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Abstract
Federated Learning (FL) has emerged as a powerful approach
that enables collaborative distributed model training with-
out the need for data sharing. However, FL grapples with
inherent heterogeneity challenges leading to issues such as
stragglers, dropouts, and performance variations. Selection
of clients to run an FL instance is crucial, but existing strate-
gies introduce biases and participation issues and do not
consider resource efficiency. Communication and training
acceleration solutions proposed to increase client partici-
pation also fall short due to the dynamic nature of system
resources. We address these challenges in this paper by de-
signing FLOAT, a novel framework designed to boost FL
client resource awareness. FLOAT optimizes resource utiliza-
tion dynamically for meeting training deadlines, and miti-
gates stragglers and dropouts through various optimization
techniques; leading to enhanced model convergence and
improved performance. FLOAT leverages multi-objective
Reinforcement Learning with Human Feedback (RLHF) to
automate the selection of the optimization techniques and
their configurations, tailoring them to individual client re-
source conditions. Moreover, FLOAT seamlessly integrates
into existing FL systems, maintaining non-intrusiveness and
versatility for both asynchronous and synchronous FL set-
tings. As per our evaluations, FLOAT increases accuracy by
up to 53%, reduces client dropouts by up to 78×, and improves
communication, computation, and memory utilization by up
to 81×, 44×, and 20× respectively.
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1 Introduction
Distributed Machine Learning (ML) workflows typically in-
volve collecting training data at some central location from
multiple sources to train a model. However, regulations like
GDPR [64] and HIPAA [52], the reluctance of enterprises
to share data due to competitiveness [21], liability in col-
lecting personal information from edge devices [5, 17, 60],
and high data movement costs prevent such centralized col-
lection of data. To this end, Federated Learning (FL) [49]
has emerged as a viable solution, enabling collaborative ML
model training across numerous clients without requiring
data sharing [3, 49]. Despite the promise of FL in privacy
preservation and its successful applications in diverse fields
such as consumer devices [24, 78], healthcare [19, 74, 82],
finance [6, 47, 63], and manufacturing [31, 55, 88], we are
faced with a number of challenges [30, 40] when utilizing FL
in practice.
In contrast to traditional ML, which relies on data distributed
in an Independent and Identical Distributed (IID) manner,
FL environments are inherently heterogeneous stemming
from its distributed and diverse client population. This het-
erogeneity gives rise to numerous challenges such as strag-
glers [10], dropouts [40], and a decline in model performance
due to the intrinsic data and resource variations [1, 30, 40].
When clients fail to meet deadlines or complete training,
the progress made is lost [1, 15, 40]. This not only wastes
resources allocated to training and communication but also
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affects overall accuracy. Many IoT, Edge, and mobile devices
already operate with constraints in compute, network, en-
ergy, and memory [2, 30]. Expending these limited resources
carelessly is particularly problematic when devices have caps,
like on memory or network usage, or restricted battery and
compute times. Moreover, resources set aside for training
could have been utilized for other applications, leading to
both diminished FL performance and fewer resources avail-
able for other tasks. Current strategies either prioritize de-
vices likely to complete local training promptly [2, 34, 39, 65]
or adopt asynchronous training for global model updates [2,
35, 51]. Nonetheless, both approaches can induce partici-
pation bias in highly heterogeneous scenarios, negatively
affecting model performance. Furthermore, client availabil-
ity for client selection has proven to be pivotal in improving
resource efficiency and time to converge [1, 2, 34, 65, 67, 85].
However, availability is considered a fixed linear window of
time [2, 34, 65] which is an unrealistic assumption because
availability highly depends on the limited network, energy,
compute resources, and resource consumption of concur-
rent running applications which makes the prediction of
availability periods a challenging task.
To enhance client retention, several acceleration techniques
have been suggested to fine-tune the balance between client
involvement andmodel performance. These encompass quan-
tization [57, 61], compression [73], partial training [83], and
model pruning [29, 66, 81]. However, our evaluation has
unveiled substantial disparities in both performance and re-
source efficiency when employing these fixed-configuration
acceleration techniques in the context of clients’ ever-changing
resource conditions. Moreover, acceleration techniques are
not interchangeable; each one brings unique acceleration ad-
vantages while also influencing model accuracy in different
ways. Combining these techniques in a constantly changing,
resource-limited environment adds layers of complexity to
the selection and configuration process. Furthermore, we
have observed that heuristic-based solutions for dynamic
acceleration configuration fall short as they cannot be finely
tuned for diverse workloads and fail to account for intricate
resource fluctuations. As a result, selecting and configuring
the appropriate techniques for each training round becomes
challenging due to the dynamic nature of resource availabil-
ity and consumption on client devices. These devices exhibit
varying resource characteristics over time, creating a mul-
tifaceted environment that cannot be effectively managed
using static accelerations or heuristic-based approaches.
In this paper, we present FLOAT, an innovative framework
designed to optimize both model performance and resource
efficiency. FLOAT achieves this by leveraging amulti-objective
Reinforcement LearningwithHuman Feedback (RLHF) agent,
whichminimizes stragglers and dropouts. Central to FLOAT’s
approach is the balance between model performance and
resource consumption, allowing clients to make the most of
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Figure 1. Optimization space of FL is large, considering the
scale of decentralized training, system heterogeneity, data
heterogeneity, and sources of runtime variance.

their resources tomeet training objectives without experienc-
ing dropouts due to staleness. To improve resource efficiency
and model performance, and reduce training time, FLOAT in-
corporates various strategies such asmodel quantization, par-
tial training, and pruning. Unlike previous works that either
depend solely on a single optimization technique [29, 57, 83]
or adopt a heuristics-based approach [75], FLOAT uniquely
employs an RLHF agent to determine the most suitable op-
timization method and its configuration. We have also en-
hanced FLOAT’s scalability and minimized its overhead by
introducing a Q-learning based RLHF agent that narrows
down the states from an otherwise unlimited set of combina-
tions. Furthermore, FLOAT’s design is both generalized and
reusable due to its ability to fine-tune the RLHF agent at a
minimal cost. Importantly, FLOAT is non-intrusive, offering
a smooth integration with existing FL systems and client
selection algorithms, without affecting the core training pro-
cedures.

2 Background
FL is a decentralized ML approach [30]. It enables multiple
devices or entities to collaboratively train a shared model
without sharing raw data, maintaining data decentralization
and privacy. The process involves training a global model
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𝜃 on each participating device using local data and then
aggregating the model updates to improve the global model.
In each training round, participating devices execute local
updates using their local datasets, optimizing their local
models 𝜃𝑖 with an optimization algorithm such as stochastic
gradient descent (SGD) [58]. This update is governed by the
following equation:

𝜃𝑖 ← 𝜃𝑖 − 𝜂 · ∇𝐿(𝜃𝑖 , 𝐷𝑖 )

Where 𝜃𝑖 represents the local model parameters, 𝜂 is the
learning rate, and ∇𝐿(𝜃𝑖 , 𝐷𝑖 ) is the gradient of the local loss
function 𝐿(𝜃𝑖 , 𝐷𝑖 ). After local updates, devices transmit their
model updates to the central server, which aggregates them
using methods like simple averaging [49]:

𝜃 ← 1
𝑁

𝑁∑︁
𝑖=1

𝜃𝑖

Where 𝑁 is the number of participating devices. This process
iterates for multiple rounds until convergence criteria are
met. Finally, the global model 𝜃 is evaluated and can be
deployed. This FL method described above is also known as
FedAvg [49] and forms the basis of other popular works in
FL [2, 34, 39, 51].
FL not only allows training on distributed data but also pro-
vides advantages like preservation of data privacy and com-
munication reduction. It is beneficial in situations where data
is sensitive or spread over multiple devices, such as in health-
care, finance, and IoT applications [77]. Yet, FL faces issues
due to system and data differences across client devices [40].
The data and resource heterogeneity among clients degrades
model performance and leads to variable response time among
clients (i.e., the time between a client receiving the training
task and returning the results) in cross-device FL, which is
usually referred to as the straggler problem. As visualized
in Figure 1, different devices face distinct challenges, such
as low computational capacity, bandwidth limitations, and
battery discharges, that can exacerbate this issue. Without
recognizing the variable resources at clients and implement-
ing adaptive optimizations, there’s a risk of stragglers in
FL compromising the system’s efficiency, prolonging con-
vergence time, and degrading resource utilization. In the
worst case, clients with limited resources cannot train any
further after exhausting their available resources and are
unable to respond back with updates and are considered
dropouts [2, 16, 40].

