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Abstract—High-Performance Computing (HPC) jobs consist of
data and memory-intensive tasks often executed as workflows
or ensembles to facilitate efficient and coordinated execution.
These workflows are traditionally executed on HPC systems
and have unique memory requirements based on the data size,
computational complexity, and I/O activity. Recently container-
ized execution of these workflows has been extensively explored.
Containerized workflow execution of HPC jobs requires several
terabytes of memory that exceed node capacity, resulting in
excessive data swapping to slower storage, degraded job per-
formance, and failures. Similarly, colocated bandwidth-intensive,
latency-sensitive, or short-lived workflows suffer from degraded
performance due to contention, memory exhaustion, and higher
access latency due to suboptimal memory allocation. Recently,
tiered memory systems comprising persistent memory and com-
pute express link (CXL) have been explored to provide additional
memory capacity and bandwidth to memory-constrained systems
and applications. However, current memory allocation and man-
agement techniques for tiered memory subsystems are inadequate
to meet the diverse needs of colocated containerized jobs in HPC
systems that concurrently run workflows and ensembles at scale.
This paper leverages tiered memory systems for containerized
HPC workflows and proposes efficient memory management
policies including intelligent page placement and eviction policies
to improve memory access performance. Our page allocation and
replacement policies incorporate task characteristics and enable
efficient memory sharing between workflows. We integrate our
policies with the popular HPC scheduler, SLURM, and container
runtime, Singularity, to show that our approach improves tiered
memory utilization and application performance and reduces
workflow execution times by up to 51%, 87%, and 35% as
compared to the ideal, realistic, and optimized tiered execution
environments, respectively.

Index Terms—Tiered Memory Systems, Memory Management,
Containers, HPC Workflows

I. INTRODUCTION

High-Performance Computing (HPC) jobs are composed
of compute and memory-intensive tasks that involve large-
scale simulations, data analysis, or scientific computations.
These jobs can be managed and executed as HPC work-
flows, composed of a series of interconnected computational
tasks, often represented as directed acyclic graphs (DAGs),
executed in a specific order to achieve a larger computational
goal, where the output of one task serves as the input for
subsequent tasks. HPC workflows are complex and involve
diverse computational tasks, including data pre-processing,
compression, checkpointing, simulations, and post-processing.
Similarly, workflows may also consist of HPC ensembles,
which involve the simultaneous execution of multiple instances

of a task where each ensemble member represents a different
realization of the task using different input parameters, initial
conditions, or algorithmic choices. HPC ensembles are often
used in scientific simulations [1], [2], climate modeling [3]
computational physics [4], optimization problems [5], and
machine learning [6] to explore a broader range of possi-
bilities and derive more robust conclusions. Moreover, HPC
workloads are deconstructed into smaller workflows, which
enable node-level colocation on HPC systems, optimize re-
source utilization, and address stranded memory problems. By
effectively managing and executing HPC jobs using workflows
and ensembles, researchers can achieve improved scalability,
optimize resource utilization, analyze uncertainties, and gain
valuable insights from their computational endeavors.

Traditionally, HPC workflows and ensembles are executed
on bare-metal HPC systems to leverage high-performance on
specialized hardware. However, in recent years, using contain-
ers [7]–[9] for executing HPC workflows is being explored
for improved portability and reproducibility. Containerization
technologies, such as Singularity [10], enables efficient re-
source utilization by colocating multiple workflows on the
same host, thus taking advantage of increased parallelism and
throughput. Because of this, leading computing facilities, such
as Riken Fugaku [11], OLCF Summit [12], ALCF Theta [13]
and ALCF Polaris [14], have adopted Singularity as the
containerization runtime. While containerized environments
lead to higher system utilization and energy efficiency due
to colocation, they also incur performance penalties [15]–
[18] due to diverse memory requirements, latency sensitiv-
ity, throughput, and resource sharing. Similarly, colocated
workflows have complex performance requirements related
to memory such as access latency, bandwidth and capacity.
Moreover, short-lived workflows require minimum access la-
tency and high bandwidth to meet SLAs. Traditional memory
management techniques do not account for these requirements
leading to suboptimal memory allocation amongst colocated
workflows. These challenges necessitate the development of
holistic application-attuned memory management techniques
to efficiently utilize containers for running HPC workflows
for increasing overall memory utilization, improving workflow
performance, and reducing the startup time of large-scale
containerized HPC deployments.

Memory tiers in modern HPC systems [19]–[21], such as
those incorporating DRAM and persistent memory play a
crucial role where each tier offers different performance, ca-



pacity, bandwidth, and access latency. Similarly, CXL memory
introduces a new tier into the existing memory hierarchy pro-
viding direct memory access (DMA) via load/store semantics
for efficient data movement across the memory hierarchy.
Managing memory in a tiered system involves employing
various strategies to optimize data placement and movement
across these tiers [22]–[24] such as interleaving [25], weighted
interleaving [26], and AutoNUMA [27] thereby enhancing
overall system performance. Additionally, data movement poli-
cies are employed to dynamically move data between tiers
based on access patterns, while ensuring that data is stored in
the most appropriate tier at any given time. These techniques
work well for general-purpose computing workloads, however,
they cannot optimize memory placement and management
across tiers based on the workflow requirements. Similarly,
the colocation of diverse workflows from various HPC work-
loads renders approaches, such as AutoNUMA, TPP, weighted
interleaving, etc. sub-optimal on a tiered memory system since
these approaches do not differentiate between workload pages
and their sensitivity to page movement between tiers. Thus, the
performance of workflows is negatively impacted by inefficient
allocation and management of tiered memory resulting in: (1)
limited access bandwidth; (2) suboptimal memory capacity
utilization; and (3) higher memory access latencies.

