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Abstract
I/O constitutes a significant portion of most of the application run-
time. Spawning many such applications concurrently on an HPC
system leads to severe I/O contention. Thus, understanding and sub-
sequently reducing I/O contention induced by such multi-tenancy
is critical for the efficient and reliable performance of the HPC
system. In this study, we demonstrate that an application’s per-
formance is influenced by the command line arguments passed to
the job submission. We model an application’s I/O behavior based
on two factors: past I/O behavior within a time window and user-
configured I/O settings via command-line arguments. We conclude
that I/O patterns for well-known HPC applications like E3SM and
LAMMP are predictable, with an average uncertainty below 0.25 (A
probability of 80%) and near zero (A probability of 100%) within a
day. However, I/O pattern variance increases as the study time win-
dow lengthens. Additionally, we show that for 38 users and at least
50 applications constituting approximately 93000 job submissions,
there is a high correlation between a submitted command line and
the past command lines made within 1 to 10 days submitted by the
user. We claim the length of this time window is unique per user.

CCS Concepts
• Information systems→ Distributed storage.
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1 Introduction
High Performance Computing (HPC) is essential for addressing
complex and large-scale computational problems. These extensive
computations generally require interaction with storage systems
to handle substantial volumes of data. However, the interaction
with storage systems often degrades the application throughput
due to the extensive sharing among numerous users who collec-
tively transfer multiple petabytes of data. Another factor for the
increase in the I/O bottleneck is the faster evolution of computation
technologies than the storage systems, resulting into much shorter
time for computation [17, 27, 30, 36]. The notable decrease in I/O
performance is observable even for single tasks repeated within a
specified time frame [26, 40–43]. This issue worsens in large-scale
applications using accelerators such as GPUs, TPUs, and DPUs,
which provide computational speeds much higher than traditional
CPUs [9, 10, 12, 13, 18, 25, 34]. In addition, the most recent tech-
nological advancements of supercomputers, such as Aurora [1] at
Argonne National Laboratory, and most recently Frontier at Oak
Ridge National Laboratory [35], enable the HPC applications to
massively increase their computation and I/O in order to achieve
more parallelism at the order of several millions, or billions of
computations per second. This however leads to a significant I/O
bandwidth contention on the file system. Unfortunately this cannot
be resolved by simply scaling up the I/O resources especially in
a multi-tenant HPC system where the infrastructure is shared by
numerous users. This phenomenon is attributed to the intricate in-
terconnections between computation and I/O nodes, coupled with
the interference arising from concurrent workloads operating on
the allocated resources [22]. To keep up with such an immense
advancement in the computation capability of the HPC workloads,
an extensive study of the I/O characteristics for these workloads is
necessary with the hope that the I/O contention could be reduced
by the insights instilled.

There have been several works characterizing the I/O behav-
ior of HPC applications. Clustering I/O behavior on supercomput-
ers like Mira or ALCF’s Theta, using features extracted from the
Darshan profiling tool, is an effort to characterize the application
I/O pattern [7, 12, 20, 28]. Another method of achieving high I/O
performance is to adjust the configuration of file systems based
on previous runs of the applications [23]. Also, Paul et al. [31]
present findings from the I/O behavior, exhibited by the machine
learning jobs across a wide spectrum of science domains. They
note only a few science domains on Summit leverage burst buffers,
and these jobs usually produce a massive number of small reads

181

https://orcid.org/0000-0003-4903-5995
https://orcid.org/0000-0002-3694-5511
https://orcid.org/0000-0002-7270-8847
https://orcid.org/0000-0002-0099-1559
https://orcid.org/0000-0002-0871-7263
https://doi.org/10.1145/3700838.3700865
https://doi.org/10.1145/3700838.3700865
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3700838.3700865&domain=pdf&date_stamp=2025-01-04


ICDCN 2025, January 04–07, 2025, Hyderabad, India Ahmad Hossein Yazdani, Arnab K. Paul, Ahmad Maroof Karimi, Feiyi Wang, and Ali Butt

and writes. Costa et al. [15] take advantage of clustering to detect
the I/O patterns the applications’ job submissions on Blue Waters,
which are made publicly available by NCSA. Bang et al. [8] also
employ clustering for in-depth analysis of the applications’ I/O
behavior on Cori supercomputers in an unsupervised manner. Bez
et al. [11] also characterize the I/O received by different layers
of Summit and Cori, which are two multi-layer supercomputers.
They provide more evidence of the imbalanced usage of different
sublayers of these two systems, besides hinting at the increase in
I/O done through STDIO. Nevertheless, it performs slower than
some renowned I/O interfaces like POSIX and MPI-IO. Furthermore,
Patel et al. [29] demonstrate how file access patterns are reused
among submissions of the same application. They also show the
patterns that are usually absorbed by the files that each application
touches. It also demonstrates variability in time from one run to
another. Besides, Wyatt et al. [39] extracts the key features of the
image representations for the job scripts. Using the aforementioned
features, they can predict the I/O runtime of the future submissions.
However, the prediction accuracy fluctuates between 60% and 90%.
This large fluctuation in accuracy can be attributed to variation in
applications’ I/O performance across different runs.

