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Abstract—Data automation, monitoring, and management
tools are reliant on being able to detect, report, and respond
to file system events. Various data event reporting tools exist for
specific operating systems and storage devices, such as inotify
for Linux, kqueue for BSD, and FSEvents for macOS. How-
ever, these tools are not designed to monitor distributed file
systems. Indeed, many cannot scale to monitor many thousands
of directories, or simply cannot be applied to distributed file
systems. Moreover, each tool implements a custom API and
event representation, making the development of generalized and
portable event-based applications challenging. As file systems
grow in size and become increasingly diverse, there is a need
for scalable monitoring solutions that can be applied to a wide
range of both distributed and local systems. We present here
a generic and scalable file system monitor and event reporting
tool, FSMonitor, that provides a file-system-independent event
representation and event capture interface. FSMonitor uses a
modular Data Storage Interface (DSI) architecture to enable the
selection and application of appropriate event monitoring tools to
detect and report events from a target file system, and implements
efficient and fault-tolerant mechanisms that can detect and report
events even on large file systems. We describe and evaluate DSIs
for common UNIX, macOS, and Windows storage systems, and
for the Lustre distributed file system. Our experiments on a
897 TB Lustre file system show that FSMonitor can capture
and process almost 38 000 events per second.

I. INTRODUCTION

Big Data science relies on sophisticated workflows that
encompass a wide variety of storage locations as data flows
from instruments to processing resources and archival storage.
Each storage location may be completely independent of
one another, managed in separate administrative domains and
providing heterogeneous storage interfaces such as hierarchical
POSIX stores, high-performance distributed storage, persistent
tape storage, and cloud-based object stores. Data may be
stored for short to long periods on each, be accessible to
dynamic groups of collaborators, and be acted upon by various
actors. As data generation volumes and velocities continue
to increase, the rate at which files are created, modified,
deleted, and acted upon (e.g., permission changes) make
manual oversight and management infeasible.

While research automation [6], [11] offers a potential solu-
tion to these problems it is first necessary to be able to capture
events in real-time and at scale across a range of storage sys-
tems and via heterogeneous interfaces. Such events may then
be used to automate the data lifecycle (performing backups,
purging stale data, etc.), report usage and enforce restrictions,
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enable programmatic management, and even autonomously
manage the health of the system. Enabling scalable, reliable,
and standardized event detection and reporting will also be of
value to a range of infrastructures and tools, such as Software
Defined Cyberlnfrastructure (SDCI) [14], auditing [9], and
automating analytical pipelines [11]. Such systems enable
automation by allowing programs to respond to file events
and initiate tasks.

Most storage systems provide mechanisms to detect and
report data events, such as file creation, modification, and
deletion. Tools such as inotify [20], kqueue [18], and FileSys-
temWatcher [21] enable developers and applications to re-
spond to data events. However, these monitoring tools do not
support distributed storage systems, such as Lustre [4] and
IBM’s Spectrum Scale [26] (formally known as GPFS). In-
stead, distributed file systems often maintain an internal meta-
data collection, such as Lustre’s Changelog, which enables
developers to query data events. However, each of these tools
provides a unique API and event description language. For
example, a file creation action may generate an IN_CREATE
event with inotify, a Created event with FileSystemWatcher,
and a OICREAT event in Lustre’s Changelog. Further, many
monitoring tools are designed to monitor specific directories,
not the entire file system. For example, inotify’s default
configuration can monitor approximately 512000 directories
concurrently. While this number can be increased on machines
with considerable memory resources, the inability to recur-
sively monitor directories restricts its suitability for the largest
storage systems.

In this paper, we present a generalized, scalable, storage
system monitor, called FSMonitor. FSMonitor provides
a common API and event representation for detecting and
managing data events from different storage systems. We have
architected FSMonitor with a modular Data Storage Inter-
face (DSI) layer to plug-in and use custom monitoring tools
and services. To support the largest storage systems, such as
those deployed at supercomputing centers, we have developed
a scalable monitor architecture that is capable of detecting,
resolving, and reporting events from Lustre’s Changelog. We
chose Lustre as our implementation platform because Lustre
is used by 60% of the top 10 supercomputers [5]. While our
scalable monitor has so far only been applied to Lustre stores,
its design makes it applicable to other distributed data stores
with metadata catalogs, such as IBM’s Spectrum Scale.



We present both FSMonitor and our scalable monitor. We
discuss FSMonitor’s architecture and demonstrate its ability
to reliably detect, process, and report events. We describe
the scalable monitor and its optimizations, such as caching
mechanisms, and show that it can capture site-wide events
on leadership-scale storage devices. Finally, we evaluate both
FSMonitor and the scalable monitor, and demonstrate its
capabilities by using it to drive a research automation system.
Our experiments show that FSMonitor scales well on a
897 TB Lustre store, where it is able to process and report
37948 events per second, while providing a standard event
representation on various storage systems.

II. BACKGROUND AND RELATED WORK

We introduce and describe several tools commonly used to
monitor and detect data events. We also describe a distributed
file system, Lustre, and how the Changelog metadata catalog
can be used to detect and report events.

A. Data Event Detection

Here we describe and evaluate inotify,
FSEvents, and FileSystemWatcher.

inotify [20] is a Linux kernel feature that provides a
mechanism to monitor file system events. It is used to monitor
individual files as well as directories. The inotify API provides
the following three system calls.

kqueue,

« inotify_init() creates an instance of inotify and returns a
file descriptor.

« inotify_add_watch() adds a watch associated with an
inotify instance. A watch specifies the path of a file or
a directory to be monitored along with the set of events
which the kernel should monitor on that path.

o inotify_rm_watch() removes a watch from the inotify
watch list.

