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Abstract
Deep learning training (DLT) applications exhibit unique

I/O workload behaviors that pose new challenges for storage
system design. DLT is I/O intensive since data samples need
to be fetched continuously from a remote storage. Accelera-
tors such as GPUs have been extensively used to support these
applications. As accelerators become more powerful and more
data-hungry, the I/O performance lags behind. This creates a
crucial performance bottleneck, especially in distributed DLT.
At the same time, the exponentially growing dataset sizes
make it impossible to store these datasets entirely in memory.
While today’s DLT frameworks typically use a random sam-
pling policy that treat all samples uniformly equally, recent
findings indicate that not all samples are equally important
and different data samples contribute differently towards im-
proving the accuracy of a model. This observation creates an
opportunity for DLT I/O optimizations by exploiting the data
locality enabled by importance sampling.

To this end, we design and implement SHADE, a new DLT-
aware caching system that detects fine-grained importance
variations at per-sample level and leverages the variance to
make informed caching decisions for a distributed DLT job.
SHADE adopts a novel, rank-based approach, which captures
the relative importance of data samples across different mini-
batches. SHADE then dynamically updates the importance
scores of all samples during training. With these techniques,
SHADE manages to significantly improve the cache hit ratio
of the DLT job, and thus, improves the job’s training perfor-
mance. Evaluation with representative computer vision (CV)
models shows that SHADE, with a small cache, improves the
cache hit ratio by up to 4.5× compared to the LRU caching
policy.

1 Introduction

Deep learning (DL) approaches are increasingly being em-
ployed to solve crucial complex problems. The use of DL
has become common in disparate domains such as health
sciences [28, 29, 43, 64], environmental sciences [41, 47],

bio-technical systems [48], high-energy scientific experi-
ments [16], finance [25,33,35,39], smart cities [12,19], indus-
trial production [13, 79], autonomous vehicles, and IoT sys-
tems [45, 58, 72]. Moreover, DL has given rise to a huge mar-
ket that is expected to reach 12.12 billion dollars by 2025 [4].
To meet the demands of unprecedented scale and performance,
DL researchers and practitioners are developing distributed
DL, which employs distributed computing and storage re-
sources to support DL. While promising, the approach poses
numerous challenges in handling massive workloads while
keeping the usage cost in check.

DLT is extremely compute-intensive and data-
intensive [24], and the resource demands vary at different
phases of the process [22, 42]. A key challenge is efficiently
matching the DL application needs with available system
resources. A common practice is to scale up/out a DL
training job using multiple compute accelerators such as
GPUs, FPGAs, or custom ASICs; that is, by using data
parallelism [71] with each accelerator, e.g., GPU, holding a
replica of the model and processing a subset of the training
data in parallel.

A large body of research has focused on optimizing the
efficiency of computing [53, 57], scheduling [37, 82], and
data communication [74, 77, 81] for DL jobs. This is be-
cause data-parallel DL training is both compute-intensive—
typically requiring multiple GPUs to train in parallel—
and communication-intensive [17, 59, 75]—newly calculated
model gradients are transferred or broadcast to all the involved
GPUs for iterative model updates. However, as state-of-the-art
research [14, 56] demonstrates, the efficiency of data storage
and retrieval can also significantly impact the end-to-end per-
formance of DL training.

To better understand the impact of data storage configu-
ration on distributed DL training efficiency, we perform an
experiment to study the performance difference when dis-
tributed DL jobs are run using a local or a remote storage
medium. Figure 1 shows that remote storage mediums can
significantly impact the training time (∼ 2.5×) compared to
faster storage mediums, i.e., RAM, even though all the rest
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Figure 1: Training throughput and time comparison of a sin-
gle job using 2 nodes and 8 GPUs with ResNet-18. Remote
storage comprises of SSDs on a BeeGFS server.

of the training configurations were kept the same. This re-
sult is in line with recent studies [20, 70], which show that
I/O can take up from 85-90% of the total training time. As
high-performing accelerators can consume the training data
samples faster, efficient I/O can significantly reduce the train-
ing time.

However, it remains challenging to improve the I/O effi-
ciency for distributed DLT as the I/O workloads of a DLT job
exhibit unique patterns: (1) full-object, sequential, read-only
accesses at per-object level; (2) dominant, small, random I/Os
spread across the whole training sample dataset [88]; and
(3) highly concurrent I/Os [70]. Today’s high-performance
and distributed storage systems, such as parallel file systems
(PFS) [21, 40], network file systems (NFS) [63], and cloud
object stores [2, 5] are inefficient at supporting dsitributed
DL applications. This is especially true given the excessive
metadata overhead for small-I/O-intensive accesses [85].

For efficient I/O, faster storage mediums like RAM are
needed, but compared to increasingly large training datasets
that can range from terabytes [36, 67] to petabytes [10], these
resources are often too small, even on large supercomputers
like Piz Daint (64GB RAM/node) [3] and Fugaku (32GB
RAM/node) [8]. Moreover, because of the high cost of GPUs,
DL jobs are mainly run by renting GPU Spot VMs [1, 9, 15,
49, 56, 78] that are 6-8× cheaper than dedicated VMs. As
these VMs are preemptive, meaning these can be terminated
at any time depending on available resources, DL training has
to be resumed from a checkpoint on a different VM leading to
the loss of local SSD state. As a result, instead of local SSDs,
large datasets are put in persistent cloud storage, and training
is conducted on VMs that access the cloud storage remotely.

Worse, conventional wisdom holds that the I/O workload
of a DL training job is not cache-friendly due to the aforemen-
tioned I/O randomness and lack of data locality [85]. This
property renders existing caching policies (such as LRU and
LFU) ineffective, as there is no recency or frequency pattern
to exploit. Recent work such as Mercury [84], CoorDL [65],
Quiver [56], and Hoard [69] try to solve this I/O problem
by employing caching techniques. Unfortunately, none of
them provides fundamental solutions that enable the ability
to cache (i.e., cacheability) a DLT job’s working set. The

main reason is that these works consider that each sample
will only be accessed once in every epoch (one iteration over
the dataset). However, as has been shown by prior work [50],
some samples are more important than others in DL training.
Hence, if we can design effective mechanisms and policies
to exploit this importance variance, we can fundamentally
improve the cacheability for DL training.

