
On Supporting Disconnected Operation in Grid Computing

Pavan Konanki and Ali R. Butt

Virginia Tech.

Blacksburg, VA 24061

{kpavan, butta}@cs.vt.edu

Abstract

In recent years, advancements in technology
have made the use of mobile computers ubiq-
uitous. The increasing capabilities of mobile
devices forebode their playing a more involved
role in computational grid environments. For
example, they could assume the role of a tem-
porary grid submission resource from which an
application and data can be launched on the
grid, and to which result-data is retrieved; or
in the case where grid applications need re-
mote data, they could act as a data source such
as a sensor node. A major challenge in these
emerging scenarios is that mobile devices are
networked through intermittent wireless con-
nections, and current grid environments can-
not interact with resources that may disap-
pear during job runs without costly application
restarts/recovery, or worse may silently pro-
duce wrong results. In this paper, we address
this issue and develop a transparent system
that allows mobile devices to operate through
network disconnections especially for remotely
managing grid applications and data.

1 Introduction

Mobile computers and devices are becom-
ing ubiquitous, and are used for tasks rang-
ing from personal communication and enter-
tainment to remotely managing business trans-

actions. The increasing processing power of
mobile computers makes them candidates for
acting as computational Grid [7] resources. In-
stead of simply checking remote application
status through web-based interfaces, the mo-
bile computers of today can be used as ac-
tive grid components: submitting and receiv-
ing application data, and providing critical data
streams (e.g., sensor data, for consumption by
other applications). A major hurdle in support-
ing such interactivity is the intermittent nature
of wireless connections used by the mobile de-
vices, as a disconnection may cause any ap-
plication that depends on remote data to be
suspended or to fail. Moreover, we cannot
assume automatic continuation of work after
connectivity is restored. Such automation re-
quires special consideration and redesign of
many grid components.

What is needed is an architecture that al-
lows applications to continue or at least fail
gracefully in the face of disconnections. Such
a system should: (i) transparently handle con-
nectivity failures; (ii) support continued oper-
ation by enhancing the availability of required
data; (iii) provide a flexible interface that is ap-
plicable to a wide range of scenarios; (iv) uti-
lize mobile resources judiciously; (v) support
efficient synchronization of data upon recon-
nection; and (vi) keep manual intervention to
a minimum. To this end, we propose a Dis-

1

connected Operation System (DCOS) that al-
lows mobile resources to be integrated with the
grid 1.

DCOS achieves disconnected operation
through an innovative design that uses low
overheadclient modulesrunning on the inter-
mittently connected mobile devices, andprox-
ies that are assumed to be always connected to
the grid. The devices interact with the grid
only through their associated proxies, which
enables the devices to transparently operate
over intermittent connections.

Disconnected operation has been supported
by systems such as Coda [9] and Thor [6]. The
novelty of our approach lies in its focus on grid
applications that differ from traditional appli-
cations in that they are less interactive, long
running, expensive to restart, and possibly data
intensive. The existing systems are either im-
practical (simply fail) or extremely inefficient
(use application restart) in such scenarios. To
support disconnected operation for grid appli-
cations, we focus on: (i) removing centralized
bottlenecks via the use of distributed proxies to
enable the system to scale to a large number of
nodes; (ii) minimizing overhead of bookkeep-
ing operations, e.g., file-modification tracking;
and (iii) keeping the framework independent of
the file system and not necessitating kernel and
middleware modifications.