3 Related Work
Recent research has largely addressed statistical heterogene-
ity due to non-IID data distributions [12, 23, 33, 42, 56, 68].
However, system heterogeneity remains less explored. In one
set of studies, strategies for intelligent client selection are pro-
posed, as seen in Harmony [65], Oort [39], PyramidFL [25],

FedProx [41], and other related works [22]. However, these
works assume static and consistent resource availability at
clients and their performance decreases with increased het-
erogeneity. Some approaches use Reinforcement Learning
(RL) for client selection. AutoFL [34] focuses on energy effi-
ciency, while MARL [43] aims to improve accuracy. However,
these approaches don’t provide a complete solution to FL’s
heterogeneity as they address specific aspects. Another line
of research suggests asynchronous communication meth-
ods [9, 11, 35, 51] focusing on quick learning by using client
resources extensively. This allows slower clients to continue
training with older models and contribute to aggregation
later. However, this introduces challenges like reduced ac-
curacy, client selection bias, and slower convergence. Other
research focuses on acceleration techniques to reduce client-
side computational and communication costs, such as quanti-
zation [57, 61], compression, partial training [83], and model
pruning [29, 81], aiming to increase client involvement.
Selecting the right techniques for each training round is
challenging because of the changing nature of edge device
resources. Client availability plays a key role in resource
efficiency and convergence time [1, 2, 34, 65, 67, 76, 85].
However, some studies including REFL [2] assume a fixed
time window for availability [34, 65], which is not always
realistic. The availability is influenced by factors such as
network status, energy levels, computational capabilities,
and user activity. Furthermore, while many studies focus on
accuracy, they often don’t consider resource inefficiencies
caused by client dropouts [2, 8, 39, 51].

4 Motivation
In this section, we motivate our work by examining the
limitations of prior research and the factors impacting FL
performance.
4.1 Limitations of prior art.
Numerous recent studies have employed intelligent client
selection strategies to account for heterogeneity in FL [25,
39, 65, 72], which, despite their advancements, have demon-
strated declining performance as sources of heterogeneity
increases. Other research works, such as AutoFL [34] and
FedMarl [84], have adopted reinforcement learning (RL) only
for the purposes of having an adaptive and intelligent client
selection method. Oort [39] utilizes accuracy and heuristic-
based rules for client selection preferring efficient clients
which causes bias in selection when a portion of clients have
low resources. This bias problem can also be observed with
FedBuff which does up to 5× over-selection of clients and
selects faster clients more often than clients with limited
resources. In addition, it is the least resource-efficient among
all client selection algorithms. While some research works
such as REFL [2] consider predicting the availability pattern
of clients and consider availability as a fixed linear window.
This is an unrealistic assumption considering that client
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availability depends on a multitude of factors such as energy
consumption, computational capacity, network availability,
and network throughput of devices [40].
We demonstrate these issues through an experiment with 200
clients (20 selected per round for 300 rounds) using the non-
EMNIST dataset [14], and a Dirichlet distribution [26, 45]
with an alpha value of 0.05. For resource heterogeneity, we
employ real-world 4G and 5G network traces [50] to capture
clients’ resource variability over time, along with a real-
world compute trace [2]. FedScale [38] is used for computing
latency and other resource metrics, following the practices
outlined in [2, 25, 39]. In addition, we assume no interference
from co-located applications which means all resources are
dedicated for FL training.
In this experiment, we examine three prominent synchro-
nous Federated Learning (FL) methods, namely FedAvg [49],
Oort [39], and REFL [2], alongside a state-of-the-art asyn-
chronous FL technique, FedBuff [51]. Figure 2a illustrates the
selection bias of both synchronous and asynchronous client
selection algorithms, highlighting all selected clients (C) and
clients that successfully participated without dropout (S).
The findings indicate that FedAvg does relatively unbiased
client selection similar to Oort. On the other hand, REFL [2]
shows the greatest bias in client selection, excluding 50% of
clients from participation as it prefers faster clients. Likewise,
FedBuff exhibits bias in client selection, excluding 25% of
clients from ever being chosen due to its preference for con-
sistently selecting and aggregating results from faster clients.
However, a notable distinction between synchronous and
asynchronous methods in terms of resource consumption is
depicted in Figure 2b, revealing that the asynchronous FL
method requires less than a third to half the training time of
synchronous methods; however, asynchronous FL method
has 4.5x to 7x greater resource consumption. Thus, Fedbuff
as an asynchronous FL approach focuses on quick learning
by using client resources extensively, while FedAvg, REFL,
and Oort prioritize resource conservation, leading to longer
learning times. These outcomes highlight the necessity for a
system heterogeneity-aware solution that minimizes selec-
tion bias while enhancing training efficiency and resource
utilization.
Several research initiatives have explored training unique
models for distinct client groups [4, 18, 48]. Auxo [46] pro-
poses scalable client clustering, improving model perfor-
mance. However, it does not adequately consider the tradeoff
between performance and resource usage. Asynchronous
communication between clients and the central server allows
slower clients to continue local training based on stale mod-
els and to contribute to aggregation when ready [35, 51, 71].
However, asynchronous FL methods can substantially drop
training accuracy, introduce bias, and suffer from slow con-
vergence [85]. Similarly, semi asynchronous approaches [44,
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62, 79] primarily aim to reduce communication in asynchro-
nous FL but overlook other inefficiencies.
4.2 Impact of dropouts on client selection
Despite numerous advances in client scheduling [2, 39, 51],
these methods still face challenges in real-world resource
conditions. Specifically, dropouts can lead to a considerable
decline in accuracy, even when sophisticated client selection
strategies are employed. To illustrate this, we employ the
same experimental setup as outlined in Section 4.1, and as-
sess the Top 10%, Bottom 10%, and average accuracy metrics
of different client selection strategies under two scenarios:
assuming no dropouts (ND) and with dropouts (D) under
practical resource constraints. The Top 10% accuracy met-
ric averages the accuracy of the highest-performing 10% of
clients, while the Bottom 10% accuracy metric does the same
for the lowest-performing 10%, and the average accuracy re-
flects the mean accuracy across all clients. According to the
outcomes depicted in Figure 3, all client selection methods
experience a significant drop in accuracy due to dropouts,
with REFL suffering the most. The primary reason for its
vulnerability is its dependence on predicting future client
availability, a task it struggles with due to the dynamic na-
ture of client device resources. On the other hand, FedBuff
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Figure 4. Compute and communication resource variations.