In this paper, we show that we can deliver better cacheabil-
ity by designing a new dataset sampling algorithm inspired
by importance-sampling [61] and an effective caching pol-
icy atop that. DL models are trained on a dataset in batches
(multiple equal partitions of the entire dataset). Our sampling
algorithm combines the intra-batch importance of individual
data samples with inter-batch importance to detect the most
important samples for placing in the in-memory pooled cache.
We develop a novel technique of rank-based importance that
ranks the training samples within a batch based on their con-
tributions to increasing the overall accuracy of the model.
Rank-based importance further helps increase the probability
of identifying (predicting) the most important samples in later
epochs. Using this technique, we further design a priority-
based sampling strategy that ensures multiple accesses to the
important samples within an epoch to train more on hard-
to-learn samples to increase the accuracy improvement rate.
As a result, our caching solution keeps the most important
samples in the cache and avoids random evictions, which in
turn improves the cache hit ratio and training throughput.

Specifically, this paper makes the following contributions.
• We introduce a novel, rank-based importance calculation

approach to precisely identify the relative importance of
data samples for DLT jobs.

• We design a priority-based sampling policy to exploit the
data locality of samples.

• We present the design and implementation of SHADE, a new
DLT-aware caching system that incorporates rank-based
importance scores and the priority-based sampling policy
to improve the I/O efficiency for DLT jobs.

• We incorporate and evaluate SHADE in the widely-used
DLT framework PyTorch and compare SHADE against a
series of baseline and advanced caching and sampling meth-
ods. Our results show that SHADE: improves the read hit
ratio by up to 4.5× given the same cache size, increases the
training throughput by up to 2.7×, and reaches accuracy
convergence by up to 3.3× faster compared to a baseline
LRU caching policy.

SHADE is open source and publicly available at:
https://github.com/R-I-S-Khan/SHADE.

2 Background

2.1 Distributed Deep Learning Training
There are mainly three types of distributed DL training
techniques: data-parallel training [71], model-parallel train-

https://github.com/R-I-S-Khan/SHADE


ing [30], and pipeline parallelism [44] that combines data-
parallel and model-parallel training. While this paper focuses
mainly on data-parallel training based on Stochastic Gradient
Descent (SGD), our approach is applicable to other training
methods as well.

A Deep Neural Network (DNN) model consists of multi-
ple layers of computation units whose output is the input for
subsequent units. DNN model training consists of a forward
propagation method, which sequentially moves information
related to the input data through all model layers and generates
a prediction. For example, in an image recognition applica-
tion, image pixels information is moved through the layers
for predicting image contents. To generate the prediction, DL
defines a cost/loss function with respect to the forward propa-
gation output and ground truth labels. The DL process aims
to minimize the cost function through a process of increasing
or decreasing the weights of the outputs of the intermedi-
ary layers of the model so that it can improve its prediction.
This step is known as backward propagation, which adjusts
the parameters of the DL model starting from the outermost
layer back up to the input layer through a technique known as
gradient descent optimization. Gradient descent adjusts the
parameters in the opposite direction of the gradient. SGD is
a stochastic approximation of gradient descent optimization;
instead of calculating the gradient from the entire data set,
SGD randomly selects a subset of training data samples from
the entire dataset to reduce computation cost.

In a typical data-parallel, SGD-based training, the whole
training dataset is partitioned and processed in parallel by mul-
tiple GPU devices. Each GPU has a replica of the same DNN
model, which is iteratively synchronized with other GPUs
using centralized communication techniques, e.g., parameter
server [59]) or decentralized communication techniques, e.g.,
all-reduce [17].

2.2 I/O Characteristics of Data-Parallel DL
Training

DL training applications feature unique characteristics that
differentiate them from conventional data-intensive applica-
tions such as big data analytics [31, 83] and web applica-
tions [6, 7]. A DL training job typically runs multiple epochs,
with each epoch consuming the entire training dataset once
in a random permutation order. Each epoch is further divided
into multiple batches. At the beginning of processing a batch,
each GPU process loads a randomly-sampled bulk (i.e., a mini-
batch) of training data whose size is configurable. These be-
haviors lead to highly-concurrent, read-only, repetitive, and to-
tally random I/O accesses. Therefore, a common belief is that
such I/O patterns are not cache-friendly to traditional caching
policies that exploit recency and/or frequency-based data lo-
cality, such as the widely used LRU, LFU, and ARC [62].

2.3 DL Training with Importance Sampling

Traditionally, SGD-based DL training is oblivious to the “im-
portance” of training samples and simply applies random
sampling or shuffling to generate a random permutation order
at the end of each training epoch, thereby treating all training
samples equally. Recently, researchers found that in SGD-
based DL training, a specific set of training samples tend to
generate little-to-no impact on the model quality and, there-
fore, can be ignored [50, 61]. This process of finding the set
of training samples that are more important than others, i.e.,
contribute the greatest towards the loss function, is known as
importance sampling. That is, a few samples would lead to
a higher loss between hidden layer output and target label in
backward propagation after a few epochs.

Therefore, by prioritizing training using samples with rela-
tively higher importance, i.e., the ability to contribute towards
building model accuracy, a DL training job can achieve im-
provement in both training time and test errors [46, 50].

In SGD, gradient g(x) is estimated by sampling from a uni-
form distribution p where x is a data sample from a minibatch.
Importance sampling estimates g(x) using a new data distri-
bution q (such that q(x)> 0 whenever p(x)> 0) to speed up
the process. That is,

Ep(x)[g(x)] = Eq(x)[
p(x)
q(x)

g(x)] (1)

It has been proved [11] that the variance of gradient is mini-
mized when Eq. 2 is maintained, i.e., to ensure gradient vari-
ance reduction, optimal data distribution q∗(x) should be pro-
portional to sample’s gradient norm |g(x)|.

q∗(x)∝ p(x)|g(x)| (2)

In practice, the feed-forward loss is often used to measure the
importance of each data sample as an alternative of gradient.

3 Motivation

3.1 Exploiting Importance Sampling

As discussed earlier, the shuffling-based sampling method
passes over the entire training dataset in each epoch, making
DL training not cache-friendly and failing to make efficient
use of faster storage mediums such as main memory or SSDs.
However, as observed in Figure 1, there exists ample opportu-
nity to make efficient use of faster storage devices to enhance
the performance of DL training. In this regard, importance
sampling treats training samples differently and introduces in-
herent data locality that can be exploited by a caching system
to make better use of faster storage mediums.