2 System Design

We now present the design of DCOS. Each
mobile device that wants to utilize DCOS ser-
vices runs an instance of a DCOS client com-
ponent. Each client component has an associ-
ated proxy component that runs on an always-
connected,wired, grid node. The mobile de-
vice interacts with the grid only through the
proxy. The client and proxy work together to
make the network disconnections transparent

1Although we target grid environments in this work,
the flexible design of DCOS allows it use in other do-
mains.

to the applications on each end.
The DCOS operates in three phases. In the

connected phase, the client prefetches data to
the device in preparation for a possible dis-
connection. If the device looses connection,
DCOS switches to the disconnected phase. In
this phase, I/O’s (“reads” and “writes”) on
the device are serviced from the cached data.
Any data request from the grid for the data
on the device is paused (delayed) at the proxy,
which in essence prevents the grid request from
failing. When the client regains connectivity,
DCOS moves into the synchronization phase,
where any modified data on the mobile device
is synchronized with the grid, and any paused
data requests from the grid are allowed to con-
tinue with the only noticeable effect of a delay.

Data prefetching and caching A key
function of DCOS is to prefetch and cache data
on the device so as to support continued op-
eration in the face of a disconnection. While
prefetching entire files simplifies the synchro-
nization phase, the size of files vary from a few
KBs to GBs and not all files are accessed in
their entirety, making such an approach inef-
ficient. Therefore, we chose to prefetch and
cache files at the granularity of blocks.

The selection of an appropriate prefetching
algorithm is crucial to the working of DCOS.
We observed that the adaptive algorithm used
by the Linux kernel works well for a variety
of applications [4]. Therefore, we chose to
use a similar algorithm in DCOS. However, if
needed, the design of DCOS allows for easily
plugging-in a different prefetching scheme.

Continued operation on cached data during
disconnection entails synchronization upon re-
connection. For this purpose, DCOS must
track modifications to the cached data. Fig-
ure 1 shows an overview of the data structures
used for tracking. The persistentFile Table
stores information about the files accessed on
the client. It has an entry for each file modified
during a disconnection, with tracking flags in-

2

0 01F1

F3

F2

1

1

0

0

0

1

File Table

Creat ver#Trunc

0 12

0 3

0 152

Filename Dirty Delete

F2

F1handle

handle

20 1

120 1

Open Table

Writable File Table Ptr.ReadableOffsetFile Descriptor

0

1

Figure 1. Data structures
used in DCOS.

Return failure

Return failure

Open Table
entry in the

corresponding
Is there a

Is the data in the cache

fread()

No

No

Yes

Yes

No

underlying file system
as possible from the

data (< requested count)
Read and return as much

Yes

to support reading
Was the file opened

Return data from
the cache

Figure 2. The sequence of
events that follow anfread
call.

Return error
No

Return error
No

fwrite()

Yes

No
Return amount
of data written

Yes

Yes

No
Yes

entry in the Open Table
Is there a corresponding

Was the file opened
to support writing

Is there more data to write

Write the next block of data

Is the cache full

Figure 3. The sequence
of events that follow an
fwrite call.

dicating write, delete, truncate, and create op-
erations. TheOpen Tablestores information
about the currently open files on the node. Fig-
ure 2 and 3 illustrate the uses of these data
structures in handling two common operations,
fread andfwrite. Note that DCOS does
not require the exact time of a disconnection to
be known for proper operation. This is an im-
portant design feature, especially in the pres-
ence of client-side caches that make instan-
taneous detection of disconnections (without
kernel modifications) impossible.

Detecting conflicts It is possible that dif-
ferent clients end up writing to overlapping
portions of a file while disconnected, leading to
conflicts upon synchronization. DCOS main-
tains a per-file version number that indicates
the current version of the file at the server. This
number is incremented on each write at the
server. The client fetches the version number
along with the prefetched blocks, and stores
this information in theFile Table. In the syn-
chronization process, the version number on
the client is compared with that on the server
to check if any other node has modified the
file. Currently, all conflicts are flagged for
manual inspection. However, we are working
on applying automatic conflict resolution tech-
niques [15, 1] to our system.