The primary objective of this paper is to model the I/O behavior
of applications using historical user configuration data over a speci-
fied period, a topic not thoroughly explored in prior research. Users
significantly influence the I/O patterns of applications. For instance,
one user may allocate 10 nodes, while another might over-provision
with 100 nodes, affecting both the application’s I/O behavior and
performance. Furthermore, theremay be a link between consecutive
submissions, as users often base the configuration of subsequent
jobs on the outputs of previous ones, impacting I/O performance.

In this paper, we examine the I/O behavior of HPC applications
and pinpoint user behavior as a source of variance across different
runs. Our analysis reveals that the I/O behavior of these applica-
tions is influenced by user-specified parameters. We initially create
a dataset from Darshan logs for the full year of 2020 from the lead-
ership scale Summit supercomputer, which is among the fastest
supercomputers in the world [37]. From the raw Darshan data, we
create a fine-grained job-level I/O profile for every job successfully
executed on the HPC system.

We cluster job executions by user and application based on their
I/O behavior. These clusters represent I/O patterns for the jobs. We
quantitatively link the I/O patterns of application instances to com-
mands submitted within a week. Our study indicates that the I/O
pattern of an application, even with the same execution command,
depends on the submission timeframe and past submissions within
the last 1 to 10 days. In addition, our study reveals that these tempo-
ral relationships are unique to users. This implies the past activities
of the users and the way they configure the application influences
the execution of an application. We confirm that this observation
holds for most users running well-known HPC applications like
LAMMPS [24] and E3SM [16].

In summary, we make the following contributions.

(1) We make an I/O profile for each job submission of a
user , by extracting and engineering the Darshan features
the corresponding job produces.
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Figure 1: The interaction between the I/O libraries and Darshan
logs comprising each library I/O information.

(2) We group the job submissions on Summit, in a user and
application-based manner , which helps us discover the
latent patterns of any type in the underlying job submissions,
and the important features shaping the I/O behavior of that
application.

(3) We show the correlation between the application’s I/O
pattern and the history of the activities of the user when
submitting the same application. across 38 users submit-
ting 50 applications, which constitute 93000 jobs. We use the
conventional statistical methodologies to attribute the I/O
patterns of a job execution to 1) The command line options
provided by the executor (user), and 2) The history of the
submitted command line options for the same executor and
application within a certain time window.We argue this time-
window is unique to the executor of the application, implying
each user has to be studied differently.

(4) Henceforth,we conclude the application’s behavior is not
solely determined by the application or the surrounding
runtime, but the users’ historical attitude towards configur-
ing these applications.

2 Background
This section provides a brief overview of Darshan I/O characteriza-
tion tool, which helps generate the logs used in our work. We also
briefly describe Summit- the HPC system, whose logs and user I/O
activities are analyzed.

2.1 Darshan - I/O Characterization Tool
Darshan [12] is a lightweight profiling tool which is capable of
capturing a variety of I/O-related measures from the I/O stack
starting from the time the run begins until the application is shut
down. Figure 1 illustrates the software I/O stack and Darshan. It
records job information such as job ID, executable, start, and end
times. For each I/O interface (e.g. MPI-IO, POSIX, STDIO), library-
specific data is logged, including the frequency and average time of
operations (open, read, write, close). Key features include the total
I/O for each interface, the total time, and the number of processes.
Each Darshan log captures about thirty job-related features and
over 200 features for each access to the file [2].
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Figure 2: Architecture of Parallel File System in Summit, compris-
ing of an in-system storage layer (Or Burst-Buffer), and Alpine, a
250 PB IBM Spectrum Scale (GPFS). In Summit, this layer is called
GPFS.

2.2 Summit
Summit- one of the fastest supercomputers in the world [37], was
manufactured by IBM, and deployed at Oak Ridge National Labo-
ratory (ORNL), whose performance is about 200 PF. Figure 2 de-
picts the architecture of Summit. The supercomputer contains 4068
AC922 compute nodes, each having two IBM POWER9 (P9) proces-
sors and NVIDIA Tesla V100 (Volta) GPUs. Moreover, each node
features 512 GB DDR4 memory, and an NVLink 2.0 bus intercon-
nects each P9 CPU to 3 v100 GPUs. An InfiniBand EDR network
with a fat-tree topology connects the nodes. Each compute node
has an installed 1.6 TB NVMe device, the so-called burst buffer,
providing an aggregate of 7.4 PB raw capacity, with 26.7 TB/s and
9.7 TB/s as the maximum read and write bandwidths, respectively.
In addition, Summit is connected to Alpine, a 250 PB IBM Spectrum
Scale (GPFS) file system. This file system is equipped with 154 GPFS
Network Shared Disk (NSD) servers for maintaining file data in
parallel. Alpine peak bandwidth is estimated to be 2.5 TB/s in ag-
gregate under a large sequential write I / O access pattern. Alpine is
a central-wide file system and can be directly accessed by all other
Oak Ridge National Laboratory (ORNL)’s resources.