To better understand the implication of importance sam-
pling on DL training and dataset caching, we analyze impor-
tance sampling based training over benchmarking datasets.



(a) Sample access pattern in epoch 1. (b) Sample access pattern in epoch 20. (c) Sample access pattern in epoch 89.

Figure 2: Frequency of samples accessed across different epochs in default single process importance sampling (CIFAR-10).
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(c) Epoch 89.

Figure 3: Distribution of data importance as the number of epochs increases in single process default importance sampling on
the CIFAR-10 dataset. Data importance is the ability of a sample to contribute towards improving the accuracy of the model.

Sample Access Pattern. We first analyze the sample ac-
cess pattern of importance sampling. We use the CIFAR-10
dataset [54] to train a ResNet-18 DNN model using a loss-
based importance sampling algorithm [50] for a single GPU.
As shown in Figure 2, 26.5%, 26.6%, and 26.2% of the sam-
ples are accessed more than once in epochs 1, 20, and 89,
respectively. More importantly, 9.6% of the samples are ac-
cessed 3 times or more in epoch 89, indicating a good data
locality within a training epoch.

Data Importance Distribution. We further analyze the im-
portance scores of training samples. Unlike standard random
sampling, which treats each sample equally, not all samples
contribute equally to model training. As shown in Figure 3(a)-
(c), in epoch 1, the importance scores of all samples are
clustered towards the least-important end of the spectrum;
whereas during epochs 20 and 89, more samples become
more important. In particular, in epoch 20, around 49.91%
of samples have a normalized importance score greater than
30%. This observation further implies that the importance
information could be exploited by a priority caching policy
to optimize the I/O efficiency of DL training.

Impact of Importance Sampling on Training. Next, we an-
alyze the impact of importance sampling on training quality.
In this test, we use the CIFAR-10 and CIFAR-100 datasets
and train a ResNet-18 model using standard random sampling
and a loss-based importance sampling method. As shown in
Figure 4(a)-(b), we verify that importance sampling incurs
negligible impact on the model accuracy for the CIFAR-10

dataset. The CIFAR-100 dataset is much harder to predict
than CIFAR-10 due to the larger number of classes present in
the dataset. Figure 4(c) shows that importance sampling does
not have a drastic loss degradation implying that it has a good
learning rate, which further contributes to its improved accu-
racy. Figure 4(d) shows that importance sampling can achieve
better accuracy in under 20 epochs than the accuracy achieved
by normal baseline random sampling in 100 epochs. This is
because random sampling just shuffles the dataset indices,
which does not contribute much towards quickly learning
fine-grained details of the dataset.

4 SHADE Design

Our study in §2 sheds light on the potential to enable fun-
damental data locality for DL training workloads and moti-
vates a new caching system co-designed with the DL training
framework. This section presents the challenges and design
principles of SHADE, followed by the design detail.

4.1 Challenges
Our goal is to achieve a caching system that can exploit impor-
tance sampling to improve the cache efficiency for DLT’s I/O
workload. One may think that a priority-based caching pol-
icy that always prioritizes the most important samples could
effectively improve the read hit ratio. However, as shown in
Figure 5, a naive priority-based caching policy achieves the
same low read hit ratio as standard LRU and LFU. Ideally,
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Figure 4: Comparison of loss and accuracy convergence of ResNet-18 model using single process default importance sampling
against baseline training on the CIFAR-10 and CIFAR-100 datasets.
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Figure 5: Comparison of different caching policies during
ResNet-18 model training over the CIFAR-10 dataset. Work-
ing Set Size (WSS) denotes the percentage of cached dataset.

Belady’s MIN cache replacement policy [18] achieves an
optimal read hit ratio assuming perfect future knowledge: Be-
lady’s MIN replaces the item that will be accessed furthest in
the future (Figure 5). In the context of DLT, an ideal priority
caching policy would accurately capture the priorities (i.e.,
importance scores) of training samples, resembling the opti-
mal behavior of the offline MIN. To make it even better, the
policy could take advantage of the importance information
to prefetch important samples into the cache. This way, the
new policy can potentially outperform Belady’s MIN when
incorporating prefetching [87].

The key insight of this paper is that DLT treats different
training samples differently and that the priorities of I/O ac-
cesses are inherently predictable, therefore exposing interest-
ing exploitation opportunities to fundamentally improve the
I/O efficiency. However, it also poses non-trivial challenges to
effectively translate the potential exploitation opportunities
to the I/O efficiency improvement.

First, default importance sampling (importance sampling
considered in prior works) assigns per-minibatch scores,
which are too coarse-grained and inaccurate. That is, all sam-
ples of a single minibatch are, by default, assigned the same
importance scores. This creates ambiguity, which leads to
inaccurate estimation of the per-sample importance and, thus,
loss of cache efficiency. Ideally, we would want an importance
score that precisely tells us the relative importance that each

sample carries within a minibatch.
Second, even if important samples are identified properly,

aggressively feeding the DL model with repetitive samples
might make training model biased. Thus, it is necessary to
ensure that the accuracy is not compromised while trying to
increase the hit rate of samples.

Third, importance scores are constantly changing and may
get stale quickly. The same sample in a later minibatch may
contribute differently toward the model than it did in an earlier
minibatch. Thus, capturing the most up-to-date importance
score information is imperative to make informed caching
decisions.

In the next section, we discuss how we use four novel
techniques to address each of these challenges.

4.2 SHADE Overview
SHADE consists of two main components—the control layer
and the data layer. The control layer provides the data layer
with the list of samples needed for training. For the first itera-
tion, the data layer fetches samples from a remote storage and
populates the cache with the samples that are to be accessed
first. During training, the control layer finds the importance
(loss decomposition + ranking) associated with the samples
and the priority queue (PQ) and ghost cache tracking the im-
portance of samples in the data layer are updated. Based on
the newer importance, a sampler in the control layer prepares
a samples list with associated repetitions information. When
the data layer receives the list of samples, it checks whether
it is beneficial to cache a newer item instead of evicting a
cached prior sample. Let’s suppose the sample being accessed
has higher importance than the min_sample (sample having
lowest importance in the current cache). In this case, the
min_sample is evicted, and the current sample is cached us-
ing our new Adaptive Priority-aware Prediction (APP) cache
policy. This process is repeated throughout the entire DL
training. As SHADE keeps the most important samples in
the distributed cache and repeatedly uses these hard-to-learn
samples for training, it can ensure improved rate of accuracy
and a good cache hit ratio. Figure 6 shows the architecture of
SHADE along with the components and interactions therein.
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Figure 6: SHADE architecture overview. (b) In illustration of how SHADE’s components interact in a single epoch.

