-101

(a) Training throughput.

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32

N
or

m
al

iz
ed

 A
cc

ur
ac

y

Number of Workers

LeNet ResNet-50 ResNet-101

(b) Accuracy.

Fig. 8: Distributed training with multiple workers.

several efforts [16], [50], [66], [67] are exploring methods to
reduce accuracy degradation. Learning rate algorithms, such
as Layer-wise Adaptive Rate Scaling (LARS) [50], can be
effectively used to mitigate the impact of accuracy loss. Recent
efforts [16], [66], [67] have demonstrated performance im-
provement for large-batch training without sacrificing accuracy
by using LARS-based methods.

b) Scalability with Multiple Parameter Servers: Our pre-
vious experiments use only one parameter server. In this ex-
periment, we study parameter server scalability by increasing
the number of parameter servers from 1 to 16 on a cluster
with 16 worker nodes and show the results in Figure 9a.

Counterintuitively, increasing the number of parameter
servers is less effective for all DL models, which shows differ-
ent trend compared to the past research [30]. For LeNet, using
more parameter servers is ineffective, whereas, for ResNet-50
and ResNet-101, there is a slight improvement initially, but
no performance gain is observed going beyond more than 4
parameter servers. Combined with the previous observations
of scaling with multiple workers, the result of this experiment
shows that when scaling-out a DL model, it is more efficient
to increase the number of workers instead of the number
of parameter servers. Network bandwidth is known [46] to
have an impact on parameter server’s performance as network
congestion increases when serving multiple workers. However,
high network bandwidth, i.e. 100 Gbps, equipped in our setup
reduces the performance impact of such network congestion
and results in the negligible end-to-end performance improve-
ment. On the contrary, older HPC systems or cloud computing
systems deploy network with lower bandwidth (e.g., NERSC

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 4 8 16

Im
ag

es
/s

ec

Number of Parameter Servers

LeNet ResNet-50 ResNet-101

(a) Training throughput.

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16

N
or

m
al

iz
ed

 A
cc

ur
ac

y

Number of Parameter Servers

LeNet ResNet-50 ResNet-101

(b) Accuracy.

Fig. 9: Distributed training with multiple parameter servers.

Cori 66.4 Gbps, Amazon EC2 10 Gbps) [68] can benefit more
from scaling parameter servers.

Accuracy: The existing study [23] shows that multiple
parameter servers results in slow convergence performance.
Our result, shown in Figure 9b, shows a similar pattern. The
accuracy reduces with the increase in the number of parameter
servers. Asynchronous updates of multiple parameter servers
results in unsynchronized partitions between parameter server
nodes, which causes slow-down of convergence [48], [69].
This result underscores the conclusions of the existing studies
[48], [69]–[71].

D. Impact of Workload Configurations

In this set of experiments, we explore the performance im-
pact of application configurations. The goal of this evaluation
is to provide insights and guidance on how to configure DL
training on supercomputers to best utilize the capability of
the resources and realize best performance without loosing
training accuracy.

1) Data Format: A recent study shows that the data format
can impact training time while achieving same quality [72].
Specifically, key-value (KV) stores such as LMDB [73] can
provide 17× speedup [72] as compared to using separate
image files (e.g., PNG format) as input dataset. KV stores have
also been used as HPC storage back-ends because of achieving
high performance and high scalability with simple design and
easy to use interfaces. Thus, we investigate how using KV
stores in our HPC platform can impact the performance of
DL applications. To this end, we measure the training perfor-
mance with two different storage options, namely, TFRecord-
formatted [74] files on Lustre file system, and LMDB [73]

 0
 100
 200
 300
 400
 500
 600
 700
 800

LeNet AlexNet ResNet-50

Im
ag

es
/s

ec

TFRecords LMDB

Fig. 10: Training throughput with TFRecords and LMDB.

database files on the Lustre file systems. TFRecord file format
is a TensorFlow-specific binary format whereas LMDB is a
light and simple-to-deploy B+ tree-based KV store.