We adapt thersync [14] algorithm for data
synchronization in DCOS, which provides ad-
vantages such as optimal network bandwidth

(REQ_SYNC, x, ver# delete trunc create dirty filename)

(REQ_BLK_VEC, x, \0)

(ACK_BLK_VEC, x, block vector)

(SYNC_CONT, x, filename)

[rsync tmp_file source:filename]

(SYNC_FIN, x, \0)

(SYNC_FIN, x, \0)

Proxy NodeClient

Figure 4. Messages exchanged during syn-
chronization.

utilization when synchronizing files that differ
only slightly. Figure 4 shows the key messages
exchanged during the synchronization process.

3 Results

We have implemented DCOS using 7600
lines of C code that runs on Linux Kernel 2.6.
The client component is implemented as an in-
terposed library that intercepts the application
I/O calls to the standard C Library [11], and
does not require kernel modifications. Figure
5 shows the architecture of DCOS.

In order to detect conflicting updates to a
file, the proxy registers alistener with the
server. Thelistenersignals the proxy if the file
is changed. The proxy then uses this informa-
tion to send a “cache-invalidate” message to
its client if the client is connected, or buffers
the message for delayed dispatch if the client
is currently disconnected. Note that thelis-
teneris file system dependent, and our current
implementation only supports the widely used

3

IO Calls Other functions
Applications

DCOS glibc

System Call Wrappers
open(), close(), read(), write()

Buffer and Page Cache

fread(), fwrite()
fopen(), fclose()

Other functions
fread(), fwrite()
fopen(), fclose()

Kernel

Figure 5. DCOS interactions with applica-
tions and the standard library.

Network File System [5]2.

Setup The experiments were conducted
using a 32-node Condor [10] pool set up on
departmental laboratory machines to emulate a
grid environment. One machine served as the
client that submits jobs to the pool, while an-
other assumed the role of the client’s proxy.
The rest of the machines served as compute
nodes in the pool. The focus of our experi-
ments is to measure the amount of data trans-
ferred, which is directly proportional to the
synchronization time.

Performance analysis To test the effi-
ciency of the system for various scenarios, we
prefetched and cached varying amounts of a
data ranging from 512 KB to 2 GB. The cache
was then subjected to a workload similar to the
SPC-1 workload [8].

We calculated speedup as the total number
of cached bytes of a file divided by the num-
ber of bytes transferred to synchronize the file.
Figure 6 shows the speedup achieved for a rep-
resentative sample of four different sizes of
cached data as the amount of dirty data is var-
ied. The results show that the data overhead is
close to the lower bound for the studied cases.

Tracking overhead The overhead of I/O
operations tracking is only 284 bytes per open
file, as it is done through the File Table on
the client and the version numbers on the

2The file-system-dependent code is a small fraction
of the overall code and support for other file systems can
easily be added.

data source. This approach is extremely light-
weight and obviates the need to perform expen-
sive log optimizations such as identifying and
removing operations that cancel out each other.

Response to disconnectionsIn this exper-
iment, we set up a simulation environment of
1000 mobile clients, and distributed files from
a file system trace (collected from our depart-
mental machines) to the simulated clients. The
sizes of the client-side caches were based on
normal distribution with a mean of 512 MB.
Upon disconnection, the clients dirtied data
based on a Zipf [2] distribution.

Next, to simulate availability of various
clients, we used the availability trace of 51663
machines in a large corporation over a consec-
utive 35-day (840-hour) period [3]. The trace
contains the status of machines (up or failed)
recorded hourly. We randomly selected 1000
nodes from the trace and used that information
to simulate client disconnection and reconnec-
tion. We treated each hour as a simulation
time unit, and for each time unit determined the
number of clients that were reconnected and
the amount of data that was transferred for syn-
chronization. The results in Figure 7 show that
the data transferred during synchronization is
on average 4.85% of the total data stored on
each client. This number implies that the cost
of synchronization is also small.