4.2.1 Control Layer

The SHADE control layer performs two main functions. (1) It
calculates the importance scores associated with data samples,
and (2) it samples the data for different training processes.
The importance scores are then transferred to the data layer
in real time for making prefetching and caching decisions.

The SHADE control layer features three techniques to find
accurate, fine-grained importance scores for each data sample.
The first technique finds out the importance of samples in
per-sample granularity (i.e., fine-grained). The second tech-
nique uses fine-grained importance and ranks the samples to
make them suitable for priority-based caching. Finally, the
third technique uses rank-based importance to build a list of
important samples with repetitions to be used for training that
will increase the read hit ratio and maintain a good learning
curve.
Loss Decomposition. In default importance sampling, the
forward training loss is calculated for minibatches, and this
forward loss is then assigned as the importance score for all
the samples in the minibatch [61]. As a result, the default
importance sampling method calculates the ability of a mini-
batch to contribute towards improving the overall accuracy of
the model instead of the data samples themselves. However,
as expected, not all the samples of a minibatch contribute
equally to the accuracy improvement of the model. Therefore,
we need the sample-level loss information, i.e., the loss of
individual samples of a minibatch, to calculate the importance
score of each data sample.

To address the first challenge concerning the coarse-grained
importance scores at the minibatch granularity, SHADE uses
both the sample-level and minibatch-level cross entropy loss
information to decompose the coarse-grained importance
scores into per-sample scores. The cross entropy for each
sample denotes the uncertainty with which the model could
predict the class label for a sample. Measuring the uncertainty
helps SHADE to detect the importance of a sample.

Assume a minibatch has S data samples, and T represents
the number of class labels. This constructs an output layer

for the DNN model with a matrix that has a dimension of
S×T . Each row of the matrix encodes the raw likelihood or
logits of a sample for each of the T -class labels. To capture
the contribution of each data sample, SHADE decomposes
the loss function and calculates the loss corresponding to
each sample in the minibatch. SHADE decomposes the loss
function using two steps. In the first step, SHADE calculates
the categorical-cross entropy for each sample in the minibatch.
The categorical-cross entropy for each sample, Esample, is
defined in Eq. 3:

Esample =−
T

∑
i=1

Ti logSi, (3)

where Ti represents the hot-encoded truth label for a given
sample under class i, and Si denotes the softmax probability
for a sample in a minibatch for the class i.

Si is calculated using Eq. 4:

Si =
eri

∑
T
j=1 er j

, (4)

where ri denotes the raw likelihood of a sample for class i,
and the denominator is a normalization term. SHADE uses a
softmax normalization over a standard normalization method
for two reasons. (i) This method can effectively identify small
and large variations in raw logit values and thus assign the
importance scores accordingly. (ii) The raw logit values can
be negative, so taking exponents ensures that we always end
up with a positive value. SHADE uses the per-sample-based
entropy loss for finding and feeding the model with the most
important samples.

The second step of the loss decomposition involves calcu-
lating the minibatch importance necessary for adjusting the
model weights. As softmax is continuously differentiable, it
is possible to calculate the derivative of the cost function with
respect to every weight of a DNN model. SHADE uses all the
per-sample-based entropy losses found from the first stage
(Eq. 3) for calculating a mean entropy loss according to Eq. 5:



Ebatch =
∑

S
k=1 Esamplek

S
(5)

A higher entropy for a sample means that the model gener-
ates multiple predictions for a single sample out of the several
T different possibilities, i.e., the model faces more difficul-
ties in generating a single accurate prediction for that sample.
Correspondingly, a lower entropy for a single sample signifies
that the model can generate a single prediction for it with high
enough accuracy. Thus, a lower entropy value for a sample
means that the sample is not highly important in increasing
the accuracy of the model in later epochs, and a higher entropy
value signifies the opposite. The reason is straightforward:
samples that the model has already learned cannot help much
in increasing the accuracy of the model in later epochs, and
only by learning the harder samples can the DLT job improve
the accuracy. Ideally, an entropy value of zero means that the
difference between the predicted and ground-truth label is an
absolute zero and that the sample is accurately learned. In
practice, however, the entropy cannot reach zero as there are
no useful models that have 100% accuracy.

Our goal is to prioritize samples that have higher entropy
during model training so that the model can learn these hard-
to-learn samples better. Consequently, the loss decomposition
method enables SHADE to capture hard-to-learn samples from
a minibatch without extra transformation of the raw data.
Rank-based Importance Score. Even though the per-sample
entropy score provides a simple tool for quantifying the impor-
tance of different samples, it does not tell how much different
samples contribute to the accuracy of the model when sam-
pled together in a single minibatch. The relative rankings
allow SHADE to prioritize the most important set of samples
from each minibatch and, thus, the entire training dataset. To
identify the relative contribution of a sample in a minibatch,
we derive a log-based ranking method shown in Eq. 6:

ranki = log(
B

∑
k=1,k ̸=i

I(li > lk)+b0) (6)

The rank-based importance score for the ith sample in a mini-
batch with B samples is denoted by ranki. li and lk denote the
entropy loss for the ith and kth sample, respectively. b0 is a
bias term used for fixing the range of ranks in the log scale. I
is an identity function that returns 1 when the condition li > lk
is true, and 0 otherwise. For each k item in a batch B, this
condition helps to place each sample in the proper rank in a
minibatch. A sample having a higher loss gets a higher rank.

Consider the following example. Assume two minibatches,
B1 and B2, contain samples <4, 5, 6> and <7, 8, 9>, respec-
tively. Assume the samples in B1 have entropy scores of <0.3,
0.5, 0.4> and samples in B2 have <0.6, 1.2, 0.8>, respectively.
These entropy values are raw values, which will be prob-
lematic when comparing the sample importance across mini-
batches. For example, a priority-queue-based cache would
rank sample 5 from B1 in the lower half globally when sorting

all samples from both the two minibatches, even though sam-
ple 5 is the most important one in B1. Sorting these samples by
the entropy scores would give us a relative rank with respect
to each of the two minibatches B1 and B2, meaning sample 5
and 8 are the most important in B1 and B2, respectively.