The default implementation of TensorFlow does not provide
mechanism to create LMDB data files from the input datasets.
Therefore, we implemented a C++ based parser that creates
a LMDB database file from the provided ImageNet datasets.
In our evaluation, TFRecords-formatted files and LMDB
database files are located on the Lustre file systems. Figure
10 shows that the performance difference between TFRecords
and LMDB is negligible, i.e., under 1% as compared to
each other. We note a different performance trend from an
existing analysis [72] of using image files in the storage
systems for training DNN models. File systems cannot provide
superior indexing and caching mechanism to locate image files
because it caches blocks from the same image file [72], thus
providing poor performance when using separate image files.
Instead of using separate image files, TFRecords-formatted
files for ImageNet dataset consist of 1024 files for about 1.2
million images. Thus, TFRecords-formatted files can provide
comparable throughput when compared to LMDB KV store.

2) Batch Size: Batch size per machine is an important
parameter configuration in DL applications that can also
impact the training performance [65], [66]. As discussed in
Section II, a large dataset is partitioned into smaller batches
to achieve data parallel training. Large batch sizes will increase
computation workload with decreased gradient aggregation
frequency and weight update. Here, we analyze how batch size
affects training performance by scaling the batch size from 128
to 8192 images on a single node. Figure 11 shows the results.
The results of ResNet-50 are not available after 512 images
as going beyond 512 images per batch saturates the GPU
memory. Intuitively, bigger batch size with higher compute
and less communication overhead is preferred for throughput
reasons. However, we observe that increasing batch size on a
single node does not lead to performance enhancement on the
target supercomputer. When the batch size is increased from
128 images to 256 images, it results in negligible performance
enhancement, i.e., 1.0% ∼ 3.7% for the studied models.
Moreover, performance degradation occurs when very large,
i.e., 4K and 8K, batch sizes are used. Large batch training is
not effective in our system setup. Previous studies [64], [75]
have used large batch sizes to reduce the number of training

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

128 256 384 512 1024 2048 4096 8192

Im
ag

es
/s

ec

Batch Size

LeNet AlexNet ResNet-50

Fig. 11: Training throughput on a single node with increasing batch
size.

steps, where the performance gains are obtained by reducing
the I/O overhead between CPU and GPU. This assumes
slower connections between CPU and GPU, and reducing the
training steps is effective in reducing the I/O overhead. While
the existing Intel-based HPC systems use PCIe bus between
CPU and GPU, the latest POWER-based HPC systems have
NVLink (5× faster than PCIe) between CPU and GPU. As
a result, the percentage of GPU I/O utilization (e.g., GPU-
to-GPU copy, CPU-to-GPU copy) is already much low, i.e,
the maximum observed is 18.06%, as shown in Figure 12.
LeNet and ResNet-50 show lower GPU I/O utilization than
AlexNet (3.50% ∼ 0.08%), as the number of parameters in
these models are less than AlexNet. In our setup, large batch
sizes are not helpful in reducing GPU I/O time.

We further measure how large-batch per node affects dis-
tributed training with 16 worker nodes and 1 parameter server
as shown in Figure 13. Similarly, large-batch training in
distributed setting is also not effective on training throughput,
while accuracy drops significantly.

V. DISCUSSION

We made the following key findings based on our evalua-
tion, which show different performance trends from past works
on analyzing the performance of DL workloads. These findings
help provide insights to system designers and DL scientists.

• Employing multiple GPUs on a single node for training
DL workloads does not help in improving the model
performance. While using two GPUs may help improve
model performance by sharing the load, using additional
GPUs diminishes the performance benefits because of the
coordination overhead. This is in contrast to the existing
practices [49], [58], where using a larger number of GPUs
is recommended for scaling DL training performance.

• GPU utilization should be increased by means of de-
signing efficient resource managers or schedulers [76] to
obtain scalable training in a multi-GPU system. Although
NVLink is used to connect GPUs on a single node, GPUs
are not fully utilized.

• Distributed training with multiple workers enhances
throughput as compared to single node training, but the
performance does not scalable with the increasing number
of parameter servers.

 0

 0.5

 1

 1.5

 2

 2.5

 3

128 256 384 512 1024 2048 4096

GP
U

Ut
ili

za
tio

n
(%

)

Batch Size

Total GPU Utilization GPU I/O Utilzation

(a) LeNet

 0
 5

 10
 15
 20
 25
 30
 35
 40

128 256 384 512 1024 2048 4096

GP
U

Ut
ili

za
tio

n
(%

)

Batch Size

Total GPU Utilization GPU I/O Utilzation

(b) AlexNet

 0
 5

 10
 15
 20
 25
 30
 35
 40

128 256 384 512

GP
U

Ut
ili

za
tio

n
(%

)

Batch Size

Total GPU Utilization GPU I/O Utilzation

(c) ResNet-50

Fig. 12: GPU utilization on a single node with increasing batch size.