3 Related Work
Several prior works have studied profiling the applications’ I/O
patterns at different levels of storage system. This characteriza-
tion identifies the interaction of I/O layers and the parameters
influencing application and system performance. It also reveals op-
portunities to modify applications or enhance system I/O utilities
to improve HPC I/O efficiency. The prior works in this area usually
fall into two categories: 1) Application-level profiling 2) System-level
profiling. The goal of profiling at the application level is to explain
the relationship between the I/O performance of an application
and the high-level I/O statistics collected using I/O characterization
tools such as Darshan. On the other hand, system level profiling is
usually agnostic to applications.

3.1 Application level I/O profiling
Using the information from I/O tracing tools like Darshan, which
provides a fine-grained summary of the I/O activities, the workloads
types can be approximately characterized. There have been several
prior research works on application profiling using Darshan. Bang
et al. [7] take a 4-month real-world trace from the Cori system in
NERSC and select a set of features using a novel feature selection
method. It picks the Darshan features which are correlated the
most with the amount of write throughput. The results show that
there are 3 natural clusters to which all the jobs belong. Pavan et
al. [32] use unsupervised learning to characterize I/O applications
by parsing Darshan logs into a set of I/O phases that have only one
access pattern. It uses four months Darshan logs from Interpid at
Argonne National Laboratory. The work demonstrates that most
of the accesses are through POSIX and small requests, and most of
the patterns access unique files. Ng et al. [28] train a classifier on a
set of applications, which are selected using features in Darshan
logs submitted on Mira from April 2013 to October 2015. The work
tries to predict the write throughput of the Lustre file system.

Other prior works leverage the information provided by tracing
the lower-level API calls, or the runtime environment profilers.
They seek to optimize the I/O, using the knowledge they have from
the history of runs of the same application, or the applications run-
ning with similar properties. Kim et al. [23] adjust the underlying
storage configuration based on previous runs of a similar appli-
cation. There has also been prior work on gathering information
from different libraries like MPI-IO, and POSIX [14] by injecting a
code into the application runtime. In addition, Tang et al. [36] de-
velop a benchmark capable of profiling a job submitted to Summit,
with a varied configuration over time across the I/O sublayers, and
then propose SCTuner, which exploits the insights gained from the
profiler and dynamically tunes the HDF5 hyperparameters very
efficiently.

3.2 System level I/O profiling
In this approach, a feature set of the system-level information is se-
lected. Examples of such features include the average write latency
to the underlying storage system within a particular time period, or
the number of users and processes running on the system, and the
peak I/O throughput. Wan et al. [38] collect information from the
system-level traces, and extract features which are agnostic of any
particular application. Using certain system-specific features, it pre-
dicts the amount of I/O throughput. The work yields 75% accuracy
when applied. Both application and system level profiles are consid-
ered in [5], which uses knowledge from the workload domain to be
able to map jobs into the system resources so that the storage sys-
tem is efficiently utilized. The same route is adopted by [4] which
determines the best parameters for an application. Particularly, they
consider a combination of MPI-IO level and Lustre level features
on top of Cori supercomputers and develop a Bayesian model to
predict a performance score like bandwidth. In addition, Patel et
al. bridge the gap between the accessibility of the HPC community
and the I/O behavior of various workloads on top of such a system.
They extract some low-level features like the number of cores, the
amount of wall clock time, the amount of wait time for a job, etc.
using which they showcase some temporal patterns including the
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burstiness of the submissions at certain points during the week. In
addition, they predict the running time of the jobs submitted.

Most of the literature and the aforementioned studies fail to
deliver satisfactory performance on certain workloads. This limi-
tation arises because prior jobs of the application’s submitter and
their role in shaping job’s I/O behavior are not considered in their
evaluations. We establish the imperative of adopting an alternative
approach to studying the I/O runtime of diverse workloads through
user-based profiling. Profiling user behavior at the application level,
utilizing finer-grained features extracted from Darshan logs, fa-
cilitates a comprehensive understanding of variations in the I/O
profiles of an application. Our investigation elucidates a correlation
between users’ historical activities and their subsequent submis-
sions, demonstrating a pronounced predictability in the application
I/O behavior when considering the antecedent job configurations
of the submitter.

4 Profiling I/O behavior of Users
In the preceding section, we emphasized the importance of rec-
ognizing the role played by users in shaping the I/O patterns of
HPC applications, as well as understanding the latent factors within
an application that can enhance the I/O performance of both in-
dividual applications and the overall system. To address this, we
construct an I/O profile for each application’s job submission by
employing engineering techniques and extracting features from the
corresponding Darshan log. This profile serves as a representation
of the I/O behavior exhibited during the application’s individual
submission. Utilizing the compiled profiles, we demonstrate the
potential for making inferences based on the historical behavior
of the users, which we have observed across a significant number
of samples, and their respective submissions In the meantime, we
endeavor to explain the means by which the users may contribute
to the behavior difference across the submissions of an application.
The remainder of this section fully describes our methodology for
attaining the mentioned objectives, along with the process of ex-
tracting and crafting the necessary features essential for carrying
out these analyses.