To get the accurate changes in importance score, i.e.,
whether the importance score is increasing, staying un-
changed, or decreasing, SHADE uses the log scale. In this
case, the relative importance scores remain in the same range
and can be used for priority differentiation in a priority queue
data structure. Relative scores are desirable for three reasons.

First, our method guarantees that the per-sample-based im-
portance scores from different minibatches and epochs are in
the same range in order to precisely differentiate their priori-
ties in the cache. Different samples from different minibatches
would share the same rank in our method if they contributed
the same proportion in improving the accuracy of the model
when grouped in their corresponding minibatches. Whereas in
the default importance sampling method, all samples from the
same minibatch are assigned the same importance, resulting
in at most one minibatch that will have the highest importance
score, rmax. This is erroneous as all samples in the same mini-
batch do not contribute equally to improving the accuracy.
When the number of minibatches is more than the minibatch
size, SHADE is guaranteed to capture more important samples
than the default method, and this, in turn, helps in improving
the read hit ratio of the cache. Specifically, if the DLT job is
configured to train on N samples with a minibatch size of B,
where N is significantly larger than B (which is the common
case in DLT), then SHADE can effectively identify (N/B) im-
portant samples in one epoch. In contrast, the default method
can only capture B important samples.

Second, although models are constantly being updated dur-
ing the training, training against harder-to-learn samples may
help mitigate the high volatility of the accuracy rate, therefore
leading to smooth model training.

Third, the relative ranks make it easy to predict the data
importance online: the top x% important data in a minibatch
is guaranteed to be within the set of the top x% of the whole
dataset according to our defined importance score. Based on
this property, SHADE effectively offers an implicit prefetching
mechanism, which will be described in Algorithm 1.
Priority-based Adaptive Data Sampling (PADS). At the
end of an epoch, when SHADE has calculated the (rank-based)
importance of samples, the SHADE sampler sends the data
layer the list of sample indices that should be used for training.

However, instead of naive random shuffling, the SHADE
sampler first prioritizes the samples that contributed the most
to the accuracy of the model by constructing a multinomial
probability distribution of the data samples, as there are many
possible outcomes/selections of the dataset. Based on the
generated distribution, the sampler builds a list of important
samples for shuffling and sharding across different DLT pro-
cesses. SHADE seamlessly combines prefetching and caching:



based on the updated importance scores and the list of sam-
ples provided by the sampler, SHADE data layer prefetches the
most important samples to the distributed in-memory cache.
The sampler provides the data layer with a list of repetitive
samples, which helps the data layer automatically prefetch
important samples in real-time. The design strikes a balance
between the cache efficiency (read hit ratio) and model ac-
curacy. SHADE keeps track of the loss convergence of the
model in real-time to decide the number of repetitive sample
accesses in order to boost the hit rate without sacrificing the
accuracy of the model. To do so, on noticing a steep decline
in the loss convergence curve or a stagnant accuracy curve,
SHADE intentionally shuffles the important samples to avoid
training against a small subset of the most important samples.
This way, the system is able to mitigate aggressive importance
sampling, which minimizes training biases.

SHADE’s PADS policy plays a crucial role in increasing the
hit rate of a limited-sized cache and, in certain cases, can even
outperform offline MIN. Consider the following example.
Assume we have ten samples <1, 2, 3, 4, 5, 6, 7, 8, 9, 10>
during training. The samples have no repetitions, as random
sampling does not consider the importance of the samples.
Assume each training process trains on five samples, and
the cache holds two samples. Assume the sampler provides
samples [1, 3, 5, 6, 8] randomly for training. Then, offline
Belady’s MIN will put any of the two samples that will be
used by the training process. Assume it puts [1, 3] in the cache.
In this case, the hit rate will be only 40% <hits 1, 3>.

In the case for SHADE, PADS would create a samples list
with repetitions based on importance. Assume the samples are
[4, 7, 3, 5, 3, 5, 2, 2, 1, 10] and samples 3, 5, and 2 are the most
important. Then PADS would provide the training process
with the samples <3, 3, 5, 5, 2> from the list of samples so
that <3, 5> can be cached. The hit rate is now 80% <hits 3 3
5 5>. Even if we consider repetitions in the case of Belady’s
MIN, it is bounded by the access pattern of the sample list
provided by the random sampler. For example, if the sampler
provides <4, 5, 5, 1, 10> to the training process, on knowing
the future, Belady’s MIN can, at most, cache 5 (as it is needed
twice) along with another sample. Assume it caches <5, 10>,
so the hit rate will be only 60% <hits 5, 5, 10>.

SHADE’s sampling method is fully decentralized and does
not require a centralized server to coordinate. Decentralized
sampling means that each training process derives the impor-
tance scores of the samples independently based on its own
local model training.

4.2.2 Data Layer

The SHADE data layer provides mechanisms and policies for
cache eviction and prefetching.

A challenge regarding sample caching is that the impor-
tance scores are constantly changing, even within an epoch,
as one data sample can be accessed in multiple minibatches.

In order to address this challenge, we design a new cache
policy called Adaptive Priority-Aware Prediction (APP), a
dynamic policy that updates the importance score of a data
sample as soon as the importance score changes.

SHADE’s data layer consists of two components: an indexer
and a pooled in-memory cache that spans multiple key-value
storage (KVS) servers. The index uses two heap-based pri-
ority queues (PQ and ghost cache) for tracking the samples
along with their associated rank and access frequency for each
training process.

The data layer introduces index numbering for each indi-
vidual data sample. Index numbering enables the control layer
to assign importance score at the sample granularity. Once
the control layer calculates and assigns importance scores for
the data samples, the indexer inserts the data sample index
numbers, but not the actual sample data, into the PQ (priority
queue for the current state of the cache). During data loading,
the cache will use the importance scores provided by the in-
dexer to make informed prefetching and eviction decisions.
The data layer also performs serialization and deserialization
when inserting and fetching image samples to and from the
cache. The APP caching policy is shown in Algorithm 1.

The PQ and the ghost cache are sorted by the importance
scores. PQ keeps track of the metadata state of currently
cached samples in the cache, while the ghost cache tracks all
the metadata state of the samples that have ever been cached
(including those that have been evicted). The ghost cache
entries do not store the actual data samples, but rather store
a mapping between the data sample ID (the sample index)
and the metadata tuple record of <ir, a f >, where ir is the
importance score and a f is the access frequency.