is more resilient to these challenges. As an asynchronous FL
algorithm, FedBuff concurrently trains up to 5×more clients,
which provides a buffer against accuracy losses. However,
this comes at the expense of resource efficiency. In short,
the central issue facing these scheduling algorithms is their
inability to account for the fluctuating resource conditions
at the client’s end.
4.3 Limitations of static optimizations
To resolve the challenge of dropouts, various straggler op-
timizations [29, 57, 61, 66, 83] exist to tradeoff between re-
source usage, training time, and model performance.
Lossless compression reduces communication bandwidth
requirements but needs more computation for compression
and decompression. On the other hand, lossy compression
and quantization require more computation and can degrade
the accuracy of the model. Model pruning saves on compu-
tation and communication while partial training decreases
computation at the cost of accuracy performance. Each tech-
nique neither offers the same reduction in resource utiliza-
tion nor has a consistent impact on accuracy performance
degradation. Furthermore, using all techniques simultane-
ously isn’t feasible due to their combined overheads. It’s
crucial to assess these methods to understand their resource
demands and performance relative to each other. Questions
arise, such as how much pruning versus quantization short-
ens training for a given performance or what configuration
of partial training should be chosen to get the best trade-off
between accuracy performance and dropout reduction. These
findings are foundational for efficient, resource-aware FL.
Clients should leverage these insights to dynamically select
the best technique, adjusting as resources and data distribu-
tion evolve. Solely relying on a single static method can be
inefficient due to its inability to adjust to changing resources.
Using the same conditions and trace data from Section 4
shown in Figure 2, we highlight the issue by evaluating three
resource scenarios: 1) No Interference - all client resources

are fully available for FL training; 2) Static On-device Inter-
ference - high-priority applications consistently use some
client resources; 3) Dynamic On-device Interference sce-
nario emulates a dynamic environment where concurrent ap-
plications on the client’s device dynamically utilize available
resources, resulting in varying levels of resource availability.
We divide clients into two groups: Successful Clients, who
participated after applying the optimization which other-
wise would have dropped out, and Dropped Clients, who
still faced dropouts post-optimization.
Figure 4 shows the resource distribution across various sce-
narios. Without interference, there’s ample bandwidth, lead-
ing to quick on-device training. With static interference,
bandwidth reduces, and computational resources are divided,
depending on the compute resources reserved for high-priority
applications. Dynamic interference covers all possibilities
and reflects realistic, variable resource availability, so we
focus on this in further evaluations due to its real-world
relevance [30, 34, 76].
Figure 5 displays our evaluation of accuracy performance and
client participation metrics using static optimization tech-
niques. Notably, different optimizations respond differently
to resource changes. While pruning is preferable in the first
two scenarios, partial training outperforms under dynamic
interference. Even within a single optimization technique,
outcomes differ based on configurations. As demonstrated
in Figure 5 (second row), when no interference is present, a
mere 25%model pruning is most effective due to the complete
allocation of resources to FL training, resulting in decreased
dropouts. However, under static interference, resources are
consistently used by other priority apps, requiring 75% prun-
ing to ensure client participation. For dynamic interference,
50% pruning provides the best balance, as 25% leads to more
dropouts and 75% reduces accuracy. The resource scenarios
are not just limited to these three examples. Numerous re-
source scenarios and configuration settings exist, leading to
a vast optimization search space. Hence, static methods are
not suitable as a holistic solution for managing the balance
between client participation and model performance.
4.4 Heuristics-based solution
Our observations from Figure 5 demonstrate that indepen-
dent techniques yield inconsistent results in different situ-
ations, frequently leading to sub-optimal outcomes. Addi-
tionally, no existing solution effectively manages optimiza-
tions. Therefore, we propose a heuristic-based approach
as a possible solution to address the aforementioned chal-
lenges. In this approach we derive the following rules: (1)
When the CPU and Network availability for FL training is
low (i.e. 𝑆_𝐶𝑃𝑈 and 𝑆_𝑁𝑒𝑡𝑤𝑜𝑟𝑘 < 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒) due to co-
running applications or other multitude of factors, we use
more extreme optimization: 75% of either pruning or par-
tial training or 8-bit quantization. (2) If the client devices
have sufficient CPU and Network resources (i.e. 𝑆_𝐶𝑃𝑈 and
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𝑆_𝑁𝑒𝑡𝑤𝑜𝑟𝑘 >= 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒), we use less extreme optimiza-
tions: 16-bit quantization or 25% partial training or pruning.
Though optimization selection is random, its configuration
is chosen intelligently through the rules above.
We provide a comparison of this heuristics-based approach
along with FLOAT with FedAvg as the baseline client selec-
tion algorithm. In this experiment, we use a non-IID FEM-
NIST dataset (Dirichlet alpha 0.01) with dynamic on-device
interference. This means that the resources of clients are not
only restricted by other high-priority co-located applications,
but their requirements also change dynamically.
From Figure 6, we see that using only heuristics for optimiza-
tion in fluctuating resource conditions isn’t optimal. Specif-
ically, Figure 6 (left) reveals the heuristics-based solution
surpasses vanilla FedAvg in accuracy and client participa-
tion, yet FLOAT enhances accuracy further by nearly 20%.

This improvement from FLOAT, as shown in Figure 6 (cen-
ter), stems from its reduced client dropouts and efficient re-
source use. To further understand the reduction in dropouts
with FLOAT, we assessed the selection patterns of various
optimization methods and their configurations. We also ex-
amined their respective success rates under both FLOAT and
the heuristic approach, which is detailed in Figure 6 (right).
FLOAT consistently outperforms, indicating its adeptness in
picking the best optimization and configuration.
The heuristic method tends to prefer Quantization, 75% prun-
ing, and partial training. It is worth noting that Quantiza-
tion’s effectiveness diminishes under limited resource scenar-
ios and seems more ideal when the network is the primary
constraint, a pattern corroborated by Figure 10. This heuristic
bias led to more dropouts, resource wastage, and decreased
accuracy, highlighting the shortcomings of solely heuristic-
based strategies, especially when faced with complex choices
and changing scenarios. The previous motivational points
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and supporting results raise the following key research ques-
tions which we try to address in this work.

RQ1. How to dynamically choose the best tech-
nique to tradeoff between model performance, train-
ing time, and resource usage and, more importantly,
configure it properly?
RQ2. How to manage the overhead of RLHF train-
ing at scale?
RQ3. How to adapt the solution to new workloads?
RQ4. How to embed human feedback in RL?
RQ5. How to make the solution scalable for possi-
bly unlimited system conditions?
RQ6. How to define the rewards and a balanced
exploration policy of the RLHF agent in FLOAT?
RQ7. How to ensure continuous feedback from
dropout clients?

Research Questions

5 FLOAT

In contrast to existing methods that predict each client’s
behavior for client selection [2, 34, 67], FLOAT actively har-
nesses clients’ resource strengths with feedback integration.
This empowers them to join the global update without ex-
periencing staleness. FLOAT achieves this by accelerating
straggling clients and optimizing resource and model perfor-
mance tradeoffs, going beyond basic parameter tuning.

RQ1: Automated Tuning. The major obstacle in designing
a holistic solution to provide various available tradeoffs is
that the optimization space is too large due to the scale
of decentralized training, system and data heterogeneity,
runtime variance [34], and various types of possible tradeoffs.
To this end, FLOAT uses an automated adaptive prediction
mechanism based on RL with Human Feedback (RLHF) [20].
Figure 7 shows the overall design of our approach. The goal is
to train an RLHF agent to generate a per-client lookup table.
The RLHF agent takes global and client states as input to se-
lect optimization actions that achieve a tradeoff strategy for
client devices, maximizing the resource efficiency of FL while
satisfying model performance requirements. Global states
from the aggregator include the global model architecture
and its parameters; local states from clients include compute,
network, memory, energy, and model update characteristics;
and optimization actions include tradeoff techniques such as
compression, quantization, pruning, and their hyperparam-
eters. FLOAT uses a Q-learning-based multi-objective RL,
where each client’s Q-table stores its states (global, local),
actions, and 𝑄 values. Global states include global model
architecture, whereas local states include clients’ resource
information such as compute, network, and energy capacity.
Action space includes the optimization techniques to select

and configure. The Q-value (𝑄 (𝑠, 𝑎)) represents the expected
cumulative reward an agent can achieve by taking an action
’a’ in a state ’s’ and following an optimal policy from that
point forward. The Q-values in Q-learning, traditionally up-
dated using Bellman’s Equation 1, involve parameters: 𝛼
(learning rate), 𝑅(𝑠, 𝑎) (immediate reward for action ’a’ in
state ’s’), and 𝛾 (discount factor indicating the value of future
versus immediate rewards). max𝑎′ 𝑄 (𝑠′, 𝑎′) denotes the max-
imum Q-value for potential actions in the next state ’s’. The
key concept is that the Bellman equation relates the Q-value
of a state-action pair to the Q-values of subsequent states and
actions. The Bellman’s equation is defined as follows:

𝑄 (𝑠, 𝑎) = (1−𝛼) ·𝑄 (𝑠, 𝑎) +𝛼 · [𝑅(𝑠, 𝑎) +𝛾 ·max
𝑎′

𝑄 (𝑠′, 𝑎′)] (1)

𝑄 (𝑠′, 𝑎′), representing the new state, is independent of the
previous action taken by the RLHF agent. Instead, it is de-
pendent on the dynamic resource availability of the client
which is unpredictable and random. So we update Bellman’s
equation of Q-learning to reduce the term lim𝛾→0 𝛾 such that
the updated𝑄 value is not influenced by the random new state.
The reward function, aligned with FLOAT’s objectives of en-
hancing model accuracy and improving client participation,
is defined by Equation 2. Here, 𝑃𝑖 represents client 𝑖’s partic-
ipation success, and 𝐴𝑐𝑐𝑖 denotes its accuracy improvement.
𝑤𝑝 and𝑤𝑎 assign weights to each objective.

𝑅𝑖 = 𝑤𝑝 · 𝑃𝑖 +𝑤𝑎 · 𝐴𝑐𝑐𝑖 (2)

Including accuracy in the multi-objective reward function
allows FLOAT to manage the non-linear impact of different
acceleration configurations on accuracy. Furthermore, by
utilizing RLHF for probabilistic exploration and exploitation
in each round, FLOAT can automate the straggler accelerator
to enhance performance, reduce bias, and improve resource
efficiency by proactively minimizing dropouts. A significant
benefit of our approach is its adaptability, as it is not limited
to synchronous FL. We have also integrated FLOAT with asyn-
chronous FL and FLOAT can also be used with non-horizontal
FL as discussed further in Section 7.

RQ2: Overhead of RLHF at Scale. Clients comfortable with
sharing system usage data with a central aggregator, as seen
in standard FL protocols [34], can centralize the per-device
lookup table training. However, for privacy-conscious clients,
this training can occur locally, incurring a minor additional
training cost of under a millisecond, encompassing commu-
nication cost [34, 80]. Thus, FLOAT can be scaled to any
number of clients with no additional overhead. Figure 8
highlights the memory overhead associated with training
the RLHF agent, charting memory use against an escalat-
ing count of states and actions. Given FLOAT’s potential
state and action combinations, the memory overhead is
under 0.2 MB, and the RLHF agent’s training overhead is
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less than one millisecond for each training round. This
includes the total time taken from choosing the actions and
updating the Q-table. This overhead is minimal compared to
the lengthy aggregation process [32].

RQ3. Fine-tuning RLHF for new workloads. FLOAT can
train a collective lookup table at the aggregator to scale to
millions of devices or utilize a pre-trained RLHF agent, by effi-
ciently fine-tuning it at minimal cost [54, 89]. Contrary to ex-
isting RL-based works [34] addressing heterogeneity, FLOAT
only shares system-level resource availability information
with the RLHF agent, safeguarding clients’ data privacy.
To exemplify, we initially pre-train the RLHF agent in FLOAT
using the ResNet-18 model, adhering to the configurations
outlined in Figure 5 within section 1, with the FEMNIST
dataset. The RLHF agent achieves convergence after around
200 rounds of training. Subsequently, we transfer this pre-
trained RLHF agent to another benchmark dataset, namely
FL with the CIFAR10 dataset. Figure 9 presents the average
reward obtained by the RLHF agent, factoring in both model
performance and participation success as objectives. These
findings attest to the RLHF agent’s ability to fine-tune effec-
tively, quickly converging when applied to the new CIFAR10
dataset. To further demonstrate the RLHF agent’s adaptabil-
ity across various FL scenarios, we employ the RLHF agent
pre-trained on the FEMNIST dataset and ResNet-18 model
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Figure 9. Reusability of RLHF agent

and deploy it in FL training on the CIFAR10 dataset with
the ResNet50 model. Remarkably, the RLHF agent undergoes
fine-tuning in just 20 rounds of training, yielding positive re-
wards measured by absolute rewards. The choice of the abso-
lute reward metric is deliberate, as the average reward rarely
reaches 100% due to its dependence on accuracy improve-
ment, which realistically remains below 100%. These results
underscore the feasibility of initializing FL with a pre-trained
RLHF agent and fine-tuning it for the local context within a
few rounds, without incurring significant training overhead.
Figure 10 represents the use of a pre-trained RL agent, fine-
tuned for three unique resource scenarios. The figure shows
the multi-objective Q-table of the RLHF agent adjusted for
each scenario. From the results, we discern differences in par-
ticipation success and accuracy enhancement when applying
various acceleration techniques and configurations across
different resource contexts. This highlights that compared to
the limitations of static optimizations and heuristic solutions
in adapting to new resource conditions, FLOAT seamlessly
adapts via online learning with its RLHF agent.
In particular, Figure 10a reveals that when the data is IID, ac-
curacy improvement remains relatively stable. This stability
can be attributed to the fact that with IID data, dropouts do
not significantly compromise accuracy, as clients dropping
out possess similar data distributions to participating clients,
resulting in minimal information loss during training. There
is only a slight degradation in accuracy, however, as we move
from applying less aggressive optimization (25% pruning or
partial training and 16-bit quantization) to more aggressive
optimization (75%, 8-bit). We see this same trend repeated in
participation success. As we transition from less aggressive
to more aggressive optimization methods, the participation
success rate intuitively increases.
Additionally, we observe that in the case of an unstable net-
work, as depicted in Figure 10c, partial training exhibits the
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lowest success rate, while Quantization and Pruning outper-
form it in terms of participation success. This divergence
can be attributed to the fact that partial training primar-
ily alleviates the computational burden, whereas Pruning
and Quantization also alleviate the communication burden.
Consequently, when communication becomes a bottleneck,
partial training underperforms, a lesson learned and depicted
in the Q-table of the fine-tuned RLHF agent in FLOAT.