A set of command line tools, called inotify-tools [19],
provide an interface to simplify use of inotify. It consists of
inotifywait and inotifywatch. inotifywait efficiently waits for
changes to files and outputs events as they occur. inotifywatch
listens for file system events and outputs a table summarizing
event information for the given path over a period of time. A
key limitation of inotify is that it does not support recursive
monitoring, requiring a unique watcher to be placed on each
directory of interest. This is restrictive as each watcher requires
1KB of memory. In addition, deployment of many watchers
is costly as the process must recursively crawl the file system.
Another drawback of inotify monitor is that it may suffer a
queue overflow error if events are generated faster than they
are read from the queue.

Opening, creating, and modifying a file in a watched
directory causes IN_OPEN, IN_CREATE, IN_MODIFY, and
IN_CLOSE events to be raised, respectively.

kqueue [18] is a scalable event notification interface in
FreeBSD and also supported in NetBSD, OpenBSD, Dragon-
flyBSD, and macOS. Its API includes the following functions.

o kqueue() creates a new kernel event queue and returns a
descriptor.

o kevent() is a system call used to register events with the
queue, and returns the number of events placed in the
eventlist.

o« EV_SET() is a macro provided for ease of initializing a
kevent structure.

The kqueue monitor requires a file descriptor to be opened
for every file being watched, restricting its application to very
large file systems. Opening, creating, and modifying a file
results in NOTE_OPEN, NOTE_EXTEND, NOTE_WRITE, and
NOTE_CLOSE events, respectively.

FSEvents [7] is another event notification API for macOS.
The kernel passes raw event notifications to the userspace
via a device file called /dev/fsevents, where a daemon filters
the event stream and advertises notifications. The FSEvents
API is available on macOS versions 10.7 and greater. The
FSEvents monitor is not limited by requiring unique watchers
and thus scales well with the number of directories observed.
Creating and modifying a file will result in ltemCreated and
ItemModified events.

The FileSystemWatcher class [21] in the System.IO names-
pace listens to file system changes and raises events for
Windows. A new FileSystemWatcher instance is created with
arguments to specify the directory and type of files to monitor,
and the buffer into which file change reports are to be written.
The operating system then reports file changes by writing to
that buffer. The buffer can overflow when many file system
changes occur in a short period of time, causing event loss. The
monitor can only establish a watch to monitor directories, not
files. To monitor a file, its parent directory must be watched
in order to receive change events for all of the directory’s
children. Four event types are reported: Changed, Created,
Deleted, and Renamed.

Discussion: The tools to monitor different file systems are
designed with various APIs, event representations, and degrees
of reliability. The vast difference in the different tools’ event
definitions suggests a need for a file system monitoring tool
that standardizes the event representation.

Libraries have been created to simplify programming
against the wide range of monitoring tools. For example, the
Python Watchdog module [25] simplifies the use of several
commonly used monitoring tools, including inotify, FSEvents,
kqueue, and (for Windows) ReadDirectoryChangesW with I/O
completion ports and ReadDirectoryChangesW with worker
threads. Watchdog provides a standard API for developers
to select and deploy a monitor. Facebook’s Watchman [13],
FSWatch, and FSMon [29] are similar to Python’s Watchdog
module in that they also provide a common interface for ini-
tiating different monitors. However, each of these tools relies
on operating system facilities for file system event notification
and cannot be easily extended with custom monitoring tools.
In addition, while these aggregate libraries provide a standard
interface for deploying monitors, they do not standardize the
event representation.

FSMonitor uses the Watchdog library to monitor many
storage systems, and then layers on additional capabilities to
standardize representations and increase reliability.



B. Distributed File System

A distributed file system is designed to distribute file data
across multiple servers so that multiple clients can access
a file system simultaneously. Typically, it consists of clients
that read or write data to the file system, data servers where
data is stored, metadata servers that manage the metadata
and placement of data on the data servers, and networks to
connect these components. Data may be distributed (divided
into stripes) across multiple data servers to enable parallel
reads and writes. This level of parallelism is transparent to the
clients, for whom it seems as though they are accessing a local
file system. Therefore, important functions of a distributed
file system include avoiding potential conflict among multiple
clients, and ensuring data integrity and system redundancy.

Monitoring a distributed file system is challenging as events
may be generated across various components in the system
and they then pass through one of several metadata servers.
Generally, the larger the data store, the more metadata servers
required to manage the cluster. Further, as a distributed file
system aims to deliver transparent parallelism, it is crucial
that the event monitoring mechanisms look to users as if they
are the same as a local file system.
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Fig. 1: An overview of Lustre architecture.

1) Lustre Distributed File System: Figure 1 depicts the ar-
chitecture of the Lustre file system. Lustre is designed for high
performance, scalability, and high availability, and employs
a client-server network architecture. A Lustre depoyment is
comprised of one or more Object Storage Servers (OSSs) that
store file contents; one or more Metadata Servers (MDSs) that
provide metadata services for the file system and manage the
Metadata Target (MDT) that stores the file metadata; and a
single Management Server (MGS) that manages the system.

The Management Server (MGS) is responsible for storing
the configuration information for the entire Lustre file system.
This persistent information is stored on the Management
Target (MGT).

Metadata Servers (MDS) manages namespace operations
and are responsible for one Metadata Target (MDT). Names-

pace metadata, such as directories, filenames, file layouts, and
access permissions are stored in the associated MDT. Every
Lustre file system must have at least one MDT. A large file
system may require more than one MDT to store its metadata,
and therefore Lustre versions after 2.4 support a distributed
namespace. A distributed namespace means metadata can be
spread across multiple MDTs. MDS, and MDT; act as the
root of the namespace, and all other MDTs and MDSs act as
their children.

Lustre provides a Changelog to query the metadata stored
in the MDT. Developers can create a Changelog listener and
subscribe to a specific MDT, allowing them to retrieve and
purge metadata records.

Object Storage Servers (OSS) store file contents. Each file is
stored on one or more Object Storage Targets (OST) mounted
on an OSS. Applications access file system data via Lustre
clients which interact with OSSs directly for parallel file
accesses. The internal high-speed data networking protocol for
Lustre file system is abstracted and is managed by the Lustre
Network layer.