During training, a cached sample might lose its importance
if it is well-learned; that is, it might lose its priority in the
cache and gets evicted. At the same time, another sample that
has been evicted previously might turn out to be important
and therefore gets inserted into the cache. The ghost cache
helps decide whether a previously-evicted sample could be
brought back into the cache.

When the cache is full, and the data sample to be pro-
cessed is a miss, SHADE checks ghost cache for the previous
importance score of the data sample (Algorithm 1 line 12):
if this data sample had been previously evicted out of the
cache, it should be included in the ghost cache. If the most
recent importance score of this data sample is greater than or
equal to that of the cached sample that has the smallest im-
portance score, the currently-cached least-important sample
(min_sample) is evicted from the data cache as well as from
PQ. After the eviction, the data sample that is to be processed
(and was previously evicted) is inserted in the cache (line 18).

In summary, by comparing the current importance scores of
data samples already in the cache and that of the most recent
importance score of the current data sample being processed,
SHADE’s data layer predicts and maximizes the likelihood of
a sample being reused in the cache in the future.



Algorithm 1: Adaptive Priority-aware Prediction (APP) Cache.

1 Input and Initialization:
2 PQ: Priority queue for currently-cached samples, ghost_cache: Priority queue for all previously-trained samples
3 for epoch in total_epochs do
4 for s in sample_dataset do
5 v = score(s) # Calculate importance score based on Eq 3 and Eq 6
6 ghost_cache.set(s,v) # Insert/update in ghost_cache
7 if cache_hit then
8 cache.get(s)
9 else if cache_miss and cache_not_full then

10 cache.insert(s) and PQ.set(s,v)
11 else
12 if cache_miss and ghost_cache.exist(s) then
13 x = ghost_cache.get(s).score # Get the most recent score of data sample
14 min_sample,min_score = PQ.min() # Find the sample with the minimal score in the cache
15 # Check if the sample to be processed is more important than the least important one stored in the cache
16 if x ≥ min_score then
17 cache.evict(PQ.pop(min_sample)) # Evict the least important sample from cache
18 cache.insert(s) and PQ.set(s,v) # Insert this sample into the cache and PQ
19 else
20 read_from_storage(s) # The data is less important than any samples currently cached, skip caching

21 else
22 read_from_storage(s) # Evicting a known sample for an unknown one may not be beneficial, skip caching

5 Implementation

SHADE is implemented in PyTorch 1.7. PyTorch has three
main components: Dataset, Sampler, and DataLoader.
Dataset class provides the image dataset access points and ex-
poses a __get_item__ method that fetches a sample along
with its target label for a given index. Sampler provides
subsets of samples of the dataset to the training processes
in random permutations. DataLoader uses the information
provided by the sampler to load the samples in minibatches
with the help of worker processes. In SHADE, we implement
a new class by inheriting the PyTorch Dataset class. The
ShadeDataset class has functionalities to combine the sam-
ples and their corresponding class labels so that Dataloader
can fetch data samples easily from the remote storage.

We extend the DistributedSampler class to prepare the
ShadeSampler class that has the main logic of the SHADE’s
PADS policy. It has APIs for communicating with the training
processes to receive the calculated per-sample entropy value
for each minibatch. At the end of each epoch, ShadeSampler
forwards the important samples to the training processes.

We introduce the logic for the data layer by overriding
the __get_item__ and __len__ method in the ShadeDataset
class. The __len__ method returns the total length of the
ShadeDataset, and the __get_item__ method exposes the in-
dices associated with the data samples that enables the client
layer to find importance in per-sample granularity. In addi-

tion, the __get_item__ method is connected to the in-memory
pooled cache to make decisions on caching and eviction based
on the heap-based PQs of the data layer using the APP cache
policy. For the in-memory pooled cache, we use Redis [7].

We have implemented an analysis framework atop the setup
to facilitate experimentation and statistics collection. The
framework takes as input the configurations of the experi-
ment, which include paths of the training dataset, master’s
address:port, number of training nodes, number of GPU de-
vices, number of epochs to run the test, the batch size, and the
DNN model to be trained. The framework then sets up the
environment accordingly. It collects GPU-related statistics
using nvidia-smi [66] and I/O-related statistics using sar [73].
SHADE’s implementation is system agnostic – DL practition-
ers do not need to write new code to use SHADE in their sys-
tems. SHADE does not use any extra system-level resources
compared to a normal DL training with local/global caching.

6 Evaluation

6.1 Experimental Setup
Our study covers distributed training with multiple GPUs and
a remote storage deployed on Chameleon Cloud [51]. Several
recent works [26, 27, 52] have used Chameleon Cloud for
conducting high-performance experiments, making it a repre-



sentative testing platform. Our method is compared against
baseline distributed training in PyTorch—one of the most
popular frameworks for deep learning [68]. Although caching
policies are not publicly available in PyTorch, we have built an
LRU caching policy on top of PyTorch to ensure a thorough
evaluation of our proposed storage caching policy. In addi-
tion, we have evaluated SHADE against importance sampling
with six different caching policies to perform a robust abla-
tion study. For our analysis, an HDD-based NFS Server [63]
is used as remote storage. For training, we have used eight
NVIDIA P100 GPUs (PCIe with 16 GB memory) spread
across four nodes. All the GPU nodes and storage nodes are
connected via a 10 Gbps interconnect.

Our experiments primarily use the ImageNet-1K
dataset [32], which contains ∼1.2 million images with a total
size of 138 GB spanning 1,000 object classes. We also use
CIFAR-10 [54]. We conduct our study on four representative
computer vision (CV) distributed DL models, namely,
Alexnet [55], ResNet-18, ResNet-50 [38], and VggNet [76].
The setup we use to evaluate our system is representative of
CV distributed DL training, which has been used to evaluate
prior research works [20, 56, 69, 84]. In the following, the
reported percentages for cache size indicate the portion of the
dataset that had been cached.

6.2 Cache Hit Ratio
In this set of experiments, we evaluate the performance of
our APP caching policy against several other policies. This
will help explain the extent to which SHADE is able to make
better utilization of the limited cache space. The baseline

uses PyTorch’s default random sampling and LRU caching
policy for eviction. We also implement and evaluate the offline
Belady’s MIN policy. In addition, we evaluate six SHADE
policy variants based on importance sampling:
1. Priority-based LFU policy (sh_pqlfu), which evicts the

samples with the least importance score based on a hybrid
priority that combines the batch-forward loss (i.e., coarse-
grained score) and sample access frequency. If the forward
loss is the same, then eviction decision is made based on
the access frequency of samples.