In the next set of experiments, we evaluated
the effectiveness of using an adaptive prefetch-
ing scheme for our DCOS cache. We used
the same simulation setup as the one used be-
fore, but now loaded the clients, first, with a
sequential applicationcscope[12] that access
the files in looping references, and then with
a random applicationtpc-h [13] that randomly
accesses the files. For both cases, we recorded
the number of misses for which our prefetcher
failed to prefetch the data while connected, and
hence resulted in the applications on the client
to stop. Figure 8 shows the result. As expected,
for cscopethe prefetcher is able to prefetch the

4

0

50

100

150

200

250

300

350

100 MB50 MB10 MB1 MB512 KB256 KB128 KB

S
pe

ed
up

Size of dirty blocks

 1 GB
500 MB
 10 MB
512 KB

Figure 6. Speedups achieved
during synchronization.

0 %

20 %

40 %

60 %

80 %

100 %

 0 100 200 300 400 500 600 700 800

D
at

a
tr

an
sf

er
ed

Time

Figure 7. Amount of data
transferred as clients failed
and reconnected.

0 %

20 %

40 %

60 %

80 %

100 %

 0 100 200 300 400 500 600 700 800

U
na

vi
la

bl
e

da
ta

Time

tpc-h
cscope

Figure 8. Amount of unavail-
able data under test work-
loads during disconnections.

data and provide better performance. However,
for tpc-hthe data accessed is fairly random and
our adaptive prefetcher did not perform well
resulting in a larger percentage of application
data being unavailable. One possible solution
is to design better prefetching schemes for ran-
dom applications. Designing such schemes is
orthogonal and complimentary to the proposed
system, but is out of the scope of this paper.

4 Conclusion
We have presented the design and imple-

mentation of a system for supporting discon-
nected operation in grid environments, which
is independent of the underlying file system to
a large extent and obviates the need for kernel
modifications. By using a proxy for each mo-
bile device we are able to provide a transpar-
ent library that interposes itself between the ap-
plications and the kernel and manages discon-
nections through a combination of prefetching,
caching, and synchronization.

References
[1] Concurrent Versions System.http://www.

nongnu.org/cvs/

[2] L. A. Adamic and B. A. Huberman. Zipf’s law and
the Internet.Glottometrics, 3(1):143–150, 2002.

[3] W. J. Bolosky, J. R. Douceur, D. Ely, and
M. Theimer. Feasibility of a serverless distributed
system deployed on an existing set of desktop PCs.
In Proc. SIGMETRICS, June 2000.

[4] A. R. Butt, C. Gniady, and Y. C. Hu. The per-
formance impact of kernel prefetching on buffer

cache replacement algorithms. InProc. SIGMET-
RICS, June 2005.

[5] B. Callaghan. NFS Illustrated. Addison Wesley
Longman, Inc., 2000.

[6] S. Chang and D. Curtis. An approach to discon-
nected operation in an object-oriented database. In
Proc. MDM, 2002.

[7] I. Foster (Ed.) and C. Kesselman (Ed.).The GRID:
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, 1999.

[8] B. S. Gill and D. S. Modha. Wow: Wise ordering
for writes - combining spatial and temporal local-
ity in non-volatile caches. InProc. USENIX FAST,
Dec. 2005.

[9] J. J. Kistler and M. Satyanarayanan. Disconnected
operation in the coda file system.ACM Transac-
tions on Computer Systems (TOCS), 10(1):3–25,
1992.

[10] M. J. M. J. Litzkow, M. Livny, and M. W. Mutka.
Condor - A hunter of idle workstations. InProc.
ICDCS, June 1988.

[11] P. J. Plauger.The standard C library. Prentice-
Hall, Inc., 1992.

[12] J. Steffen. Interactive examination of a c program
with cscope. InProc. USENIX Winter Technical
Conference, Jan. 1985.

[13] Transaction Processing Council.http://www.
tpc.org

[14] A. Tridgell. Efficient Algorithms for Sorting and
Synchronization. PhD thesis, The Australian Na-
tional University, Canberra, Australia. Feb. 1999.

[15] A. Yip, B. Chen, and R. Morris. Pastwatch: a
distributed version control system. InProc. 3rd
USENIX NSDI, May 2006.

5