2) Monitoring Distributed File Systems: Monitoring Lustre
file system requires the use of specialized tools [22], of which
Robinhood [17] is the most widely used. The Robinhood
Policy Engine is capable of collecting events from Lustre
file systems and using them to drive a policy engine to
automate data management tasks, such as purging old files.
Its architecture is shown in Figure 2.
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Fig. 2: Robinhood Architecture.

Robinhood uses an iterative approach to collect event data
from metadata servers. A Robinhood server runs on the Lustre
client and queries each MDS for events by querying the
Changelogs. It then saves the events in a database on the Lustre
client. For multiple MDSs, Robinhood polls all MDSs one at
a time in a round robin fashion. Our approach in FSMonitor
differs to this and employs a high performance message
passing queue to concurrently collect, report, and aggregate
events from each MDS. With this approach, FSMonitor is
capable of far exceeding the performance of Robinhood for
event collection.

Lustre is representative of many other distributed file sys-
tems. For example, IBM Spectrum Scale has a file audit
logging capability from version 5.0. Spectrum Scale File Audit
Logging takes locally generated file system events and puts
them on a multi-node message queue from which they are



consumed and written to a retention enabled fileset. Therefore,
FSMonitor can be extended to build a scalable monitoring
solution for Spectrum Scale in addition to Lustre and other
file systems.

Summary: We need a file system event monitoring solution
that can be applied to both local file systems (Linux, macOS,
Windows) as well as distributed file systems (Lustre). The
monitor needs to have a standard event representation. In
FSMonitor, we standardize all event representations to the
inotify format as this is the most widely used in industries [2].
The monitor also needs to be scalable so as to be able
to capture all the events in a distributed file system. We
implement our scalable solution for Lustre file system.

III. FSMoNITOR SYSTEM DESIGN

Designing a data event monitoring solution that can be
applied to both local and distributed file systems is non-trivial
as existing monitoring solutions cannot be generally applied.
FSMonitor provides a standard event detection interface
across file systems, implements capabilities to capture events
from distributed file systems, and extends the reliability of
the underlying event detection system by providing additional
resiliency capabilities. FSMonitor is designed to be applied
to arbitrary storage systems through a modular data storage
interface which can be implemented to connect to arbitrary
event interfaces. It provides a standardized API to collect
and process file system events, and is a scalable and high-
performance system that can be applied to large distributed file
systems that generate many thousands of events per second.

A. Architecture

Clients

P E— A—
Y |
\ s —

r
l_

e

ey | ?

Interface C el
Reliable Event Store

‘ P
Resolution ' {J(:}(}: ‘

Processing Path Cache
Data Storage Scalable | .
Interface | Monitor ‘ inotify ‘ FSEvents /
lustre: g ’
File System Q Mac 0S X

Fig. 3: An overview of FSMonitor’s architecture depicting
the interface, resolution, and DSI layers.

Figure 3 illustrates the three-layer architecture of
FSMonitor. The Data Storage Interface (DSI) layer
provides an abstraction for interfacing with different storage

systems. The resolution layer is used to process events and
standardize their format, and the interface layer enables client
users and programs to communicate with FSMonitor. Here
we describe each of these layers in detail, explaining their
design and capabilities.

1) Data Storage Interface: The lowest level of
FSMonitor is responsible for interfacing with the
underlying file system to capture events and report them to
the resolution layer for processing. We employ a modular
architecture via which arbitrary monitoring interfaces can
be integrated into FSMonitor. We provide a set of DSIs
to interface with the most common file systems. These
DSIs implement our abstract interface and facilitate event
extraction from kqueue, FSEvents, inotify, and
Windows FileSystemWatcher, as well as a custom,
scalable event monitoring solution that can be applied to
the high performance distributed file systems, Lustre. Our
DSI layer is also responsible for selecting the appropriate
monitoring tool for the given storage device. We implement
many of the local monitoring DSI’s using the Python
Watchdog module [25]. After the events have been collected,
they are propagated to the resolution layer.

2) Resolution: The resolution layer provides a multi-
faceted approach to reliably recording and aggregating events
from the DSIs and then reporting them to the interface layer.
This layer includes a queue to receive and manage events until
they are processed. As events are received from a DSI plug-
in they are immediately placed in the processing queue. The
events are then processed to resolve and dereference paths such
that events can be transformed into various representations.
Rather than defining yet another event representation, we
instead support transformation into any of the commonly
defined formats (inotify, kqueue, FSEvents) by populating the
appropriate event template. Thus, tools that are designed to
respond to events in one of these different formats can be
trivially used with FSMonitor. The resolution layer also pro-
vides optimizations that improve the overall event processing
performance, such as caching and batching capabilities.

3) Interface: The topmost layer provides an interface for
users and programs to interact with FSMonitor. This layer
is responsible for reporting events and replying to requests.
Programs can use the interface to capture events as they
happen. The interface layer also provides batching capabilities
to report events in groups. If users provide an event identifier,
FSMonitor will only report events that have happened since
that event. This layer is also responsible for providing fault-
tolerance by storing all events received from the resolution
layer into an event store (database). Once events have been
retrieved from FSMonitor, they are flagged as having been
reported and can be removed from the database. The size of
this database is configurable and can be adjusted depending
on the resources available to FSMonitor.

IV. SCALABLE EVENT MONITORING

We provide DSIs for many common event monitoring tools,
including Linux, BSD, macOS, and Windows. However, Lus-



tre, like many other distributed file systems, does not support
these tools. Here we describe the design and implementation
of the FSMonitor’s scalable DSI for distributed file systems.

1) Lustre Changelog: TABLE 1 shows sample records in
Lustre’s Changelog. We run a script and see the events
recorded in the Changelog. The script first creates a file,
hello.txt, then the file is modified. The file is then renamed
to hi.txt. A directory named okdir is then created. Finally, we
delete the file.