4.0.1 Building I/O Profiles. For the development of Input/Out-
put (I/O) profiles, we leverage counters extracted from Darshan
logs. Each application execution on the Summit supercomputer is
delineated as a job, consisting of tasks instantiated by ‘jsrun’ com-
mands. Every ‘jsrun’ invocation produces a corresponding Darshan
log file. These logs encapsulate various metrics such as the volume
of bytes read and written, cumulative I/O time, and metadata op-
erations associated with POSIX, MPI-IO, and STDIO [2]. Summit
employs IBM’s Cluster System Management (CSM) as its batch
job scheduler [3]. Darshan logs encompass these metrics for every
file accessed throughout the application’s execution. Additionally,
the logs facilitate the determination of the number of processes
interacting with a single file, which provides valuable insights into
I/O contention. Furthermore, the metadata included within a Dar-
shan log, such as the executable name utilized by ‘jsruns’, user
identification, and the start and end times, allows for the amalga-
mation of logs from multiple ‘jsrun’ instances. This metadata is
instrumental in feature engineering and extraction, culminating in
the construction of job-level I/O profiles.

A subset of counters is selected from the provided Darshan logs,
which encompass approximately 200 counters. Additionally, a dis-
tinct set of features is synthesized from the Darshan logs. The
amalgamation of both extracted and engineered features consti-
tutes an I/O profile for each job, as delineated in Table 1. Feature
engineering is deemed indispensable, as Darshan logs encompass
an extensive array of statistics, with a majority of features exhibit-
ing sparsity in most instances. This inherent sparsity introduces
a potential threat to the fidelity of the machine learning models
designated for analyzing the submissions. It is imperative that the
organized feature sets semantically preserve the critical I/O charac-
teristics of the job submissions. The ensemble of derived features
collectively forms a comprehensive profile for each job. The de-
rived job I/O profiles enhance job clustering accuracy by reflecting
the predominant types of access performed by applications. Each
profile records features related to I/O accesses for each interface,
the file system, and the type of access (see Table 1), effectively
representing the job’s I/O activity over time.

As discussed, the features we report in Table 1 are calculated for
each I/O interface (POSIX, MPI-IO, STDIO), the file system receiving
the I/O operations (GPFS or Burst Buffer), the file access methods
(FPP, PSF or SSF), and the transfer size category (KB, MB, GB) as
described below.

• I/O interfaces (POSIX, MPI-IO, STDIO). It is notewor-
thy that MPI-IO routines utilize POSIX to perform their I/O.
This is why part of the POSIX I/O may have resulted from
calls made through MPI-IO. To further realize the amount of
contention coming from MPI-IO calls, we separate the I/Os
coming from MPI-IO from the ones arising from the job’s
direct calls to POSIX API. Such discrimination enables us
to recognize how MPI-IO high-level calls are absorbed by
the layers underneath the I/O stack. As a result, this distinc-
tion aids the analysts to have an estimation of the job’s I/O
access pattern. Also, studying MPI-IO metrics allows us to
understand what types of high-level I/O calls the applica-
tions make, and how lower layers transform the queries into
more efficient ones. Also, as per what is presented in [11],
in some of the science domains, the majority of I/Os are per-
formed via STDIO, which makes them a treasurable source
for learning about the users in the system, and accordingly
to leverage this knowledge to increase the I/O performance.

• File system requests (burst buffers (NVMe) vs GPFS).
Previous studies show that the usage of burst buffers is not
common across the users in HPC systems, mainly because
users do not know about the speedup they would achieve by
directing their I/Os to burst buffers. Therefore, the classifica-
tion of features in such terms yields invaluable information
to us from the overall contention on the GPFS, and how we
can balance the contention across different layers of storage.

• Files access method (File access type). We name a file
accessed by all the processes as single shared files (SSF). If
more than one (not all) processes access the file but not all
processes access that file, we call it part shared file (PSF),
and file per process (FPP) if only one process accesses the
file. Prior works demonstrate that most of the applications
favor independent I/Os rather than collective accesses as
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Features

total number of files, number of write-intensive files, number of read-intensive files

number of read-write files, number of metadata files,

total bytes read/written, total number of read/write calls,

total number of metadata operations

Interface (Library) POSIX (Not from MPI-IO), POSIX (From MPI-IO), MPI-IO, STDIO

File System parallel file system (GPFS for Summit), burst buffer (node-local NVMe for Summit)

File Access Type Single-shared file (SSF), Part-shared file (PSF), File-per-process (FPP)

File Transfer Size Category KB (1 KB - 999 KB), MB (1 MB - 999 MB), GB (1 GB and above)

Table 1: Features derived from a Darshan log. Each feature is reported for every I/O interface, file system and file type. The features in bold
represent the number of files of a certain category, which is determined by Algorithm 1.

stated above, lying in the fact that a lot of users in the HPC
community are mostly not familiar with the primitives dif-
ferent libraries provide. The contention may emerge from
the fact that the underlying parallel file system fails to trans-
form independent I/O calls into sequential collective I/O calls.
Such grouping provides us with more information about the
slowdowns due to the users mostly doing independent I/O
operations.