• Large batch size does not improve training through-
put both on a single node and in distributed training.
Normally, increasing batch size provides performance
enhancements, however, our evaluation reveals only a
slight performance improvement, i.e., 2.7% on average,
when using a batch size of 256. Also, large-batch training
has very limited performance gain for distributed training
on multiple nodes. Thus, large batching size may not
yield substantial benefits for DL training as commonly
expected in other use cases.

• Upgrade of storage system gives limited performance im-
provement to DL training. Considering the data copying
overhead (from parallel file system to locally attached
NVMe SSD), it might not be worth using the high
performance SSDs for faster data loading.

The lesson learned from the study, i.e., simply adding
high-throughput multi-GPUs in HPC might be ineffective for
improving DL training performance, would also apply to
other accelerators, such as, TPUs, FPGAs, and ASICs, as

 0

 2000

 4000

 6000

 8000

 10000

128 256 384 512 1024 2048 4096 8192

Im
ag

es
/s

ec

Batch Size

LeNet ResNet-50 ResNet-101

(a) Training throughput.

0.2

0.4

0.6

0.8

1.0

128 256 384 512 1024 2048 4096 8192

N
or

m
al

iz
ed

 A
cc

ur
ac

y

Batch Size

LeNet ResNet-50 ResNet-101

(b) Accuracy.

Fig. 13: Distributed training with increasing batch size.

the main underlying causes exposed by our work are the
performance differences between CPUs and accelerators, and
the I/O limitations between the available processing devices.
These causes will exacerbate with the use of specialized
accelerators. If these accelerators have comparable compute
power as a powerful GPUs and use fast connectivity, such as
NVLink, then they will provide a similar performance pattern
as observed in this work.

VI. RELATED WORKS

The performance of DL training has been studied on differ-
ent platforms. Mojumder et al. [58] analyzed DL workloads
on DGX-1 system that uses the fastest V100 GPUs. Shi et
al. [49] evaluated distributed DL performance with multiple
machines that have multiple GPUs. Chien et al. [77] analyzed
effects of the number of threads, burst buffer for checkpoint,
and prefetcher on TensorFlow performance with Xeon-based
multi-GPU supercomputers. Xu et al. [31] compared perfor-
mance of V100 and P100 GPUs. However, these studies are
not conducted with the latest hardware upgrades, such as
NVLink for GPU-CPU communication, which are critical for
improving the performance of DL applications. In contrast,
our work performs intensive performance analysis including
the impact of NVLink on the performance of DL applications.

There are existing studies on DL training analysis conducted
on IBM POWER systems. Shams et al. [29] evaluated DL
training performance with NVIDIA’s NVLink on an IBM
POWER-based machine. Gupta et al. [78] investigated trade-
offs between accuracy and DL training time on IBM POWER-
based homogeneous supercomputers without GPUs. While

these works have used IBM POWER processors, their eval-
uation environments are different from the emerging IBM
POWER-based heterogeneous supercomputers. Shams et al.
focused on a single machine only, unlike HPC systems.
Similarly, Gupta et al. did not evaluate on multiple GPUs,
which is common in top-ranked supercomputers.

DL performance evaluation has also been studied [21], [79]
on cloud platform where Intel CPUs and NVIDIA GPUs
are supported by Amazon Web Services (AWS). However,
cloud environment differs a lot from HPC environment where
dedicated high performance resources, such as CPU, GPU,
memory and SSDs are provided without virtualization. Thus,
our study is unique and different from such works, and unlike
them, our results are applicable to HPC systems.

Although the top two supercomputers are IBM POWER-
based heterogeneous HPC systems, there is no comprehensive
performance research on HPC systems where IBM POWER
CPUs coupled with high-end GPUs are used as compute
nodes. To the best of our knowledge, ours is the first work
that studies DL on representative systems (similar to top-
ranked supercomputers) and provides detailed performance
breakdown using different hardware and software settings.