Each tuple in Table I represents each of the file system
events. Every row in the Changelog will have an EventID —
the record number of the Changelog, Type — the file system
event occurred, Timestamp, Datestamp — the date time of
the event occurrence, Flags — masking for the event, Target
FID — file identifier of the target file/directory on which the
event occurred, Parent FID — file identifier of the parent
directory of the target file/directory, and the Target Name — the
file/directory name which triggered the event. It is evident that
the Parent and Target FIDs need to be resolved to their original
names before they can be sent to the client. The following
events are recorded in the Changelog:

e CREAT: Creation of a regular file.

e MKDIR: Creation of a directory.

e HLINK: Hard link.

e SLINK: Soft link.

e MKNOD: Creation of a device file.

e« MTIME: Modification of a regular file.

e UNLNK: Deletion of a regular file.

e RMDIR: Deletion of a directory.

+« RENME: Rename a file or directory from.

« RNMTO: Rename a file or directory to.

e IOCTL: Input-output control on a file or directory.

o TRUNC: Truncate a regular file.

e SATTR: Attribute change.

e XATTR: Extended attribute change.

Note in Table I that Target FIDs are enclosed within # = [],
and parent FIDs within p = []. MTIME event does not have a
parent FID. RENME event has additional FIDs, s = [] denoting
a new file identifier to which the file has been renamed, and

= [] gives the file identifier for the original file. These
features are important when resolving FIDs.

2) Design: Figure 4 shows an overview of our scalable
DSI. Our monitor uses a publisher-subscriber model, where
the metadata are acquired from each MDS’s Changelog via
a collector, processed and cached, then published to the
aggregator. The aggregator gathers events from each collector
for later consumption. The publisher-subscriber model pro-
vides scalability in the event collection process, which has
been shown when monitoring Lustre server statistics [23],
[24], [28]. We divide the overall design for the scalable
monitor into four steps: Detection, Processing, Aggregation
and Consumption. Below we describe each component of the
scalable monitoring solution in greater detail.

Detection: Each collector service is responsible for extract-
ing file system events from one MDS Changelog. Deploying
collectors on individual MDSs enables every MDS to be
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Fig. 4: The scalable Lustre monitor used to collect, aggregate,
and publish events.

monitored in parallel. Every event that is extracted from
the local Changelog needs to be processed before it can be
published to the aggregator.

Processing: As seen in Section V-1, every event recorded
in the Changelog is associated with either a target or a parent
file identifier (FID), or both. However, these FIDs are not
necessarily interpretable by external applications, and thus
must be processed and resolved to absolute path names.

The Lustre fid2path tool resolves FIDs to absolute path
names. Whenever a new file system event is detected by
a collector, we use these tool to convert raw event tuples
into application-friendly file paths when the event is being
published. However, the fid2path tool is slow and can delay
the reporting of events. For example, in Section V-D2 we show
that this delay can cause a decrease of 14.9% in the event
reporting rate. To minimize this overhead, we implement the
aggregator with a Least Recently Used (LRU) Cache to store
mappings of FIDs to source paths.

Algorithm 47 shows the aggregator’s processing steps.
Events are processed in batches. The cache is used to resolve
FIDs to absolute paths. Whenever an entry is not found in
the cache, we invoke the fid2path tool to resolve the FID and
then store the mapping (fid — path) into the LRU cache. In the
case of UNLNK and RMDIR events, resolving target FIDs will
give an error because that FID has already been deleted by
the file system. Therefore, parent FIDs need to be resolved.
If resolving parent FID raises an error, it means the parent
directory has been deleted as well. FSMonitor resolves this
and gives the event as ‘ParentDirectoryRemoved’. As seen in
Section IV-1, RENME events are provided with the old path
(sp = []) and new path FIDs (s = []). Therefore, for RENME
events, instead of target FID, old path and new path FIDs need
to be resolved. Finally, events are published to the aggregator.

After processing a batch of file system events from the
Changelog, a collector will purge the Changelogs. A pointer
is maintained to the most recently processed event tuple and
all previous events are cleared from the Changelog. This helps
reduce the overburdening of the Changelog with stale events.

Aggregation: Collectors use a publisher-subscriber message
queue (implemented with ZeroMQ [16]) to report events to
an aggregator. When an event arrives to the aggregator it is



TABLE I: A sample Changel.og record showing Create File, Modify, Rename, Create Directory, and Delete File events.

Event ID Type Timestamp Datestamp Flags Target FID Parent FID Target Name
11332885  OICREAT  22:27:47.308560896  2019.03.08 0x0 t=[0x300005716:0x626c:0x0]  p=[0x300005716:0xe7:0x0] hello.txt
11332886  17MTIME  22:27:47.327910351  2019.03.08 0x7 t=[0x300005716:0x626¢:0x0] hello.txt
11332887 O8RENME  22:27:47.416587265  2019.03.08 Ox1 t=[0x300005716:0x17a:0x0] p=[0x300005716:0xe7:0x0] hello.txt
s=[0x300005716:0x626b:0x0]
sp=[0x300005716:0x626¢:0x0]  hi.txt
11332888 02MKDIR  22:27:47.421587284  2019.03.08 0x0 t=[0x300005716:0x626d:0x0]  p=[0x300005716:0xe7:0x0] okdir
11332889  O06UNLNK  22:27:47.438587347  2019.03.08 0x0 t=[0x300005716:0x626b:0x0]  p=[0x300005716:0xe7:0x0] hi.txt

Input: Lustre path [path, Cache cache, MDT ID mdt
Output: EventList
1 while true do
events = read events from mdt Changelog
for event e in events do
resolvedEvent = processEvent(e)
FEventList.add(resolved Event)
end
Clear Changelog in mdt
return (EventList)

LI R 7 I IR R N}

end

Function processEvent
Input: Event e

Output: resolved Event

e

1§ Extract event_type, time, date from e

12 try:

13 path = cache.get(target F'1D)

14 if target FID not found in cache then

15 path = fid2path(target F'1 D)

16 cache.set(target F' 1D, path)

17 end

18 catch fid2pathError:

19 try:

20 if event_type is UNLNK or RMDIR then
21 path = cache.get(parentF'1 D)

22 if parentF 1D not found in cache then

path = fid2path(parentF1D)
cache.set(parent F'I D, path,)