• File Transfer Size Category. This categorization is essen-
tial as it can determine the mechanics of potential under-
lying low-level I/O operations. To this end, we consider 3
categories to discretize the transfer size: 1) KB, which cor-
responds to the I/O operations transferring 1 KB or less 2)
MB for transfers ranging from 1 MB to 999 MB), GB for 1
GB transfers and above.

Algorithm 1: Categorization of files as write-intensive,
read-intensive, metadata or read-write.
Input: Total bytes written into: 𝑏𝑦𝑡𝑒𝑠_𝑤𝑟𝑖𝑡𝑡𝑒𝑛, Total bytes read from: 𝑏𝑦𝑡𝑒𝑠_𝑟𝑒𝑎𝑑
Output: Category of the file as being write-intensive, read-intensive, read-write or

metadata
1 begin
2 if 𝑏𝑦𝑡𝑒𝑠_𝑟𝑒𝑎𝑑 + 𝑏𝑦𝑡𝑒𝑠_𝑤𝑟𝑖𝑡𝑡𝑒𝑛 == 0 then // No I/O is done; Label it as

metadata
3 return METADATA

4 𝑟𝑎𝑡𝑖𝑜 = (bytes_read - bytes_written) / (bytes_read + bytes_written)

5 if 𝑟𝑎𝑡𝑖𝑜 >= −1 && 𝑟𝑎𝑡𝑖𝑜 <= −0.5 then
6 returnWRITE_INTENSIVE

7 else if 𝑟𝑎𝑡𝑖𝑜 >= 0.5 && 𝑟𝑎𝑡𝑖𝑜 <= 1 then
8 return READ_INTENSIVE

9 else
10 return READ_WRITE

To generate the profiles, we first aggregate all Darshan logs of
the jsruns within a single job to derive a job-wise summary of the
I/O features for each job submission of an application. We then
need to aggregate the values of the features for different runs of an
application by a single user on a particular scale. Thus, we get one
file with the features introduced in Table 1. Algorithm 2 explains
how we obtain the user I/O profile for a single application for a
specific scale. In line 7, we derive the features listed in table 1 for
the given jsrun. The next step is to aggregate these vectors. The
aggregation involves the summation of the features described in
table 1. We name this aggregate vector as the job-level submission
I/O profile. Next, we aggregate all of these job-level I/O profiles
into a single coarse-grained I/O profile by averaging all the job-
level profiles. We suppose that the coarse-grained I/O profile could

represent the average behavior of the user when submitting an
application at a scale.

Algorithm 2: Generating user I/O profile for one applica-
tion for a specific scale.
Output: profiles generated for every user for each application and scale

1 begin
2 for app in uid_apps do
3 for scale in uid_apps do
4 set jobs_features as empty list
5 for job in app do
6 for jsrun in job do
7 //Extract the features in table 1 from the Darshan statistics
8 jsrun_feature_vector = calculate_features(job_statistics)
9 add jsrun_feature_vector to jsrun_feature_vectors

10 //Compile the features vectors for each jsrun into an individual
job-level I/O profile

11 joblevel_profile = aggregate(jsrun_feature_vectors)

5 Analysis
In this section, we leverage the profiles produced for the collection
of executionswemaintain tomodel the I/O activity of an application
as a function of the configurable knobs for the application, and
the user’s attitude towards tweaking the settings. To this end, we
need to quantitatively distinguish the job submissions whose I/O
patterns contrast and to identify the causes of jobs differentiated in
an interpretable way. To this end, we first leverage an unsupervised
learning mechanism to group the submissions by the I/O patterns,
and then in the next subsection, we associate the configurable knobs
of the applications with the discovered I/O patterns, and devise
a modeling strategy to find out the I/O pattern of an application
under submission.

5.1 Categorizing submissions by I/O pattern
We cluster the job submissions in our dataset in an unsupervised
manner so that the jobs with distinct I/O characteristics are sep-
arated from each other, and to have a representation of the I/O
patterns the jobs yield. The procedure for this categorization is
detailed in Algorithm 3, where we group the submissions by the
submitter (uid) and the executed application (app), and apply the
clustering algorithm for each group. This step helps us reduce the
the random variation of the data, which might have otherwise con-
fuse the clustering algorithm. Following this, we standardize the
features of the corresponding profile collection using equation 1,
scaling them down to attain a mean of 0 and a standard deviation
of 1. Subsequently, we eliminate features with a predetermined
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Figure 3: The contrast between the distinctive features of user A clusters. The x axis represents the cluster label, while the y
axis shows the violin plot values for each feature.

fraction of missing values (80% for all user and application pairs)
or with a zero interquartile range (IQR) distance.