RQ4: Embedding human-feedback. FLOAT enhances the
coordination between clients and aggregators by incorpo-
rating human feedback, given its intrinsic link to device be-
havior and resource usage patterns [2, 28, 50]. In the context
of Reinforcement Learning (RL), human feedback refers to
the insights or information provided by human users, which
aims to guide and refine the training and decision-making

processes of RL algorithms [13, 20]. This type of feedback
is invaluable. Within Reinforcement Learning (RL), human
feedback supplies information from users to refine RL al-
gorithm training and decisions [13, 20]. Such feedback is
critical for decisions regarding client participation, hinting
when a client might rejoin or leave a session. Furthermore,
it supports the RLHF agent in aligning with a client’s unique
resource profile, simplifying agent tuning and improving the
convergence speed of both the RLHF agent and the overall FL
process. In addition to a holistic understanding of resources,
FLOAT extracts more specific, fine-grained details through
human feedback. It specifically utilizes feedback concerning
deadline differences, along with additional system resources
information obtained from clients. This deadline difference
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Table 1. Global Parameters, Runtime Variance, and Human Feedback
Global Parameters Description Discrete Values

𝐺𝐵 Batch size Small (< 8), medium (8 − 31), large (≥ 32)
𝐺𝐸 # of local epochs Small (< 5), medium (5 − 9), large (≥ 10)
𝐺𝐾 # of participant devices Small (< 10), medium (10 − 49), large (≥ 50)
Runtime Variance

𝑆CPU Available CPU resources None (0%), Low (1-20%), Moderate (21-40%), High (41-60%), Very High (61-80%)
𝑆MEM Available Memory resources None (0%), Low (1-20%), Moderate (21-40%), High (41-60%), Very High (61-80%)
𝑆Network Available Network resources Low (1-20%), Moderate (21-40%), High (41-60%), Very High (61-80%), Extremely

High (81-100%)
Human Feedback

Deadline difference Client’s missed deadline (percent-
age more time than set time)

None (0%), Low (< 10%), Moderate (< 20%), High (< 30%), Very High (>= 30%)

shows how much a client typically deviates from the pre-
scribed training round deadline.
To gauge the benefits of embedding human feedback (HF)
into FLOAT’s RL agent, we conducted an ablation study com-
paring an RL agent with HF (FLOAT-RLHF) to one without
(FLOAT-RL). In this evaluation, we used the dynamic on-
device interference setting, characterized by client resource
conditions that are in a state of flux. The insights derived
from this study, as depicted in Figure 11, unveil that the RL
agent, when combined with HF, distinctly outperforms the
standard RL agent. The results indicate a 10% accuracy boost
and 2× fewer client dropouts in Figure 11 (left). Resource
utilization of communication, computation, and memory
improves by 1.5×, 10×, and 2× in Figure 11 (center). The
improvement is largely due to RLHF using human feedback.
It employs this feedback to fine-tune its decision-making
mechanism and make informed updates to the Q table. We
studied the selection patterns, success, and dropout rates
of optimization methods in both FLOAT-RLHF and FLOAT-
RL. Figure 11 (right) shows that without human feedback
fine-tuning, FLOAT-RL is less effective, resulting in poor
success-to-dropout ratio than FLOAT-RLHF. FLOAT-RL over-
selects clients for optimization, favoring 16-bit quantization
and 75% pruning, resulting in more dropouts and reduced
accuracy and resource efficiency. In essence, human feed-
back equips the RLHF agent with vital insights, enhancing
its ability to manage resource dynamics via online learning.

RQ5: Scaling RLHF via dimensionality reduction. Both
system resources at clients and the human feedback, particu-
larly the deadline difference, are characterized by continuous
values. This poses a unique challenge, especially since Q-
learning with RLHF employs discrete values for the Q-table.
Such continuous metrics could lead to an overwhelming ar-
ray of state possibilities, making the Q-table impractically
large. Employing a histogram method to reduce the dimen-
sionality of continuous variables is prevalent, transforming
continuous metrics into discrete bins. However, the choice

of bin count is pivotal; it directly influences the granular-
ity of data retained during the continuous-to-discrete con-
version. To ensure we capture an optimal amount of infor-
mation from both system resources and human feedback,
we adopted a statistical dimensionality reduction approach.
This method begins by determining the variance of resource
metrics (computation, communication, energy, deadline dif-
ference) at clients. Subsequently, using this variance, we
establish percentile boundaries for the bins. After extensive
evaluation, we discerned that designating 5 discrete states for
these metrics offers the most balanced performance. Fewer
than 5 states compromise the richness of information and
decelerate the convergence speed of the RL agent paired
with Q-learning. Conversely, exceeding 5 states magnifies
exploration time for marginal performance gains. The global
parameters, runtime variance, and human feedback variables
that increase the search space are shown in Table 1. Adding
new acceleration techniques increases the number of actions,
thereby expanding the action space. However, unlike deep
reinforcement learning, the Q-learning approach used in
FLOAT is simpler and more efficient. The search space in
Q-learning is defined by the number of states (S) and ac-
tions (A). Adding a new acceleration technique increases
the actions by one, thus expanding the exploration space of
the RL agent by S. With the statistical dimensionality reduc-
tion of S, FLOAT ensures a linear and minimal increase in
the search space, which aids in efficient convergence and
fine-tuning of the RL agent at scale.

RQ6: Rewards and exploration policy of RLHF. Reward
selection plays a pivotal role in determining the RL agent’s
convergence speed. Initially, we observed that taking accu-
racy directly as a reward caused two issues. First, actions
chosen often during exploration had higher total accuracy
reward scores due to the additive nature of Bellman’s Equa-
tion 1. To resolve this, we shifted from direct score accu-
mulation to computing its moving average. This was also
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(a) FEMNIST Dataset.
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(b) Speech Dataset.
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(c) CIFAR10 Dataset.
Figure 12. Accuracy, Successful and Dropped Clients. (top) Compute, Communication, and Memory inefficiency. (bottom)

replicated for the other reward, namely participation suc-
cess, ensuring consistent scores across each objective in our
multi-objective RLHF agent. Second, we recognized a tem-
poral variation of accuracy across rounds, complicating its
inclusion as a consistent reward during RLHF agent updates.
Notably, the growth in accuracy during initial rounds is sig-
nificantly more than in later rounds. To resolve this, we
introduced a dynamic learning rate for RLHF training. This
rate is controlled by the progress in the FL process. While
the learning rate starts off low during the early rounds, it
gradually escalates throughout training but never exceeds
a cap of 1.0. Furthermore, we identified an imbalance in ac-
tion selection, favoring specific acceleration configurations.
To counteract this, we adjusted our exploration function
to prioritize lesser-explored actions. This deliberate alter-
ation ensured a more balanced exploration across all actions
resulting in an easily tuneable RLHF agent.

RQ7: Receiving feedback from dropout clients. Training
an RLHF agent requires feedback to learn after each action.
However, inferring for every client after each cycle is com-
putationally intensive. So, we prioritize validation for active
contributors, especially those that experienced acceleration.
This feedback updates the RLHF agent’s Q-table. A challenge
arises when clients that applied the acceleration technique
dropout, causing the RLHF training to miss their feedback.
To address this, we cache feedback from similar clients and
combine it with the dropped client’s past improvements to
estimate their rewards. This ensures the RLHF gets feedback
for all actions resulting in faster convergence. We provide
the steps of FLOAT’s design in Algorithm 1.

6 Evaluation
6.1 Evaluation Setup
For the end-to-end, we use NVIDIA GeForce RTX 3070 GPUs
to compare FLOAT with other algorithms across various
models and datasets. Our FLOAT implementation is built on
FedScale [38], a platform recently used as a base for other
significant contributions in this field [2, 16, 39].
System configuration: We use three realistic traces in our
simulation environment to mimic client availability, compu-
tational capacity, and network bandwidth, mirroring true
real-world resource conditions.
Client Availability Trace:We simulate the energy avail-
ability conditions for client devices using an availability trace
from [76]. This trace offers insights into client availability
for training based on their residual energy levels.
ComputeAvailability Trace:Drawing from [27], we utilize
a compute trace that details the training time across over
950 diverse mobile and edge devices for 25 distinct models.
Network Bandwidth Trace: To reflect real-world network
conditions, we incorporate a network trace from [50]. This
trace includes data from 4G and 5G network environments
recorded on various mobile devices under assorted condi-
tions, such as during vehicular movement or while walking.
Specifically, our simulations employ the dynamic on-device
interference system configurations as depicted earlier in Fig-
ure 4, ensuring comprehensive coverage of potential system
resource scenarios. To the best of our knowledge, our simulator
stands unparalleled in terms of realism for FL workloads. Oort
uses compute and network data to simulate client response
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Algorithm 1 Training the Q-Learning Model
Variable: 𝑆𝑔𝑙𝑜𝑏𝑎𝑙 , 𝑆𝑙𝑜𝑐𝑎𝑙 , 𝐴
𝑆𝑔𝑙𝑜𝑏𝑎𝑙 is the global state
𝑆𝑙𝑜𝑐𝑎𝑙 is the local state
A is the action (execution target)