VII. CONCLUSION

The use of DL for solving highly complex problems and
deriving scientific discoveries is increasing fast. To meet this
growing demand, supercomputers are evolving to support
popular DL and machine learning workloads by deploying
energy-efficient GPUs (such as NVIDIA Tesla GPUs), faster
interconnect (such as NVLink and IB), and faster storage
systems (such as NVMe SSDs). In this paper, we presented a
quantitative performance study and analysis of deep learning
training using popular TensorFlow framework on a heteroge-
neous supercomputing cluster built on IBM POWER-based
machines. To the best of our knowledge, this is the first
effort to evaluate DL performance on IBM POWER-based
heterogeneous supercomputers with a thorough analysis of
the impact of hardware settings, such as storage, interconnect,
CPUs and GPUs, as well as software configurations, such as
batch size and data format. Our evaluation reveals that system
insights are required to improve DL performance. Existing
practices, e.g., large-batch training, and multi-GPU training,
may not be helpful in improving DL throughput performance.
The main factors impacting the DL training throughput are
GPU utilization, and the communication link performance
between CPU and GPU.

ACKNOWLEDGMENT

This work is sponsored in part by the NSF under the grants:
CNS-1405697, CNS-1615411, and CNS-1565314/1838271.
This research used resources of the Oak Ridge Leadership
Computing Facility, located in the National Center for Com-
putational Sciences at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the DOE under
Contract DE-AC05-00OR22725.

REFERENCES

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
nature, 521(7553):436, 2015.

[2] L. Xu, S. Lim, M. Li, A. R. Butt, and R. Kannan. Scaling up data-
parallel analytics platforms: Linear algebraic operation cases. In 2017
IEEE International Conference on Big Data (Big Data), pages 273–282,
Dec 2017.

[3] L. Xu, S. Lim, A. R. Butt, S. R. Sukumar, and R. Kannan. Fatman
vs. littleboy: Scaling up linear algebraic operations in scale-out data
platforms. In 2016 1st Joint International Workshop on Parallel
Data Storage and data Intensive Scalable Computing Systems (PDSW-
DISCS), pages 25–30, Nov 2016.

[4] Sander Dieleman, Kyle W Willett, and Joni Dambre. Rotation-
invariant convolutional neural networks for galaxy morphology predic-
tion. Monthly notices of the royal astronomical society, 450(2):1441–
1459, 2015.

[5] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud
Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian,
Jeroen Awm Van Der Laak, Bram Van Ginneken, and Clara I Sánchez.
A survey on deep learning in medical image analysis. Medical image
analysis, 42:60–88, 2017.

[6] Jian Zhou and Olga G Troyanskaya. Deep supervised and convolutional
generative stochastic network for protein secondary structure prediction.
arXiv preprint arXiv:1403.1347, 2014.

[7] Amogh Katti, Giuseppe Di Fatta, Thomas Naughton, and Christian
Engelmann. Epidemic failure detection and consensus for extreme
parallelism. The International Journal of High Performance Computing
Applications, 32(5):729–743, 2018.

[8] Jeffrey S. Vetter, Ron Brightwell, Maya Gokhale, Pat McCormick,
Rob Ross, John Shalf, Katie Antypas, David Donofrio, Travis Hum-
ble, Catherine Schuman, Brian Van Essen, Shinjae Yoo, Alex Aiken,
David Bernholdt, Suren Byna, Kirk Cameron, Frank Cappello, Barbara
Chapman, Andrew Chien, Mary Hall, Rebecca Hartman-Baker, Zhiling
Lan, Michael Lang, John Leidel, Sherry Li, Robert Lucas, John Mellor-
Crummey, Paul Peltz Jr., Thomas Peterka, Michelle Strout, and Jeremiah
Wilke. Extreme heterogeneity 2018 - productive computational science
in the era of extreme heterogeneity: Report for doe ascr workshop on
extreme heterogeneity. 12 2018.

[9] ORNL Launches Summit Supercomputer.
https://www.ornl.gov/news/ornl-launches-summit-supercomputer, 2018.

[10] Top500. http://www.top500.org, 2018.
[11] NVIDIA Tesla V100. https://www.nvidia.com/en-us/data-center/tesla-

v100/, 2018.
[12] NVLink. https://www.nvidia.com/en-us/data-center/nvlink/, 2018.
[13] Jonathan Hines. Stepping up to summit. Computing in Science &

Engineering, 20(2):78–82, 2018.
[14] Sierra. https://hpc.llnl.gov/hardware/platforms/sierra, 2018.
[15] AI Bridging Cloud Infrastructure (ABCI). https://abci.ai/, 2018.
[16] Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur Mudigonda,

Nathan Luehr, Everett Phillips, Ankur Mahesh, Michael Matheson, Jack
Deslippe, Massimiliano Fatica, et al. Exascale deep learning for climate
analytics. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis, page 51.
IEEE Press, 2018.