𝑥𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 =
𝑥 − 𝜇

𝜎
(1)

Algorithm 3: Job clustering grouped by user and applica-
tion.
Input: profiles generated for each job run: 𝑗𝑜𝑏_𝑟𝑢𝑛_𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒𝑠
Output: The job profiles labeled with their corresponding I/O cluster for each user and

application
1 begin
2 set 𝑙𝑎𝑏𝑒𝑙𝑒𝑑_𝑗𝑜𝑏_𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒𝑠 to empty map
3 for𝑢𝑖𝑑 , 𝑎𝑝𝑝 in𝑢𝑖𝑑_𝑎𝑝𝑝_𝑝𝑎𝑖𝑟𝑠 do
4 𝑢𝑖𝑑_𝑎𝑝𝑝_𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒𝑠 = 𝑗𝑜𝑏_𝑟𝑢𝑛_𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒𝑠[(𝑢𝑖𝑑 , 𝑎𝑝𝑝)]
5 // Standardize features using equation 1
6 𝑠𝑡𝑑_𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒𝑠 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑠𝑐𝑎𝑙𝑒_𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒𝑠)
7 // Remove the features which are zero at least 80% of the times, or with

Inter-Quartile Range (IQR) distance of zero
8 𝑠𝑡𝑑_𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒𝑠 = 𝑑𝑖𝑠𝑐𝑎𝑟𝑑_𝑧𝑒𝑟𝑜_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑠𝑡𝑑_𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒𝑠 , 0.8)
9 // Runs HDBSCAN algorithm

10 𝑙𝑎𝑏𝑒𝑙𝑒𝑑_𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒𝑠 = 𝑟𝑢𝑛_ℎ𝑑𝑏𝑠𝑐𝑎𝑛(𝑠𝑡𝑑_𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒𝑠 , 𝑏𝑒𝑠𝑡_𝑘)
11 𝑙𝑎𝑏𝑒𝑙𝑒𝑑_𝑗𝑜𝑏_𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒𝑠[(𝑢𝑖𝑑 , 𝑎𝑝𝑝)] = 𝑙𝑎𝑏𝑒𝑙𝑒𝑑_𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒𝑠

12 return 𝑙𝑎𝑏𝑒𝑙𝑒𝑑_𝑗𝑜𝑏_𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒𝑠

Next, we perform clustering of job profiles for the designated user
and application. We posit that an application, when executed under
a particular user, manifests multiple patterns only if it exceeds 10
submissions. This threshold is established to prevent the clustering
algorithm from aggregating all data points into a singular group. For
this purpose, we employ the HDBSCAN algorithm [33]. Analogous
to DBSCAN [19, 21], this method is an agglomerative, density-based,
nonparametric clustering algorithm that functions by iteratively
aggregating samples into clusters. However, DBSCAN consolidates
data points into a single cluster if they reside within a manually
tuned distance 𝜖 , rendering it suboptimal for data sets with varying
density. In such scenarios, a large 𝜖 causes most data points to be
assigned to a single cluster, whereas a small 𝜖 yields numerous small
clusters, potentially fragmenting data points that could belong to
the same cluster. HDBSCAN addresses this issue by incorporat-
ing a hierarchical clustering framework, wherein a comprehensive
grid-search is performed across multiple 𝜖 values. Consequently,
the determination of a secondary parameter, 𝑘 , which delineates

the minimum sample size for each cluster, becomes imperative. For
our analysis, we set 𝑘 to 2, based on the premise that at least two
executions per user should form a cluster. Furthermore, empirical
evidence suggests that the setting 𝑘 = 2 produces a comparable
partitioning compared to the higher values of 𝑘 . Figure 4 elucidates
the distribution of pairwise distances between clusters derived
for various values of 𝑘 . Evidently, elevated values of 𝑘 exhibit ap-
proximately equivalent efficacy in differentiating clusters, thereby
rendering this methodology less effective for certain datasets with
larger 𝑘 values. Generally, the minimum sample parameters can
be optimally adjusted per user and application, contingent on the
nature of the tasks and the users’ historical I/O data. This adaptive
clustering per user and application offers the distinct advantage of
reduced computational time, enabling system schedulers to explore
a broader spectrum of hyperparameters. Additionally, separating
clustering by user and application improves the model’s ability to
accurately capture I/O patterns and distinguish between users, even
when they run the same application.
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Figure 4: The distribution of the pairwise distances between
the clusters for varying k values, where k is the min sample
hyperparameter in HDBSCAN algorithm.

Our clustering methodology proves highly effective, yielding
well-separated clusters for many user and application pairs. Figure 3
illustrates this for user A, who submitted jobs running lmp_mpi on
August 20th and from mid-November to mid-December 2020. This
binary represents the LAMMPS application [24], used to simulate
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molecular groups and provide chemists with insights into material
dynamics.

Cluster 1 submissions tend towards write transfers measured
in Megabytes, whereas Cluster 2 characterizes jobs that perform
write transfers on the order of Gigabytes, particularly under the
file-per-process access paradigm. Additionally, Clusters 1 and 2
generate single-shared read transfers at the Kilobyte scale, which
Cluster 0 does not exhibit. Each cluster is represented by a range of
values (or an exact value) per feature. For instance, Cluster 0 always
features zero write intensive files with file per process at megabyte
scale (figure 3a), a huge volume of gigabyte-sized write transfers
(figure 3b), zero GB-sized write intensive files (figure 3c), and zero
KB-sized single-shared read transfers (figure 3d). In contrast, Cluster
1 maximizes KB-sized single-shared read transfers (figure 3d), while
Cluster 2 has zero GB transfers and a large number of GB-sized
write intensive files (figures 3b and 3c), suggesting a more spread
I/O across smaller files compared to Cluster 0.