Constants: 𝑟𝑐 , 𝑟𝑡 , 𝛾, 𝜇, 𝜖
𝑟𝑖 is the current training round
𝑟𝑡 is the Total training rounds
𝛾 is the learning rate← max ( 1.0∗𝑟𝑖

𝑟𝑡
, 1.0)

𝜇 is the discount factor
𝜖 is the exploration factor

Intialize Q(𝑆𝑔𝑙𝑜𝑏𝑎𝑙 , 𝑆𝑙𝑜𝑐𝑎𝑙 , 𝐴) as random values
Repeat (whenever an aggregation round begins):
Observe global state and store in 𝑆𝑔𝑙𝑜𝑏𝑎𝑙
Observe local state for each device and store in 𝑆𝑙𝑜𝑐𝑎𝑙
if rand()< 𝜖 then

Choose K participants (based on employed client se-
lection algorithm)

Choose action A randomly for selected participant
else
Sort optimizations by Q(𝑆𝑔𝑙𝑜𝑏𝑎𝑙, 𝑆𝑙𝑜𝑐𝑎𝑙 , 𝐴)
Choose action A with the largest Q(𝑆𝑔𝑙𝑜𝑏𝑎𝑙 , 𝑆𝑙𝑜𝑐𝑎𝑙 , 𝐴)

Run training on a target defined by A in each device
(when local training and aggregation ends)
Get 𝑃𝑖 , 𝐴𝑐𝑐𝑖 and calculate reward 𝑅𝑖 via Equation 2
Observe new global state 𝑆 ′

𝑔𝑙𝑜𝑏𝑎𝑙

Observe new local state 𝑆 ′
𝑙𝑜𝑐𝑎𝑙

Sort devices by Q(𝑆 ′
𝑔𝑙𝑜𝑏𝑎𝑙

, 𝑆 ′
𝑙𝑜𝑐𝑎𝑙

, 𝐴′)
Choose action 𝐴′ with the largest Q(𝑆 ′

𝑔𝑙𝑜𝑏𝑎𝑙
, 𝑆 ′
𝑙𝑜𝑐𝑎𝑙

, 𝐴′)
Q(𝑆𝑔𝑙𝑜𝑏𝑎𝑙 , 𝑆𝑙𝑜𝑐𝑎𝑙 , 𝐴)← Q(𝑆𝑔𝑙𝑜𝑏𝑎𝑙 , 𝑆𝑙𝑜𝑐𝑎𝑙 , 𝐴)

+ 𝛾[𝑅𝑖 + 𝜇 Q(𝑆 ′
𝑔𝑙𝑜𝑏𝑎𝑙

, 𝑆 ′
𝑙𝑜𝑐𝑎𝑙

, 𝐴′)
- Q(𝑆𝑔𝑙𝑜𝑏𝑎𝑙 , 𝑆𝑙𝑜𝑐𝑎𝑙 , 𝐴)]

𝑆 ← 𝑆 ′

times for selection, but doesn’t directly assess resource abun-
dance or scarcity. REFL similarly relies on response times
without distinguishing resource surplus or shortfall, key
for informed optimization and configuration choices. REFL
stands out by predicting future windows but simplifies client
availability as a one-dimensional window. In addition to this,
both Oort and REFL consider that resources such as com-
putation and network capacity will always remain constant
at clients, which is another unrealistic assumption [15, 50].
AutoFL [34] exclusively focuses on energy utilization. In syn-
chronous FL, seen in works like [49] and FedBuff [51], dy-
namic client resource availabilities are generally overlooked.
None of these approaches consider the combined dynamics
of compute, network, energy, and memory resources, vital
for adaptive optimization and configuration selection.
Datasets, Models, and Tasks: We test on three distinct
datasets: CIFAR10 [36], FEMNIST [7], and OpenImage [37]
for vision tasks, and a Google dataset for speech recogni-
tion [69] with Dirichlet alpha 0.1, ensuring varied evaluation

of our method. Client selection studies [2, 34, 39, 49, 51] often
assume the aggregator server has holdout IID datasets. This
is impractical as a true IID dataset requires knowing clients’
private data distribution, inaccessible by aggregator. Hence,
we rely on calculating accuracy using the non-IID dataset at
clients. To standardize, we use consistent configurations in
all tests. We use the Resnet34 model, with a learning rate of
0.01, a batch size of 20, and 5 local epochs per training round,
totaling 300 rounds. From a global client pool of 200, we sam-
ple 30 clients per training iteration. In the FedBuff context,
we let 100 clients train simultaneously and asynchronously,
keeping a buffer of 30 clients.
To our knowledge, limited research has addressed adaptive
optimization selection and configuration. Hence, we com-
pared FLOAT with four notable client selection algorithms:
REFL [2], Oort [39], and FedAvg [49], which are synchro-
nous FL algorithms, and FedBuff [51], an asynchronous FL
algorithm. Importantly, we did not use FLOAT with REFL
due to fundamental differences in their assumptions. REFL
presumes clients’ future availability windows are predictable,
a premise we find unrealistic considering the many factors af-
fecting client window dynamics, including system, network,
energy, and client willingness [15, 30, 50, 53].
Metrics:We then incorporate FLOAT into the baseline meth-
ods and evaluate their performance using three metrics. First,
we measure the accuracy of the top 10%, average, and bottom
10% of clients to identify potential biases and gauge overall
performance. Next, we track the number of dropouts during
training and those retained after FLOAT’s adaptive optimiza-
tions. Lastly, we assess resource inefficiency, looking at total
computation and communication time in hours and memory
inefficiencies in TB from client dropouts. Together, these
metrics provide a thorough assessment of the enhancements
brought by FLOAT’s integration into the baseline methods.
6.2 End-to-end performance
We conducted an end-to-end evaluation of FLOAT, compar-
ing its performance to standard algorithms as illustrated in
Figure 12, spanning three distinct datasets. Our findings
revealed significant accuracy enhancements when using
FLOAT across all algorithms, with particularly notable im-
provements with the FEMNIST and CIFAR10 datasets. The
most pronounced accuracy improvements were observed
with FedAvg and Oort.
FedBuff, an asynchronous FL algorithm, concurrently trains
five times more clients than its synchronous counterparts. It
employs a buffer for result aggregation, offering resilience
to resource fluctuations and client dropouts. Thus, pairing
FLOAT with FedBuff does not provide as much improvement
as with synchronous FL. However, FedBuff’s over-selection
policy culminates in notable resource inefficiencies, as de-
picted in Figures 12a and 12c and FLOAT integrated with
FedBuff significantly reduces this inefficiency. FedAvg, while
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Figure 13. Performance on the OpenImage dataset [37]. Ac-
curacy, Successful and Dropped Clients. (top) Compute, Com-
munication, and Memory inefficiency. (bottom).
bearing similarities to FedBuff in terms of resource ineffi-
ciency, adopts a rudimentary client selection method, opting
for random client selection without accounting for resource
availability. Thus, we see the most prominent improvement
with FLOAT (FedAvg). In contrast, REFL exhibits the poorest
accuracy performance because it overly relies on predict-
ing client availability windows. Unfortunately, it assumes
that client resources will remain constant, resulting in sub-
optimal predictions in dynamically changing environments,
leading to even more dropouts compared to other algorithms.
FLOAT, specifically FLOAT (FedAvg) and FLOAT (FedBuff)
stand out by delivering the highest accuracy compared to
FLOAT (Oort). This can be attributed to the unbiased client
selection approach adopted in FedAvg and FedBuff. In con-
trast, Oort’s selection relies on client efficiency, which can
prove sub-optimal in a dynamically changing resource en-
vironment. A client that performed efficiently in one round
may not exhibit the same efficiency in subsequent rounds.
FLOAT also enhances model accuracy shown in Figure 12
(first row) by 16% to 53% for the FEMNIST dataset, 1% to 20%