25 end

26 end

27 else if event_type is RENME then

28 oldpath = cache.get(oldF'ID)

29 newpath = cache.get(newF'1D)
30 if oldF'I D not found in cache then

oldpath = fid2path(old F'1D)
cache.set(oldF' I D, oldpath)

33 end

34 if newF'ID not found in cache then
newpath = fid2path(newF'I D)
cache.set(newF' 1D, newpath)

37 end

38 end

B9 catch fid2pathError:

40 if event_type is UNLNK or RMDIR then
41 ‘ path = ParentDirectoryRemoved
42 end

u3 end

Ha end

us resolved Event.add(event_type, time, date,

M path/oldpath&mnewpath)

U7 return (resolvedEvent)

Algorithm 1: Processing Changelog events.

placed in a processing queue. The aggregator service is multi-
threaded, where one thread is responsible for publishing the
aggregated file system events to the subscribed consumers,
and the other thread stores the events into a local database

to enable fault tolerance. This ensures minimal overhead on
the system. An API is provided to the consumers to retrieve
historic events from the database whenever a fault occurs. For
our implementation, we use MySQL as the reliable event store.

Consumption: Consumers act as subscribers to the aggre-
gator which publishes the events. Therefore, whenever a new
event arrives to the consumer it filters the events and only
passes on events related to those files and directories requested
by the application. This filtering of events is not done at the
aggregator in order to alleviate potential overheads if a large
number of consumers were to ask to monitor different files
and directories. The consumer service is also responsible for
retrieving the historic events from a particular time stamp,
from the reliable event store in the situation that a consumer
has failed. Once events have been retrieved they are flagged
as having been reported and can be removed from the data
store when next data purge cycle is initiated.

V. EVALUATION

To evaluate the performance and overhead of FSMonitor,
we have deployed FSMonitor on multiple platforms includ-
ing both Lustre distributed file system as well as macOS and
Linux standalone environments. In this section, we first de-
scribe our testbeds, then we explain the workloads that we use
for evaluating FSMonitor before evaluating FSMonitor’s
performance.

A. Experimental Setup

We employ two types of testbed to evaluate FSMonitor
on both local and Lustre file systems.

1) Local File Systems: We test FSMonitor on three
systems: one for macOS, and two for Linux distributions.

e macOS: a MACBOOK Pro 2017 running macOS version
10.13.3, with 2.5 GHZ Intel Core i7, 16 GB 2133 MHz
DDR3 memory, and 500 GB SSD storage.

e Ubuntu: a machine with Ubuntu 16.04 LTS, a 32 core
2 GHz AMD Opteron Processor 6370P, 64 GB memory,
and 1 TB HDD storage.

e CentOS: a machine with CentOS 7.4, an 8-core AMD
processor, 16 GB memory, and 512 GB HDD storage.

In addition, we employ two distinct workloads for macOS
and Linux, one to test the uniformity in event definitions of
FSMonitor which should be consistent to inotify, and the
other to evaluate the performance of FSMonitor on local
file systems. Both are implemented as Python scripts.



2) Distributed File Systems: We evaluate FSMonitor on
three testbeds running Lustre.

e AWS: a deployment of Lustre on five Amazon Web
Service EC2 instances. We build a 20 GB Lustre
file system using Lustre Intel Cloud Edition v 1.4
on five t2.micro instances and an EBS volume. Our Lustre
configuration for AWS includes one MDS, one MGS, one
OSS with one OST and two compute nodes.

e Thor: a deployment at the Distributed Systems and Stor-
age Laboratory (DSSL) at Virginia Tech. Each node in the
setup has 8-core processor, 16 GB memory and 512 GB
storage. We deploy Lustre version 2.10.3 with one MGS,
one MDS, ten OSSs each having five OSTs and two
Lustre clients. Every OST is a 10 GB volume, resulting
in a total of 500 GB Lustre store.

e lota: a production Lustre deployment on a pre-exascale
system at Argonne National Laboratory with 897 TB.
This deployment has the same configuration and perfor-
mance as the 150 PB store to be deployed on the Aurora
supercomputer [1] at Argonne National Laboratory. The
configuration includes Lustre’s DNE with four MDSs.
Iota comprises 44 compute nodes, each with 72 cores
and 128 GB memory.

B. Experiment Workloads

We use a range of workloads to evaluate performance on
the various testbeds.

For both local and Lustre deployments we use the following
workloads:

o Evaluate_Output_Script is used to evaluate the types of
event definitions that FSMonitor outputs. The script
first creates a file hello.txt, then modifies it. It then
renames the file from hello.txt to hi.txt. After that, it
creates a new directory called okdir. Next, it moves hi.txt
to the newly created directory okdir. Finally, it deletes
the directory okdir and its contents.

o Evaluate_Performance_Script repeatedly creates, modi-
fies, and deletes a file hello.txt, in an infinite loop. This
script thus tests FSMonitor efficiency over a period of
time and can be used to evaluate FSMonitor’s resource
utilization and event reporting rate. This script is also
used as a baseline for the Lustre distributed file system.

In order to test the scalability and performance of
FSMonitor on Lustre we use the following workloads:

e IOR: The InterleavedOrRandom (IOR) [3] benchmark
provides a flexible way to measure distributed file sys-
tem’s I/O performance. It measures performance with dif-
ferent parameter configurations, including I/O interfaces
ranging from traditional POSIX to advanced parallel I/O
interfaces like MPI-I/O. It performs reads and writes to
and from files on distributed file systems, and calculates
the throughput rates. For our evaluation, IOR is executed
with single shared file mode and 128 processes.

e HACC-1/O: The Hardware Accelerated Cosmology Code
(HACC) [15] application uses N-body techniques to

simulate the formation of structure in collision-less fluids
under the influence of gravity in an expanding universe.
HACC-I/O captures the I/O patterns and evaluates the
performance for the HACC simulation code. It uses the
MPI-I/O interface and differentiates between FPP and
SSF parallel I/O modes. We run HACC-IO for 4 096 000
particles under file-per-process mode with 256 processes
for our experiments on FSMonitor.

e Filebench: This file system benchmark [27] can be used
to generate a wide variety of workloads. Workloads can
be described from scratch with the Workload Model
Language, or existing workloads, from web server to
database server, can be used with minor modifications.
We used Filebench to create 50000 files with sizes
following a gamma distribution (mean 16384 bytes and
gamma 1.5), a mean directory width of 20, and mean
directory depth of 3.6. The total size of all files generated
is 782.8 MB. The benchmark had 1445 858 operations
with 24 095.141 operations per second.