[17] Ning Liu, Jason Cope, Philip Carns, Christopher Carothers, Robert Ross,
Gary Grider, Adam Crume, and Carlos Maltzahn. On the role of burst
buffers in leadership-class storage systems. In Mass Storage Systems
and Technologies (MSST), 2012 IEEE 28th Symposium on, pages 1–11.
IEEE, 2012.

[18] Jeffrey S Vetter and Sparsh Mittal. Opportunities for nonvolatile memory
systems in extreme-scale high-performance computing. Computing in
Science & Engineering, 17(2):73–82, 2015.

[19] Infiniband trade association. https://www.infinibandta.org/, 2018.
[20] Thorsten Kurth, Jian Zhang, Nadathur Satish, Evan Racah, Ioannis

Mitliagkas, Md Mostofa Ali Patwary, Tareq Malas, Narayanan Sun-
daram, Wahid Bhimji, Mikhail Smorkalov, et al. Deep learning at
15pf: supervised and semi-supervised classification for scientific data.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, page 7. ACM, 2017.

[21] Shang-Xuan Zou, Chun-Yen Chen, Jui-Lin Wu, Chun-Nan Chou, Chia-
Chin Tsao, Kuan-Chieh Tung, Ting-Wei Lin, Cheng-Lung Sung, and
Edward Y Chang. Distributed training large-scale deep architectures. In
International Conference on Advanced Data Mining and Applications,
pages 18–32. Springer, 2017.

[22] Christian Pinto, Yiannis Gkoufas, Andrea Reale, Seetharami Seelam, and
Steven Eliuk. Hoard: A distributed data caching system to accelerate
deep learning training on the cloud. arXiv preprint arXiv:1812.00669,
2018.

[23] Pijika Watcharapichat, Victoria Lopez Morales, Raul Castro Fernandez,
and Peter Pietzuch. Ako: Decentralised deep learning with partial
gradient exchange. In Proceedings of the Seventh ACM Symposium on
Cloud Computing, pages 84–97. ACM, 2016.

[24] Satish Kumar Sadasivam, Brian W Thompto, Ron Kalla, and William J
Starke. Ibm power9 processor architecture. IEEE Micro, 37(2):40–51,
2017.

[25] Burak Bastem, Didem Unat, Weiqun Zhang, Ann Almgren, and John
Shalf. Overlapping data transfers with computation on gpu with tiles.
In 2017 46th International Conference on Parallel Processing (ICPP),
pages 171–180. IEEE, 2017.

[26] Alex Krizhevsky. One weird trick for parallelizing convolutional neural
networks. arXiv preprint arXiv:1404.5997, 2014.

[27] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: a system for large-scale machine
learning. In OSDI, volume 16, pages 265–283, 2016.

[28] Vı́ctor Campos, Francesc Sastre, Maurici Yagües, Jordi Torres, and
Xavier Giró-i Nieto. Scaling a convolutional neural network for
classification of adjective noun pairs with tensorflow on gpu clusters. In
Cluster, Cloud and Grid Computing (CCGRID), 2017 17th IEEE/ACM
International Symposium on, pages 677–682. IEEE, 2017.

[29] Shayan Shams, Richard Platania, Kisung Lee, and Seung-Jong Park.
Evaluation of deep learning frameworks over different hpc architectures.
In Distributed Computing Systems (ICDCS), 2017 IEEE 37th Interna-
tional Conference on, pages 1389–1396. IEEE, 2017.

[30] Amrita Mathuriya, Thorsten Kurth, Vivek Rane, Mustafa Mustafa, Lei
Shao, Debbie Bard, Victor W Lee, et al. Scaling grpc tensorflow on 512
nodes of cori supercomputer. arXiv preprint arXiv:1712.09388, 2017.

[31] Rengan Xu, Frank Han, and Quy Ta. Deep learning at scale on nvidia
v100 accelerators. 2018.

[32] Summitdev. https://www.olcf.ornl.gov/for-users/system-user-
guides/summitdev-quickstart-guide/, 2019.