for CIFAR10, and up to 3% for the Speech dataset. The per-
formance of FLOAT remains consistent in terms of accuracy
with the Speech dataset, primarily due to its lower resource
requirements for training and faster convergence speed. Con-
sequently, it experiences fewer dropouts, providing limited
opportunities for FLOAT to further reduce dropout rates and
provide any substantial improvements in accuracy.
Oort, as previously illustrated in Figure 2a, exhibits a bias
toward selecting efficient clients. FLOAT effectively reduces
the total number of dropouts across 300 training rounds by
a remarkable 3×-18× for the FEMNIST dataset, 3×-78× for
CIFAR10, and 2×-54× for the Speech dataset. This reduc-
tion has a cascading effect on resource inefficiencies. When
clients remain active, their progress contributes to the FL
training, and the computational and communication time
invested in training and transmitting the model to the aggre-
gator becomes a valuable part of the final aggregated model.
In contrast, when a client drops out, the energy, communi-
cation, computation, and memory resources invested in its
training, transportation, and storage are wasted, as its input
no longer contributes to FL. Furthermore, the resources al-
located for FL training could have been employed by other
co-located applications, resulting in an opportunity cost.
We also quantify computation and communication ineffi-
ciencies by calculating the time spent on model training and
the round-trip communication time for updating the model.
Memory inefficiency is calculated as terabytes (TBs) of mem-
ory used during training and model storage. The results are
displayed in the second row of Figure 12. We calculate these
inefficiencies across all 200 clients with 30 clients selected
per round for synchronous FL and 100 clients selected for
concurrent training in asynchronous FL (FedBuff) over the
span of 300 training rounds, each comprising 5 local epochs.
FLOAT notably improves resource efficiency, especially with
FedAvg and FedBuff. FedBuff over-allocates resources to ad-
dress client dropouts, resulting in significant inefficiency
of resources, while FedAvg’s random client selection [49]
chooses clients prone to dropout. FLOAT considerably im-
proves the total computation efficiency, saving 468 to 7013
hours (2×−28×) for FEMNIST, 7 to 259 hours (2×−44×) for
CIFAR10, and 13 to 547 hours (1.4×−36×) for Speech dataset.
Communication time, based on a 4G trace, sees reductions of
0.3 to 7 hours (3×−47×) for FEMNIST and CIFAR10 (3×−81×),
and 0.3 to 7.4 hours (2 × −51×) for the Speech dataset. Mem-
ory efficiency is improved by 2 to 25 TBs (3 × −14×) for
FEMNIST, 0.5 to 12 TBs for CIFAR10 (2 × −12×), and 0.7 to
12 TBs for Speech dataset (2 × −12×).
Performance on complex datasets: We further evaluate
the performance of FLOAT in comparison to the state-of-
the-art on more complex datasets. For this purpose, we use
the OpenImage dataset [37] consisting of 1.6 million images.
Additionally, we use all the same settings described in Sec-
tion 6.1. However, in place of the Resnet34 model, we use the
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ShuffleNet model [87], aligning with the model choice made
in related works assessing the OpenImage dataset [2, 39].
The findings presented in Figure 13 corroborate with those
observed in Figure 12. The FedAvg algorithm, lacking a so-
phisticated mechanism for client selection, tends to choose
clients with a higher likelihood of dropout. In contrast, Oort
demonstrates improved performance due to its strategy of se-
lecting clients with a greater probability of completing their
training. REFL, however, places excessive emphasis on pre-
dicting client availability windows, making it the most vul-
nerable to dropouts. FedBuff shows comparable performance
with Oort by over-selection of clients to offset performance
degradation from dropouts. However, over-selection results
in increased resource inefficiency. FLOAT, on the other hand,
significantly enhances both accuracy and resource efficiency,
especially with FedAvg and FedBuff. Overall, with the Open-
Image dataset, FLOAT improves the accuracy by 8% to 39%.
FLOAT also improves the cumulative clients’ computation
resource efficiency by 1200 to 1160 hours (3 × −233×), total
communication efficiency by 3.8 to 46 hours (3 × −46×), and
total memory efficiency by 3 to 38 TBs (2 × −20×).

7 Discussion
Revamping the design of client selection algorithms:
Another interesting observation as shown in Figure 12, high-
lights that random selection algorithms counter-intuitively
surpass intelligent client selection methods. A closer look
reveals that many client selection algorithms operate under
the assumption that a client’s resources remain consistent
throughout training. This idea is foundational in algorithms
like Oort [39]. Although recent studies now incorporate
predicting fluctuating availability windows of clients [2] or
choosing energy-conserving clients [34], they don’t fully con-
sider all resource dynamics affecting training performance.
These studies typically concentrate on singular factors like
set availability windows [2], response speeds [39], or power
efficiency [34]. This oversight highlights a significant re-
search gap, underscoring the need to consider the variability
of client resources in enhancing client selection strategies.
Limitations of FLOAT: FLOAT excels in cross-device FL
with limited resources, optimizing dropout reduction and re-
source efficiency through adaptive acceleration. However, its
benefits diminish in resource-rich environments or when re-
ducing dropouts is less critical, as in FedBuff’s over-selection
strategy. To enhance accuracy in such scenarios, FLOAT in-
tegrates a weighted multi-objective rewards equation into
its RLHF agent, allowing users to prioritize accuracy over
resource efficiency and dropout reduction.
FLOAT for non-horizontal FL: Vertical Federated Learn-
ing (VFL) involves clients with distinct data features using
split [59] or top-bottom models [70]. Hybrid FL [86] com-
bines Horizontal and Vertical approaches. Given the unifor-
mity of local client training requirements, FLOAT can easily

integrate with both VFL and Hybrid FL without needing
structural adjustments.

Table 2. Shortcomings of current FL approaches and their
enhancement with FLOAT
Methods Shortcomings Enhancement with

FLOAT

FedAvg [49]
(Synchro-
nous)

Does not consider
dynamic client resource
availability

Improves resource
efficiency by reducing
the number of dropouts

Oort [39]
(Synchro-
nous)

Assumes constant client
resources, leading to
suboptimal selections

Enhances client
participation through
dynamic resource-based
acceleration
optimization

REFL [2]
(Synchro-
nous)

Relies on future
availability predictions
without dynamic
resource considerations,
increasing dropouts

Minimizes dropouts by
dynamically configuring
acceleration for less
available clients

FedBuff [51]
(Asynchro-
nous)

Over-selection policy
results in resource
efficiency

Improves resource
efficiency and reduces
selection bias by
accelerating stragglers