2. Priority-based policy (sh_pq), which uses the batch-based,
goarse-grained forward loss as the importance score.

3. LRU (sh_lru), which uses the coarse-grained forward loss
but evicts samples based on the recency of the items and
not the importance scores.

4. LFU (sh_lfu), which uses the coarse-grained forward loss
but evicts the least-frequently-used sample.

5. Random (sh_rand), which performs random evictions.
6. APP (sh_app), which makes eviction decisions using our

APP policy but does not use loss decomposition, rank-
based importance score, and PADS sampling.

Figure 7 shows the the average read hit ratios when training
the three DL models (Alexnet, ResNet-50, VggNet) over the
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Figure 7: Comparison of the read hit ratio of various caching
policies and cache sizes. The sh_ prefix denotes a baseline ver-
sion of SHADE that uses the coarse-grained importance. SHADE
denotes our contribution, SHADE, with all techniques enabled.
WSS denotes working set size.

CIFAR-10 dataset under the studied policies with different
cache sizes.

We observe that the margin by which SHADE performs
better than policy 1–6 increases as the cache size becomes
smaller. When only 10% of the WSS is cached, SHADE,
with all techniques incorporated, shows a 4.5× higher read
hit rate than the baseline LRU. SHADE without the impor-
tance derivation techniques (sh_app) can achieve 2.67× and
SHADE without the APP cache policy (all the SHADE sh_

baselines except sh_app) can achieve around 1.94× higher
hit rates than the baseline. The reason for the improved hit
rate is that our techniques are able to predict which samples
the training processes would need in the future for better ac-
curacy, and hence it approaches the hit rates of the optimal
MIN and even outperforms MIN in some cases (WSS 50%
and 75%). This is because MIN’s knowledge about samples’
future access pattern relies on the sampler. However, SHADE
manipulates the sampler to create the desired future sample
access pattern, which will benefit the DLT job the most in
terms of both training duration and accuracy. This sample
access pattern comprising multiple hard-to-learn samples en-
ables precise I/O prediction and maximizes the likelihood
of a sample being reused in the cache in the future. By en-
suring a higher hit rate with limited available cache space,
SHADE holds effectively more data in the limited cache space,
therefore achieving higher DLT efficiency.

6.3 Accuracy vs. Time
In our next tests, we evaluate how model accuracy changes
over time for SHADE when compared to the baseline at dif-
ferent WSS. This shows how quickly SHADE is able to train
a model and increase the accuracy using a very small cache
even when the baseline has the advantage of using more cache
space than SHADE.

Figure 8 shows that SHADE has a better accuracy improve-
ment rate compared to baseline policy. For example, SHADE
can achieve up to 3× faster accuracy convergence compared
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Figure 8: Accuracy improvement rate of SHADE against
baseline LRU when different portions of the entire dataset is
cached (denoted by the percentages).

to baseline storing 10% of the dataset in the cache when being
trained on the Alexnet model. Fine-grained relative impor-
tance of samples helps SHADE detect the most important, i.e.,
hard-to-learn samples, train more on them and thus improve
the accuracy quickly to reach convergence. Again when be-
ing trained on the ResNet-50 model, SHADE continuously
maintains a better accuracy improvement rate compared to
baseline at similar WSS. SHADE can reach accuracy conver-
gence 3.3× faster compared to baseline at 75% WSS. The
accuracy improvement rate of the baseline with a larger cache
is not always better in Figure 8(a) because the baseline uses
random sampling. Random sampling places equal emphasis
on all of the samples and hence cannot improve the accu-
racy quickly by training more on the hard-to-learn samples.
The improvement in accuracy vs. time curve for the baseline
comes only from caching more data. Hence, our results show
that even if a larger portion of the dataset is cached, naively
caching data items without proper techniques to exploit data
locality can not guarantee improved performance.

6.4 Throughput
In our next experiment, we evaluate the throughput of SHADE,
which help demonstrate the superiority of SHADE in process-
ing data while storing a limited portion of the dataset. Fig-
ure 9(a) shows that SHADE while caching just 10% of the
dataset has around 2.3× better throughput compared to base-
line policy caching 10% of the dataset. The baseline matches
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Figure 9: Throughput of SHADE against baseline LRU when
different portions of the entire dataset is cached (denoted by
the percentages).

the throughput performance of SHADE only when the base-
line is caching 7.5× more data compared to SHADE. In the
experiment with ResNet-50, shown in Figure 9(b), we observe
that SHADE at 75% WSS has 2.7× higher throughput com-
pared to baseline at similar WSS. Even at lower WSS, SHADE
can achieve higher throughput compared to baseline at higher
WSS. For example, SHADE at 50% WSS has a 1.14× higher
throughput than baseline at 75% WSS. The improvement in
the ability to process more images is due to the ability of
SHADE to exploit data locality with APP cache policy. Al-
though baseline at 75% WSS has a slightly higher throughput
compared to SHADE at 25% WSS, it is unable to get a better
accuracy improvement rate seen in Figure 8(b). This is be-
cause SHADE can exploit data locality and has techniques to
train on important samples which ensures a better accuracy
improvement rate.

6.5 Minibatch Load Time

In our next test, we evaluate the performance gain observed
in minibatch load time. Consistency in minibatch load time
is important so that all the training processes can remain
coordinated. It also shows the effectiveness that a caching
policy has in exploiting data locality. Figure 10 shows the
average minibatch load time of the GPUs during the course of
training with the vertical lines showing the standard deviation
of the load time within a single epoch.
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Figure 10: GPUs’ minibatch load time when training ResNet-
50. Percentages denote the amount of cached dataset.

As we can see in the figure, SHADE can achieve a lower
mean load time compared to baseline at similar and higher
WSS. The baseline at 50% and 75% WSS has 2.5× and 1.7×
higher minibatch load time compared to SHADE at 50% WSS.
Moreover, SHADE can maintain a small standard deviation in
minibatch load time. Ideally, we would expect the standard
deviation in minibatch load times to be low if larger portions
of the dataset get cached because of using a higher portion of
the fast RAM storage. However, it is not the case for baseline,
even if it caches larger portions of the dataset in the cache.
Average minibatch load time is highly variant for baseline
caching 50% and 75% of the dataset. The baseline at 75%
WSS has a 3.9× higher standard deviation in minibatch load
time compared to SHADE at 75%.