5.2 User impact on the application’s I/O
behavior

In this subsection, we quantitatively correlate the behavior of an
application with the past activities of the user when executing an
application. As mentioned before, the users can alter the behavior
of the application via the command line parameters they pass, and
by adjustment of the application’s surrounding runtime, e.g via
directing the I/O traffic to the Burst Buffer rather than the slower
file systems like GPFS or Lustre. In fact, this section finds an answer
to the following questions:

(1) Which parameters or settings can a user adjust to modify
the I/O behavior of an application, and to what extent can
these settings accurately predict the I/O behavior of a specific
application execution?

(2) How much contribution do the settings of the past submissions
of the same application have towards the I/O behavior of the
next execution for the same user?

Based on Darshan’s input, the only adjustable parameter users
have left to fine-tune would be the selection of command line op-
tions and the binary name submitted for each job. In our analysis,
we focus on the 38 users with the maximum number of submissions
within the system so that we are confident that our findings can be
generalized to the whole system. Doing so leaves us with around
93000 job submissions. Out of this number of jobs, we focus on
applications popular amongst the HPC community like LAMMPS
and E3SM for which we have the highest number of records.

To measure the impact of the submitted command lines on the
application’s I/O pattern, we extract features from the command
line submitted for each execution. To this end, we get the options
and switches changing from one execution to another for each
user and application, convert this data into nominal features, and
quantify the predictability of the I/O patterns for an execution given
the command line options submitted for that execution, as well as
the past I/O patterns for executions of the same application under
the same executor.

We then measure the ease of predicting the resultant pattern
of an application when a set of command line arguments are sub-
mitted. To this end, we calculate the entropy of the I/O patterns

grouped by the submitted command lines. In fact, entropy repre-
sents the uncertainty in the estimation of the value of a random
variable. Henceforth, the lesser the value of the entropy, the lesser
the multiplicity of the values for the random variable. The entropy
is defined as follows for the random variable 𝑋 :

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑋 ) = 𝑝𝑖 ∗ 𝑙𝑜𝑔𝑝𝑖 (2)

Assuming X takes any of the values 𝑥1, 𝑥2, . . . , 𝑥𝑛 , we set 𝑝𝑖 to be
the probability that X becomes 𝑥𝑖 . The entropy tends to zero in case
there is a skewness towards a single value. In our case, a value close
to zero suggests a single command line always leads to the same
pattern. For the rest of this section, we plot the entropy variation
within different time scales (In the overall dataset, weekly and
daily).

LAMMPS is a classical molecular dynamics (MD) code that mod-
els ensembles of particles in a liquid, solid, or gaseous state. Its versa-
tility extends to modeling atomic, polymeric, biological, solid-state
(including metals, ceramics, and oxides), granular, coarse-grained,
or macroscopic systems, employing diverse inter-atomic potentials
(force fields) and boundary conditions. It can model 2d or 3d sys-
tems with sizes ranging from only a few particles up to billions [24],
making it fit for HPC scale. Figures 5a to 5c illustrate the distri-
bution of the entropy of the I/O patterns (clusters) for users who
executed the highest number of commands per unique command
line option in the entire dataset, within a week, and within a day
respectively. According to these figures, different users executing
the same application with the same options over time may observe
different I/O patterns, while another set of users submitting the
same options may see the same I/O pattern repeated. This implies
the need for profiling each user different due to the unique nature of
the temporal I/O patterns they may exhibit. This shows the I/O pat-
tern of the LAMMP application is heavily reliant on the command
line options submitted. For users like A, we find the LAMMP script
they specify, alongside the presence of a unique set of simulation
variables controlling the molecular simulation determining the I/O
pattern, while for the other users, the command line only specifies
the log files where the output is dumped, making it hard to explain
the actual reason of variation. Moreover, Figure 6 illustrates the
distribution of uncertainty in predicting the I/O patterns for the
top 50 applications in the dataset, as submitted by a single user.
High-performance computing applications like lalibe and e3sm
show minimal variance in I/O patterns (near-zero daily entropy),
indicating their predictability. However, LAMMPS demonstrates con-
sistent behavior when the binaries lmp_summit and lmp_g++ are
used by users C and D, respectively, but exhibits increased uncer-
tainty with lmp_mpi submitted by user E. These findings suggest
that different users may require individualized monitoring. Figure 7
mirrors figure 6, examining executions within a day. These visu-
alizations suggest that shorter analysis periods increase certainty
in predicting execution I/O patterns, often resulting in singular
patterns across more command lines. In the aforementioned plots
(Figures 6 and 7), there are some binaries and applications for which
the I/O pattern varies per command line. For a significant number of
such applications, the command line takes no parameter, meaning
the user intervention in the I/O behavior of the application cannot
be explained using the command line. It is likely that such users
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(a) Overall Entropy Distribution.
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(b) Weekly Entropy Distribution.
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(c) Daily Entropy Distribution.