[33] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on, pages 248–255. Ieee, 2009.

[34] Lustre. http://lustre.org, 2018.
[35] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishi-

moto, and Geoff Peck. Scalability in the xfs file system. In USENIX
Annual Technical Conference, volume 15, 1996.

[36] David Kirk. Nvidia cuda software and gpu parallel computing archi-
tecture. In Proceedings of the 6th International Symposium on Memory
Management, ISMM ’07, pages 103–104, New York, NY, USA, 2007.
ACM.

[37] Sparsh Mittal and Jeffrey S Vetter. A survey of software techniques
for using non-volatile memories for storage and main memory systems.
IEEE Transactions on Parallel and Distributed Systems, 27(5):1537–
1550, 2016.

[38] Sudharshan S Vazhkudai, Bronis R de Supinski, Arthur S Bland,
Al Geist, James Sexton, Jim Kahle, Christopher J Zimmer, Scott Atchley,
Sarp Oral, Don E Maxwell, et al. The design, deployment, and evaluation
of the coral pre-exascale systems. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and
Analysis, page 52. IEEE Press, 2018.

[39] Frank B Schmuck and Roger L Haskin. Gpfs: A shared-disk file system
for large computing clusters. In FAST, volume 2, 2002.

[40] Yingjin Qian, Xi Li, Shuichi Ihara, Lingfang Zeng, Jürgen Kaiser,
Tim Süß, and André Brinkmann. A configurable rule based classful
token bucket filter network request scheduler for the lustre file system.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, page 6. ACM, 2017.

[41] Weikuan Yu, Jeffrey Vetter, R Shane Canon, and Song Jiang. Exploiting
lustre file joining for effective collective io. In Cluster Computing and
the Grid, 2007. CCGRID 2007. Seventh IEEE International Symposium
on, pages 267–274. IEEE, 2007.

[42] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[43] Song Han, Jeff Pool, John Tran, and William Dally. Learning both
weights and connections for efficient neural network. In Advances in
neural information processing systems, pages 1135–1143, 2015.

[44] Yunhe Wang, Chang Xu, Jiayan Qiu, Chao Xu, and Dacheng Tao.
Towards evolutional compression. arXiv preprint arXiv:1707.08005,
2017.

[45] Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro,
and Ng Andrew. Deep learning with cots hpc systems. In International
Conference on Machine Learning, pages 1337–1345, 2013.

[46] Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik
Kalyanaraman. Project adam: Building an efficient and scalable deep
learning training system. In OSDI, volume 14, pages 571–582, 2014.

[47] Omry Yadan, Keith Adams, Yaniv Taigman, and Marc’Aurelio Ranzato.
Multi-gpu training of convnets. arXiv preprint arXiv:1312.5853, 2013.

[48] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al.
Large scale distributed deep networks. In Advances in neural informa-
tion processing systems, pages 1223–1231, 2012.

[49] Shaohuai Shi, Qiang Wang, Xiaowen Chu, and Bo Li. Modeling and
evaluation of synchronous stochastic gradient descent in distributed deep
learning on multiple gpus. arXiv preprint arXiv:1805.03812, 2018.

[50] Yang You, Igor Gitman, and Boris Ginsburg. Scaling sgd batch size to
32k for imagenet training. arXiv preprint arXiv:1708.03888, 2017.

[51] Bokyung Seo, Myungjae Shin, Yeong Jong Mo, and Joongheon Kim.
Top-down parsing for neural network exchange format (nnef) in
tensorflow-based deep learning computation. In Information Networking
(ICOIN), 2018 International Conference on, pages 522–524. IEEE,
2018.

[52] Guanpeng Li, Karthik Pattabiraman, and Nathan DeBardeleben. Ten-
sorfi: A configurable fault injector for tensorflow applications. In 2018
IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), pages 313–320. IEEE, 2018.

[53] Compute Unified Device Architecture (CUDA).
https://developer.nvidia.com/cuda-zone, 2019.

[54] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,
John Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient
primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[55] Paweł Michalski, Bogdan Ruszczak, and Michał Tomaszewski. Con-
volutional neural networks implementations for computer vision. In
International Scientific Conference BCI 2018 Opole, pages 98–110.
Springer, 2018.