C. FSMonitor on Local File Systems

As seen in Section II, Linux provides inotifywait [20] and
macOS provides FSEvents [7] to monitor file system events.
On macOS we compare FSMonitor with FSWatch [12],
which uses FSEvents. We first compare the event definitions
from FSMonitor with FSWatch and inotifywait and then we
evaluate the performance.

TABLE II: File system events of FSMonitor.

FSMonitor on macOS and Linux
/home/arnab/test CREATE /hello.txt
/home/arnab/test MODIFY /hello.txt
/home/arnab/test CLOSE /hello.txt
/home/arnab/test MOVED_FROM /hello.txt
/home/arnab/test MOVED_TO /hi.txt
/home/arnab/test CREATE,ISDIR /okdir
/home/arnab/test MOVED_FROM /hi.txt
/home/arnab/test MOVED_TO /okdir/hi.txt
/home/arnab/test MODIFY,ISDIR /okdir
/home/arnab/test CLOSE,ISDIR /okdir
/home/arnab/test DELETE /okdir/hi.txt
/home/arnab/test MODIFY,ISDIR /okdir
/home/arnab/test CLOSE,ISDIR /okdir
/home/arnab/test DELETE,ISDIR /okdir

1) Output Analysis: The event definitions from
FSMonitor from running Evaluate_Output_Script are shown
in Table II. FSMonitor gives the same event definitions
on both macOS as well as Linux environments. The results
from FSMonitor is similar to inotifywait because
FSMonitor by default standardizes event representation
based on inotify. One of the major differences between
FSMonitor in Linux and inotify is that FSMonitor
has an additional option to monitor file system events on
a path recursively while inotifywait does not output
events happening inside subdirectories in a directory to
be monitored. Therefore, if the path to be monitored is
/dir, and there are directories inside /dir; inotify will not
give file system events happening inside those directories



but FSMonitor will produce those events. By default,
FSMonitor will not monitor events recursively. The
difference between FSMonitor and inotify is that to monitor
events recursively, inotify requires watchers for every sub-
directory but FSMonitor will monitor events recursively
by just modifying the filtering rule in the Interface layer and
thus will be able to monitor events more efficiently.

2) Performance Analysis: Here, we evaluate FSMonitor
with respect to the events report rate when compared to
FSWatch and inotifywait, and resource utilization. All results
are the average of three runs.

TABLE III: Events reporting rate of FSMonitor, FSWatch
and inotify.

Events generated Events reported
per second per second
FSMonitor | Other
macOS 4503 4467 3004
Ubuntu 4007 3985 3997
CentOS 3894 3875 3878

Event Reporting Rate: In order to evaluate FSMonitor,
we compare its event reporting rate with inotifywait and
FSWatch. Evaluate_Performance_Script is used to obtain the
results. Table III shows the baseline event generating per-
formance for all three platforms. Using the script, we were
able to generate 4503, 4007, and 3894 events per second on
macOS, Ubuntu, and CentOS respectively. This was the system
limitation rate of generating these events with our script. The
Other column in Table III signifies FSWatch for macOS and
inotifywait for Ubuntu and CentOS. We see that FSWatch
performs poorly in comparison to FSMonitor on macOS.
FSWatch reports only 3004 events per second, as against 4467
events per second by FSMonitor. On Ubuntu and CentOS,
inotifywait performs a little better than FSMonitor. This is
because of the minimal delay caused in the interface layer of
FSMonitor due to the parsing of the path to be monitored.

TABLE IV: CPU and Memory usage of FSMonitor,
FSWatch and inotify.

CPU% Memory %
FSMonitor | Other | FSMonitor | Other
macOS 0.1 0.1 0.01 0.01
Ubuntu 0.4 0.3 0.01 0.01
CentOS 0.2 0.3 0.01 0.01
Resource Utilization: We ran Evalu-

ate_Performance_Script on all the local file systems in
order to measure FSMonitor CPU and memory utilization.
Table IV shows the CPU and memory usage of the monitors
on the macOS, Ubuntu, and CentOS platforms. The Other
column is FSWatch for macOS and inotifywait for Ubuntu and
CentOS. All results are the average of three runs. CPU and
memory utilization are calculated as the average utilization
while FSMonitor, FSWatch, or inotifywait were executing.
It is evident that no monitor makes heavy use of machine
resources. The performance differences are not sufficiently

high to allow us to conclude that any monitor is worse
than any other. FSMonitor performs at par with the other
popular local file system monitors in terms of resource usage.

D. FSMonitor on Lustre Distributed File System

We now explore FSMonitor’s performance when de-
ployed on several Lustre clusters.

1) Event capture rate: As when evaluating on a local file
system, we first form a baseline throughput for Lustre on
each of the three testbeds, AWS, Thor, and lota. We use
Evaluate_Performance_Script and record the number of events
generated per second. As shown in Table V, AWS performs
the worst, as its Lustre testbed is formed from t2.micro
instances. Thor performs better than AWS and, as expected,
lota’s performance is the best of the three.

TABLE V: Lustre Testbed Baseline Event Generation Rates.

AWS Thor Iota
Storage Size 20 GB | 250 GB | 897 TB
Create events/sec 352 746 1389
Modify events/sec 534 1347 2538
Delete events/sec 832 2104 3442
Total events/sec 1366 4509 9593

As AWS and Thor have only one MDS, FSMonitor
extracts their events from only one MDS Changelog, processes
them, and then communicates them to the MGS for reporting
to the client. On Jota, events are generated from all four MDSs
and thus need to be collected from all the MDSs and then
aggregated on the MGS before they are sent to the consumer.