8 Conclusion
This paper introduces FLOAT, a multi-objective reinforce-
ment learning system that leverages human feedback to
automate the selection and configuration of accelerators in
FL training. Our experiments demonstrate that FLOAT is a
versatile, efficient, and scalable solution. It can be fine-tuned
at a minimal cost for new workloads, resulting in improved
accuracy performance and improved resource efficiencies.
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A Artifact Appendix
In this section, we give instructions for the evaluation of our
artifact.
A.1 Abstract
The artifact is a code repository that contains the scripts and
instructions for running our FLOAT (Federated Learning
Optimizations with Automated Tuning) framework. FLOAT
introduces an FL framework that uses adaptive accelera-
tions to optimize resource utilization andmodel performance
through a multi-objective Reinforcement Learning with Hu-
man Feedback (RLHF)mechanism. REFL uses FedScale frame-
work (http://fedscale.ai) as the base for the implementation.
FedScale provides a diverse set of datasets and benchmarks
for FL training and evaluation with simulated resource and
availability traces. To augment the realism of FedScale’s sim-
ulations, we have incorporated real 4G and 5G client devices’
network traces, enriching the framework’s capability to mir-
ror real-world conditions.
A.2 Description & Requirements
A.2.1 How to Access: The FLOAT code repository is
available at https://github.com/AFKD98/FLOAT. It includes
scripts and instructions for setup, installation, and running
experiments.
A.2.2 Hardware Dependencies: Running experiments
do not mandate any special hardware. However, to run the
experiments in a reasonable amount of time servers with
fast Nvidia GPUs (e.g., A100/V100) or at least 3070 GPUs are
recommended. However, due to the scale of the experiments
conducted in this study, it may not be feasible to reproduce it
due to the large cost incurred. To give an estimate, even with
advanced GPUs such as RTX 3070 GPUs, it took a significant
amount of time to run them (i.e., 1400 hours of GPU time).
This makes it quite hard to reproduce the claims/figures
within the time frame set for evaluation.
A.2.3 Software Dependencies: The FLOAT framework’s
operation requires Python for core programming, Anaconda
for package and environment management, and CUDA for
GPU support in accelerated computing tasks. Essential pack-
ages and libraries required for FLOAT are included in the
environment.yml file and requirements.txt within the
FLOAT repository.
A.2.4 Benchmarks: FLOAT supports various FL tasks
including image classification and speech recognition. Other
tasks such as language modeling can also be added as they
are supported by FedScale and FLOAT leverages FedScale’s
extensive dataset and benchmark suite. To provide a realistic
simulation environment, FLOAT includes real-world traces
for compute, network, and client availability. These traces
are critical for accurately simulating FL environments and
are located in the following directory of FLOAT’s GitHub
repository:

FLOAT/benchmark/dataset/data/device_info/

Details of the traces are provided in Section 6.1.
A.3 Setup
A.3.1 Installation: NOTE: Although FLOAT automati-
cally finds the correct paths using os commands in Python.
Nevertheless, please ensure that the paths to the code and
datasets are consistent across all nodes so that the simulator
can find the right path. FLOAT can run on a single node or
on multiple nodes that have at least a 3070 Nvidia GPU and
the CPU capacity to run at least 30 threads in parallel.
Quick start: After cloning the repo, go to the main directory
FLOAT using the following command:

cd FLOAT

First, edit float_install.sh script if necessary. Please, uncom-
ment the parts relating to the installation of the Anaconda
Package Manager, CUDA 10.2 if they are not already present
on the servers. Note, if you prefer different versions of conda
and CUDA, please check the comments in float_install.sh
for details. After editing, run the following commands to
prepare the environment:

source float_install.sh

Running float_install.sh should install all dependencies in
a conda environment and also activate the fedscale conda
environment on the bash terminal.
Manual install:
Alternatively, the installation and setup can also be done
by running the following commands also provided in the
README in order:

cd FLOAT

# Please replace ~/.bashrc with ~/.bash_profile
#for MacOS
FLOAT_HOME=$(pwd)
echo export FLOAT_HOME=$(pwd) >> ~/.bashrc
echo alias fedscale=\'bash $FLOAT_HOME/float.sh\'
>> ~/.bashrc
echo alias float=\'bash $FLOAT_HOME/float.sh\'
>> ~/.bashrc
conda init bash
. ~/.bashrc

conda env create -f environment.yml
conda activate fedscale
pip install -r requirements.txt && pip install -e .

Ensure that the FLOAT_HOME environment variable is set, and
the fedscale and float alias are configured in /.bashrc
as per the instructions in the repository.
A.3.2 Setting the Environment Variables: It is crucial
to set specific environment variables for the experiments
in the /.bashrc and config files. These variables ensure

http://fedscale.ai
https://github.com/AFKD98/FLOAT
https://github.com/AFKD98/FLOAT/blob/main/README.md
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the correct execution paths and configurations are utilized
during the runtime. The required environment variables are:

• FLOAT_HOME - The root directory of the FLOAT installa-
tion.
• CONDA_PATH - The path to the Conda source script, typi-
cally $HOME/anaconda3/etc/profile.d/conda.sh.
• CONDA_ENV - The name of the Conda environment used
for FLOAT, which should be activated before running
experiments.
• fedscale and float aliases for execution script loca-
tions.

A.3.3 Experiment Configurations: All config files are
located in FLOAT/benchmark/configs directory. The reposi-
tory includes config files for all our experiments in the paper.
The config files include cluster configuration, job parame-
ters, and model specifics necessary for initiating the training
process. New configs can be added for adding more datasets
and models from FedScale.
To streamline the setup and execution of the experiments
ensure you tailor the configurations to fit your system. This
involves adjusting dataset locations, model parameters, learn-
ing rate, batch size, and the number of training rounds. These
adjustments are crucial for optimizing the experiment’s ef-
ficiency and reproducibility, making it more accessible for
both researchers and practitioners.
A.3.4 Running Experiments: NOTE: Running experi-
ments requires SSH access for launching and communication
between the aggregator server and clients. Please make sure
to have conda environment fedscale activated. FLOAT’s
experiment manager in FLOAT/float_run_exps.sh auto-
matically checks if the dataset is downloaded, otherwise, it
downloads the dataset required to run. Alternatively, each
dataset can manually be downloaded as well using the fol-
lowing command inside the main FLOAT repo directory:

cd FLOAT
./benchmark/dataset/download.sh download DATASET

[Preparation]
Replace DATASET with the dataset required for the experi-
ment. An example command for the FEMNIST dataset is:

./benchmark/dataset/download.sh download femnist

[Execution]
To execute an experiment, use:

bash float_run_exps.sh -d dataset -a algorithm

For example for running Oort this is the command:

bash float_run_exps.sh -d femnist -a oort

and for running Oort with FLOAT the command is as follows:

bash float_run_exps.sh -d femnist -a oort_float

More commands for running other experiments are also
provided in the README of the repository. Alternatively,
they can be accessed by running:

bash float_run_exps.sh -h

[Resluts]
All experiments should produce logs in the directory
FLOAT/benchmark/logs/ and aggregated logs in the main
FLOAT directory as femnist_logging if the dataset used is
FEMNIST.
These experiments should validate the claims above by com-
paring FLOAT’s performance against baseline FL frame-
works on tasks like image classification or speech recog-
nition, using the provided benchmarks in the paper.
A.4 Evaluation Workflow
A.4.1 A.4.1 Example Claims: Following are the major
claims made in our paper: In general, FLOAT with any client
selection algorithm should reduce the amount of dropped
clients and resource wastage while preserving accuracy and
also showing accuracy improvement under highly heteroge-
neous data conditions with low system resources. The logs
should provide this information at the granularity of per
round.
A.4.2 Additional experiments: Additional experiments
related to resource variations can be automatically verified
while running the experiments as the logs will contain re-
source information of clients. The variations can also be
controlled by modifying the functions:
get_completion_time_with_variable_network and
get_new_network_bandwidth in
FLOAT/fedscale/cloud/internal/client_metadata.py. In addi-
tion, results in Figure 9 and 10 can be generated by the
analysis of Q table of the RLHF agent that can be fetched by
executing:

python FLOAT/benchmark/logs/rl_model/load_Q.py

A.5 Notes on Reusability
FLOAT supports extension with new FL tasks, datasets, and
acceleration techniques. It is designed to be non-intrusive
and compatible with existing FL systems, facilitating easy
integration and experimentation.

https://github.com/AFKD98/FLOAT/tree/main/benchmark/configs
https://github.com/AFKD98/FLOAT/blob/main/README.md
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