[56] Wei Huang, Jing Zeng, Peng Zhang, Guang Chen, and Huijun Ding.
Single-target localization in video sequences using offline deep-ranked
metric learning and online learned models updating. Multimedia Tools
and Applications, 77(21):28539–28565, 2018.

[57] Tensorflow-slim. 2018. https://github.com/tensorflow/models/tree/
master/research/slim.

[58] Saiful A Mojumder, Marcia S Louis, Yifan Sun, Amir Kavyan Ziabari,
José L Abellán, John Kim, David Kaeli, and Ajay Joshi. Profiling dnn
workloads on a volta-based dgx-1 system. In 2018 IEEE International
Symposium on Workload Characterization (IISWC), pages 122–133.
IEEE, 2018.

[59] Unix dd. https://en.wikipedia.org/wiki/Dd (Unix), 2019.
[60] Marcelo Amaral, Jordà Polo, David Carrera, Seetharami Seelam, and

Malgorzata Steinder. Topology-aware gpu scheduling for learning
workloads in cloud environments. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, page 17. ACM, 2017.

[61] Google Protocol Buffer. https://developers.google.com/protocol-buffers/,
2018.

[62] gRPC. https://grpc.io/, 2018.

[63] David Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys (CSUR), 23(1):5–
48, 1991.

[64] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong,
Feihu Zhou, Liqiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, et al.
Highly scalable deep learning training system with mixed-precision:
Training imagenet in four minutes. arXiv preprint arXiv:1807.11205,
2018.

[65] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming
He. Accurate, large minibatch sgd: training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017.

[66] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt
Keutzer. Imagenet training in minutes. In Proceedings of the 47th
International Conference on Parallel Processing, ICPP 2018, pages 1:1–
1:10, New York, NY, USA, 2018. ACM.

[67] Amrita Mathuriya, Deborah Bard, Peter Mendygral, Lawrence Mead-
ows, James Arnemann, Lei Shao, Siyu He, Tuomas Kärnä, Diana Moise,
Simon J Pennycook, et al. Cosmoflow: using deep learning to learn
the universe at scale. In SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 819–
829. IEEE, 2018.

[68] Yang You, Aydın Buluç, and James Demmel. Scaling deep learning on
gpu and knights landing clusters. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, page 9. ACM, 2017.

[69] Jiawei Jiang, Bin Cui, Ce Zhang, and Lele Yu. Heterogeneity-aware
distributed parameter servers. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data, pages 463–478. ACM,
2017.

[70] Mu Li, Li Zhou, Zichao Yang, Aaron Li, Fei Xia, David G Andersen,
and Alexander Smola. Parameter server for distributed machine learning.
In Big Learning NIPS Workshop, volume 6, page 2, 2013.

[71] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-
Yiing Su. Scaling distributed machine learning with the parameter
server. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 583–598, 2014.

[72] Seung-Hwan Lim, Steven R Young, and Robert M Patton. An analysis
of image storage systems for scalable training of deep neural networks.
system, 5(7):11, 2016.

[73] Lightning Memory-Mapped Database Manager (LMDB).
http://www.lmdb.tech/doc/, 2018.

[74] TFRecords. https://www.tensorflow.org/tutorials/load data/tf records,
2018.

[75] Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. Extremely large
minibatch sgd: training resnet-50 on imagenet in 15 minutes. arXiv
preprint arXiv:1711.04325, 2017.

[76] Luna Xu. A Workload-aware Resource Management and Scheduling
System for Big Data Analysis. PhD thesis, Virginia Tech, 2019.

[77] Steven WD Chien, Stefano Markidis, Chaitanya Prasad Sishtla, Luis
Santos, Pawel Herman, Sai Narasimhamurthy, and Erwin Laure. Char-
acterizing deep-learning i/o workloads in tensorflow. arXiv preprint
arXiv:1810.03035, 2018.

[78] Suyog Gupta, Wei Zhang, and Fei Wang. Model accuracy and runtime
tradeoff in distributed deep learning: A systematic study. In Data Mining
(ICDM), 2016 IEEE 16th International Conference on, pages 171–180.
IEEE, 2016.

[79] Liang Luo, Jacob Nelson, Luis Ceze, Amar Phanishayee, and Arvind
Krishnamurthy. Parameter hub: a rack-scale parameter server for dis-
tributed deep neural network training. arXiv preprint arXiv:1805.07891,
2018.