6.6 End-to-End System Comparison

In our last set of experiments, we compare the performance of
SHADE against NoPFS [34], a state-of-the-art storage system
for improving the I/Os of DLT workloads. NoPFS exploits the
seeds that generate the random access pattern when perform-
ing SGD-based DLT to predict when and where a training
sample will be accessed. Similar to our baseline, NoPFS uses
random sampling of indices. The difference lies in that NoPFS
does not consider importance and uses Clairvoyance (i.e.,
seeds that generate random access patterns) to approximate
“future distances” of Belady’s MIN [18]. SHADE considers
fine-grained importance of samples and uses PADS policy to
prioritize samples for training.

For fair comparison, we keep the experimental setup and
training parameters the same for both SHADE and NoPFS
while training on the CIFAR-10 dataset. Figure 11 shows
that NoPFS incurs a 4.5× and 2.4× increase in training time
to reach accuracy convergence compared to SHADE at 75%
and 50% WSS, respectively. At the same time, SHADE has
2.2× and 1.6× better throughput compared to NoPFS when
working at 75% and 50% WSS, respectively. SHADE can still
attain accuracy convergence faster even at 10% WSS. SHADE
performs better than NoPFS as it adopts a prefetching system
that aims to approximate Belady’s MIN; it is bounded by the
sample access pattern provided by the sampling policy and
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Figure 11: Comparison of SHADE and NoPFS [34]. Percent-
age denotes the percentage of cached dataset.
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Figure 12: Comparison of the read hit ratio of different
caching policies at 20% WSS of CIFAR-10.

hence prioritizes all samples equally. As a result, it takes more
time to reach accuracy convergence compared to SHADE,
which trains more on hard-to-learn samples to increase the
accuracy improvement rate faster.

We further compare the cache hit ratios of SHADE with
state-of-the-art DLT caching policies. we configure a small
cache space of 20% of the WSS over the CIFAR-10 dataset
using the ResNet-18 model against emulated caching poli-
cies including CoorDL [65] and Quiver [56]. To understand
the impact of these techniques in importance-aware training,
we use a loss-based importance sampling technique [50] in-
spired by Mercury [84]. For emulating CoorDL and Quiver,
we create our own implementations of the core techniques
of CoorDL and Quiver, which we name as Emul_Coor and
Emul_Quiv, respectively. Both Emul_Coor and Emul_Quiv use a
KVS as a cache similar to SHADE. Emul_Coor ensures that no
items are ever evicted from the cache once these are inserted
in the cache. In the case of Emul_Quiv, we implement the sub-
stitutability technique, which replaces a missed sample with
a sample already in the cache to avoid memory thrashing.

Figure 12 shows that both Emul_Coor and Emul_Quiv can
only extend their utilization up to the size of the cache



(∼ 20%) because these caching policies are not importance-
aware and therefore cannot exploit the data locality of the im-
portant samples perfectly in importance-aware training. Both
of these policies populate the cache using random samples
and hence are unable to get a good hit rate by exploiting the
repetitions among samples that occur throughout training. On
the other hand, as SHADE can manipulate the sampling pro-
cess (PADS policy) and keep repeated samples in the cache,
it can achieve a higher hit ratio (72.5%) and thus outperforms
both Emul_Quiv and Emul_Coor by 3.6×.

7 Related Work

Several recent works have explored the use of importance
sampling for optimizing the system efficiency of DL work-
loads [23, 84]. iCACHE [23] is an importance-sampling-
informed DLT cache. Although this approach uses a form
of fine-grained importance similar to SHADE, it does not have
a rank-based relative score scheme and SHADE’s PADS sam-
pling approach, due to which it may suffer from a lower cache
hit ratio than SHADE. Moreover, in case of a cache miss,
iCACHE uses substitutability, which may impact the training
accuracy convergence.

Mercury [84] improves DL training efficiency by exploiting
the important samples. Mercury is not an I/O cache, and
therefore, unlike SHADE, it does not handle data replacement
and eviction.

CoorDL [65] analyzes the data retrieval process in PyTorch
and proposes a MinIO cache, which populates the cache with
a random set of data items from the first epoch, and keeps
these items in the cache during the training with no item being
ever evicted. However, as shown in Figure 12, simply caching
random samples does not provide the expected performance
gain.

A body of work is focused on optimizing the I/O compo-
nents of DL applications. NoPFS [20] adopts a prefetching ap-
proach that uses hardware level configurations to take caching
decisions based on a sample access pattern obtained from try-
ing to approximate Belady’s MIN. However, in common on-
line training like hyperparameter tuning experiments [60] with
different random seeds, such sample access patterns change
constantly and hence are not readily available. We address
this constant change in sample access pattern through our
dynamic cache management policy without depending on
hardware configurations for boosting our performance.

Hoard [69], Quiver [56], and FanStore [86] explore the idea
of adding a global caching layer to the GPU cluster for improv-
ing the training performance of DL workloads. DeepIO [88]
proposes an entropy-aware mechanism for determining next
minibatches but it does not offer any cache eviction policies
and suffers from lack of dataset randomization. DIESEL [80]
is a comprehensive storage solution that supports key-value-
based metadata service, task-level caching, and chunk-based
shuffling. However, these works do not focus on how to enable

fundamental data locality for DLT jobs. SHADE, on the other
hand, exploits importance sampling to enable data locality for
DLT jobs.

8 Conclusion
The I/O pipeline is a major bottleneck in distributed DLT
when data is read from a remote storage. To address this
bottleneck, ad hoc solutions such as using faster local stor-
age devices (e.g., SSDs) had been employed. However, those
ad hoc solutions cannot fundamentally address the I/O effi-
ciency of DLT workloads. Although caching is possible for
DLT, naively caching redundant samples does not provide
any benefits. SHADE realizes a DLT-aware caching policy,
which takes advantage of the fine-grained importance scores
of data samples in order to enable a high level of data locality,
and therefore, fundamental cacheability for DLT jobs. Our
evaluation demonstrates that SHADE improves the read hit
ratio of a small memory cache (of only 10% of the WSS of
the dataset) by up to 4.5× compared to traditional, non-DLT-
aware caching policies, thus significantly improving the DLT
performance.
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