TABLE VI: Lustre Testbed Baseline Event Reporting Rates.

AWS | Thor | Iota
Generated events/sec 1366 | 4509 | 9593
Reported events/sec without cache | 1053 3968 | 8162
Reported events/sec with cache 1348 | 4487 | 9487

2) Event Reporting Analysis: As seen in Table VI, AWS
generates over 1300 events per second, Thor around 4500
events per second, and Iota over 9500 events per second. When
FSMonitor is used to report these events without caching the
fid2path resolutions, the AWS-based FSMonitor can collect,
process, and report only 1053 events per second. On Jlota,
it reports only 8162 events per second: 14.9% lower than
the generation rate of ~9500 events per second. When we
analyze the FSMonitor event reporting pipeline, we notice
that the performance is limited primarily in the processing of
events after extracting them from the Changelog in the MDS.
fid2path is costly and executing it for every event reduces
overall throughput. Therefore, caching of fid2path mappings
and batching events are necessary in such deployments.

We use an in-memory LRU cache to store the fid2path map-
pings. The size of the cache (number of fid2path mappings)
is selected to be 5000 (we explore different cache sizes in
Section V-D4). With the use of an in-memory cache, AWS-
based FSMonitor is able to report 1348 events per second,
FSMonitor on Thor is able to process and report 4487 events
per second and on lota, 9487 events per second. The loss in



event reporting rate is due to the minimal processing required
in FSMonitor.

The above results all use one MDS. On Iota, when we use
all four available MDSs, the overall event generation rate is
38372 events per second. FSMonitor reports 37948 events
per second to the consumer. Note that besides processing and
filtering events, there is no additional overhead in the collec-
tion, aggregation, and reporting of events by FSMonitor.
Also, there is no overall loss of events; events are queued and
simply processed at a lower rate than they are generated.

3) Resource Utilization: We evaluate the resource uti-
lization of every component of FSMonitor. Evalu-
ate_Performance_Script is used to perform this analysis. Ta-
ble VII shows the peak CPU and memory utilization on each
of our three Lustre testbeds. From the results, it is evident that
the CPU and memory costs of operating FSMonitor are low.

TABLE VII: FSMonitor Resource Utilization.

CPU % Memory (MB)
AWS | Thor | Iota | AWS | Thor | Iota
Collector - No cache 9.3 7.8 6.67 8.2 33.7 81.6
Collector with cache 6.6 1.5 2.89 9.92 25.7 55.4
Aggregator 2.7 0.57 0.06 5.7 7.2 17.6
Consumer 1.5 0.23 0.02 0.05 0.2 2.8

We show resource collector utilization both with and with-
out a cache. The reduction in CPU utilization when caching
is enabled is due to the lower number of fid2path invocations.

Next, we modified Evaluate_Performance_Script to include
continuous creation and deletion of files without modification.
We noticed that the Collector service on Iota had a CPU
usage of 3.3%: a 12.4% increase in CPU usage when Eval-
uate_Performance_Script was tested. This is because delete
events caused the fid2path mapping in the cache to fail for
most events and result in fid2path calls on the parent directory.
The memory usage did not change significantly.

We also changed Evaluate_Performance_Script to include
only creation and modification of files, without deletion.
CPU usage in this case was 2.3%: a decrease of 21.5%
from Evaluate_Performance_Script testing. This is because
more frequent mappings in the cache were found. Even in
this scenario, memory usage did not differ significantly. The
resource utilization of the Aggregator and Consumer stays the
same even when caching is enabled.

Therefore, deploying FSMonitor on MDS, MGS and
Lustre clients would result in a negligible overload on the
overall performance.

4) Caching: In order to calculate the optimum size for
the in-memory LRU cache we ran FSMonitor on lofa with
Evaluate_Performance_Script and varied the cache size before
every run. The results are shown in Table VIII.

The total number of events generated per second on lota
for one MDS is 9593, see in Table V. As seen in Table VIII,
we observe improved performance using the in-memory LRU
cache with size greater than or equal to 1000. For sizes 200
and 500, memory utilization on collector is even worse than
than in FSMonitor without cache on lota. The lowest CPU

TABLE VIII: FSMonitor performance vs. cache size.

Cache Size CPU % Memory (MB) | Events/sec reported
(#fid2path) | on collector on collector by each collector

200 4.8 88.7 8644

500 35 84.3 8997

1000 2.98 75.6 9401

2000 2.95 61.3 9453

5000 2.89 554 9487

7500 2.92 60.7 9481

and memory utilization for Collector on Jota is for cache size
5000. Also, the number of events reported per second on one
MBDS is best for cache size of 5000. Increasing the cache size
further to 7500 results in worse performance. Therefore, for
our evaluation, we choose a cache size of 5000.

5) Comparison with Robinhood: For the case of lota with
four MDSs, we implement Robinhood [17] by having a
subscriber in the client that polls the four publishers on MDS
one at a time in a round-robin fashion. There is no role for
MGS in this implementation. In comparison, FSMonitor
has an aggregator service on MGS that polls all MDSs
concurrently and pushes all events in a single queue to the
clients. We evaluate performance by comparing the number of
events per second received and processed at the client side by
Robinhood vs. the number of events collected by the client via
FSMonitor where the processing takes place at the MDSs
and aggregation at the MGS. Our results show that Robinhood
on Jota processes an average 7486 events per second from each
MDS vs. 9847 events per second by FSMonitor. Combining
all four MDSs, Robinhood processes 32 459 events per second
in comparison to 37 948 events per second with FSMonitor.
Therefore, with the advent of exascale supercomputers, where
multiple MDSs with Lustre DNE will be common, parallel
monitoring is necessary.