Figure 5: The distribution of the entropy of LAMMP’s I/O pattern when submitted with the same command line arguments for
different users in the overall dataset, every week, and every day. The user IDs are anonymized.
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Figure 6: The average uncertainty of the application’s I/O
patterns when submitted by a user in the overall dataset. In
this case, we treat the binaries with different namings which
refer to the same application differently.

would most likely read files and settings which are hard-coded in
the application code.

Next, we aim to quantify the interaction between prior and
subsequent job submissions using the same binary. We measure
the mutual information gain between past command-line argu-
ments and the I/O pattern of the following job. To achieve this,
we gather command lines associated with the identical binary as
the job in question. For example, if the succeeding job employs
lmp_summit as a binary, we exclusively consider submissions that
execute lmp_summit for that user. .

Assuming X and Y are two random variables, the mutual in-
formation gain between the two, denoted by 𝐼 (𝑋 ;𝑌 ) is defined as
follows [6]:

𝐼 (𝑋 ;𝑌 ) = 𝐻 (𝑋 ) − 𝐻 (𝑌 |𝑋 ) (3)
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Figure 7: The average uncertainty of the application’s I/O
patterns when submitted by a user in within a day.
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Figure 8:Mutual information between a command’s label and
the options of the command and the preceding commands,
as determined by varying window sizes (1 to 4), for the top
5 users with the highest number of executions in the LAMMP
application. The user IDs are anonymous.

Mutual information measures the reduction in uncertainty about
one variable given knowledge of another. In our study,𝑌 denotes the
set of command-line options within a specific window (the number
of preceding commands), while 𝑋 represents the I/O pattern of
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the subsequent job using the same application. To measure the
correlation between an application’s I/O pattern and past command
submissions, we take the union of all command line options across
different submissions for a given binary. Missing options are filled
with a default value, ensuring that each command line includes
the complete set of options for consistent comparison. Figure 8
depicts the relationship between a command’s label and its options,
considering both current and preceding commands, for the LAMMP
application among the top 5 users running the same binary with
different options. Mutual information increases with window size,
underscoring the importance of command line history. The varying
slopes indicate unique user patterns, consistent with other binaries
like Lalibe and previous figures, particularly for window sizes
under 10, corresponding to 1 to 10 days of commands. Notably, the
slope decreases for 4 users, suggesting that beyond a certain point,
preceding commands may become irrelevant to the current job, a
pattern also observed in other applications studied.

6 Discussion and Future Work
We discussed that the I/O patterns of HPC applications are highly
influenced by historical configurations submitted by the same user
for the same application. The analysis conducted supports this point.
Our study shows that an application’s I/O behavior can be modeled
based on past I/O activity within a specific time frame and user-
configured I/O settings via command line arguments. The findings
indicate that I/O patterns for well-known HPC applications, such
as E3SM and LAMMP, are predictable with low uncertainty within
a short time frame but become more variable over longer periods.
Furthermore, our results reveal a strong correlation between current
and past command-line submissions made by users within 1 to 10
days, with the optimal time window being unique to each user.

Analyzing command-line options aids in storage system schedul-
ing by revealing potential I/O behavior. For instance, reading from
a .csv file versus a .hdf5 file can significantly impact file system
access, influencing our modeling and predictions.

However, there are still a lot of aspects in terms of I/O char-
acterization to be investigated. For example, many sample jobs
lack command line options, containing only the executable name,
which limits our analysis by treating all such submissions identi-
cally. However, executables, whether binary or high-level scripts,
often include debugging symbols and source code. Schedulers can
leverage Large Language Models (LLMs) to extract features from
the source code and map them to configuration knobs, thereby
enabling I/O pattern modeling.

7 Conclusion
I/O is a major part of the applications within HPC. A concurrent
execution of these applications leads to a significant bottleneck
and contention. Consequently, there is a huge need to identify the
underlying causes of such issues, one of which is the nature of the
applications themselves. This aspect of the I/O runtime is greatly
studied by the previous state-of-the-arts. However, they have failed
to provide accurate models of the I/O behavior. In particular, the
behavior of applications can be influenced by various means and
user-configurable parameters. An example includes the input they

pass to their applications, which is produced by their previous sub-
missions. In this work we quantitatively attribute the variation of
the I/O performance to the user parameters set in a way specific to
the users each. We cluster the executions of an application grouped
by the users in an unsupervised manner. We then correlate the
application execution’s resultant I/O pattern (cluster) as a function
of the history of the user activities when executing the same ap-
plication. We employ conventional statistical and ML approaches
to associate the I/O pattern of an application execution with the
executor (user) of the application. Our study shows the resultant
I/O pattern of an execution under a user is highly dependent on
the past submitted command line options of the same application
under the same user within a 1 to 10 day time window, which is
unique to the submitter. This suggests that I/O schedulers have
the potential to leverage knowledge about users’ activities in the
system, opening possibilities for optimization.
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