6) Benchmarks & Real World Applications: We evaluate
FSMonitor on Thor using three workloads HACC-1/0,
Filebench and IOR. We run all workloads simultaneously on
the Lustre clients on the Thor testbed. We use FSMonitor
to monitor the file system events on one client. We monitor
\mnt\lustre path. Table IX shows the file system events that
is monitored by FSMonitor. We did not notice any delay in
the event reporting procedure by FSMonitor when the three
applications were executing simultaneously.

As IOR was executed in single-shared-file mode, only one
Create and Delete file events were generated from IOR.
HACC-1/0 on the other hand was run in file-per-process
mode for 256 processes. Therefore, 256 files were created
and deleted. These file system events were correctly reported
by FSMonitor. Filebench was used to create 50000 files
and therefore FSMonitor reports 50000 creates. As seen
in Table IX, all Create events are reported first for three
applications and the Delete events for IOR and HACC-1/O are
reported by FSMonitor.

VI. USE CASES

FSMonitor enables the development of various event-
driven applications. Here we describe two use cases that make



TABLE IX: FsMonitor events for IOR, HACC-IO and Filebench.

FSMonitor events
/mnt/lustre CREATE /hacc-10/FPP1-Part00000000-0f-00000256.data
/mnt/lustre CLOSE /hacc-io/FPP1-Part00000000-0f-00000256.data

/mnt/lustre CREATE /hacc-io/FPP1-Part00000255-0f-00000256.data
/mnt/lustre CLOSE /hacc-io/FPP1-Par000002550f-00000256.data
/mnt/lustre CREATE /ior/src/testFileSSF
/mnt/lustre CLOSE /ior/src/testFileSSF
/mnt/lustre CREATE /hacc-io//bigfileset/00000001
/mnt/lustre CLOSE /bigfileset/00000001

/mnt/lustre CREATE /bigfileset/00000...

/mnt/lustre CLOSE /bigfileset/00000...
/mnt/lustre DELETE /hacc-io/FPP1-Part00000000-0f-00000256.data
/mnt/lustre CLOSE /hacc-io/FPP1-Part00000000-0f-00000256.data

/mnt/lustre DELETE /hacc-io/FPP1-Part00000255-0f-00000256.data
/mnt/lustre CLOSE /hacc-i0/FPP1-Part00000255-0f-00000256.data
/mnt/lustre DELETE /ior/src/testFileSSF
/mnt/lustre CLOSE /ior/src/testFileSSF

use of FSMonitor to implement applications and enable
autonomous science and online, responsive file catalogs.

A. Research Automation

Scientific data generation is quickly becoming unman-
ageable at the human level. Instead, new tools and tech-
niques are required to automate research process to support
researchers’ activities. Examples include pre-processing and
quality control, analysis, replication, managing access control,
and cataloging. As research becomes increasingly dependent
on compute- and data-intensive analyses, the role of data-
oriented automation becomes ever more important.

Rule-based systems, such as Robinhood and Globus Auto-
mate [6], enable users to apply actions in response to data
events. Globus Automate is a flexible platform that allows
users to define data management and manipulation pipelines
across distributed resources. A pipeline, or flow, is comprised
of a series of steps, where each step represents an invocation
of a remote Web service, such as Globus Transfer, a catalog
service, or a remote execution service.

As previously discussed, the application of such systems to
a wide variety of storage systems is non-trivial. As such, we
have developed a client to enable Globus Automate flows to
be initiated in response to data events. The client incorporates
both FSMonitor and Globus Auth to detect data events
and securely initiate flows in response. When a data event
is captured by FSMonitor, our client constructs a JSON
document of metadata, such as the file type, size, owner,
and location and transmits the data to a pre-defined Globus
Automate flow. The flow is then reliably executed. We have
used Globus Automate to perform a wide range of scientific
data management tasks, such as performing on-demand anal-
ysis from synchrotrons [10] and publishing materials science
datasets.

B. Responsive Cataloging

Being able to search and find data within local storage is
a crucial tool in the scientific process. However, as storage

systems grow to manage hundreds of petabytes and even ex-
abytes of data, the cost to crawl and index the data is likely to
become increasingly prohibitive. New techniques are required
to populate and maintain catalogs of data as hundreds of users
concurrently create, modify, move, and delete data. Event-
based cataloging is necessary to enable flexible management
of these extreme-scale stores. Combining event detection with
metadata extraction and cataloging services provides a new
avenue to enabling search capabilities over research data.
Combining FSMonitor with a metadata extraction tool,
such as Skluma [8], can enable the dynamic cataloging of large
research data. Skluma provides a suite of metadata extraction
tools that can be applied to data. Skluma uses a pipeline to
dynamically infer file types and passes them through selected
metadata extractors in order to extract and derive metadata,
such as the types and ranges of tabular data, keywords from
free text, and scale and content information from plots and fig-
ures. We have integrated FSMonitor as a trigger source for
Skluma such that we can apply metadata extraction containers
to data as they are created. In addition, we can capture data
movement and deletion events to dynamically modify a Globus
Search index and maintain a useful, up-to-date catalog.

VII. CONCLUSION

We have presented FSMonitor, a scalable file system
monitor that can report events for both local (Linux, macOS,
Windows) and distributed (Lustre) file systems. FSMonitor
uses a three-layer approach to file system event monitoring.
The lowest layer, DSI, interacts with a file system to detect
events and sends them to the middle layer, Resolution, where
events are resolved to their absolute path names and aggre-
gated to be sent to the upper layer, Interface, where aggregated
events are stored in an event store. FSMonitor offers an API
that allows clients to retrieve events from the event store.

FSMonitor implements a standard event definition pro-
cess for any file system, and works seamlessly for both
local and distributed file systems. On local file systems,
FSMonitor achieves better or at par event reporting rates
with low CPU and memory overhead, when compared to other
monitoring tools. We also evaluated FSMonitor on three
testbeds for Lustre file system, and we found that on a 897 TB
Lustre system, FSMonitor reported almost 38000 events
per second with low resource utilization. Also, compared to
iterative monitoring methods used by the popular Robinhood
system, FSMonitor gives 14.5% improved performance in
event reporting rate for multiple MDSs.
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