In this paper, we address the aforementioned limitations of
containerized HPC workflows and address the performance
challenges in tiered memory systems by proposing application-
attuned intelligent memory management policies. Our memory
management policies incorporate the access latency associated
with memory tiers to optimize the performance of workflows
while incorporating the performance characteristics, i.e., sen-
sitivity to latency, bandwidth, and capacity, of each workflow
task. Our policies leverage workflow memory access patterns
and system memory utilization to evict data from memory
tiers. Our proposed memory management policies support
containerized and bare-metal executions, however, the colo-
cation of containerized HPC workflows introduces significant
complexity due to diverse memory resource requirements of
each colocated workflow compared to the bare-metal HPC
execution model. To demonstrate the effectiveness of our
approach, we integrate it with SLURM and Singularity [10],
and conduct extensive evaluations using real-world HPC jobs.
To the best of our knowledge, this is the first effort to address
the performance challenges of leveraging tiered memory to
provide additional memory to containerized HPC jobs.

Specifically, we make the following contributions:
• We analyze the memory requirements of popular HPC

workflows and ensembles and explore challenges related
to the suboptimal memory management and utilization on
the performance of HPC workflow and ensembles.

• We propose holistic application-attuned memory manage-
ment policies for tiered memory for containers that opti-
mizes access latency, bandwidth, and capacity to enable
efficient workflow execution with minimal overhead.

• We implement and integrate our approach and runtime
with HPC job scheduler, i.e., SLURM, and container

runtime, i.e., Singularity, to support several classes of
workflows that allocate additional memory from various
memory tiers including local DRAM, CXL (emulated
through remote NUMA), and persistent memory (PMem)
modules.

• We thoroughly evaluate the proposed memory manage-
ment policies and show that our approach increases over-
all memory utilization, improves workflow performance
and reduces the startup time for large-scale container-
ized HPC deployments. Our approach shows up to 35%
performance improvement over the existing workflow
oblivious tiered memory management techniques.

II. BACKGROUND AND MOTIVATION

A. HPC Workflows and Workflow Management Systems

HPC workloads are composed of a series of tasks, organized
as workflows, that work in tandem to run larger scientific
applications such as (1) scientific simulations, which run in
embarrassingly parallel or tightly coupled fashion; (2) surro-
gate computations, which typically generate a deep-learning-
based approximation to assist the scientific simulation for
faster convergence; (3) real-time data analysis, which in-
cludes on-the-fly data manipulation and visualization based on
which experiments and/or algorithms are steered; (4) producer-
consumer workflow patterns, where workflows consume data
generated by other workflows; and (5) checkpointing for fault-
tolerance, posthoc analysis, supporting out-of-core adjoint
computations, or explaining the evolution of data and scientific
model. Several Workflow Management Systems (WMS), e.g.,
Pegasus [28], Cromwell [29], and Nextflow [30], facilitate
the orchestration and automation of complex computational
workflows. WMSs interact with sophisticated schedulers to
efficiently allocate computing resources, optimize task depen-
dencies, and balance workflows. However, they face chal-
lenges in managing diverse workflows with varying resource
demands, adapting to dynamic system conditions, and ensuring
optimal resource utilization amidst changing priorities and
constraints [31]. Additionally, optimizing memory allocation
in tiered memory systems, efficient data movement between
memory tiers, optimal data placement, catering for data local-
ity, memory requirements, and inter-task communication fur-
ther complicates the scheduling process and is not supported
in modern WMSs [28], [29], [32].

B. Memory Characteristics for HPC Jobs

HPC jobs pose diverse requirements to memory subsystems,
such as combinations of large memory tiers, low latency, and
high bandwidth. These requirements can change dynamically
during job execution. Moreover, HPC jobs are often composed
of several workflows with diverse memory requirements [33]–
[35] causing memory starvation, contention, and degraded per-
formance. Traditionally, the basic allocation unit for HPC jobs
is a compute node that leads to reduced resource utilization
and fragmentation. The available memory is limited by the
job-level allocations and the total physical memory installed



on each server. To improve the performance of HPC jobs, in-
memory computation is becoming increasingly popular [36]
leading to higher memory demands in HPC clusters.

In containerized execution, memory is allocated at the start
based on the memory requirement of the job and does not sup-
port dynamic memory allocation based on different execution
phases of HPC workflows. Typically, HPC jobs are deployed
as separate workflows [37] with diverse resource profiles, e.g.,
compute and memory-intensive tasks, bandwidth-intensive op-
erations, and capacity- and latency-sensitive operations. Given
the varying demands of different resource profiles, accurately
identifying the memory requirements for each workflow is
challenging. Similarly, colocated containerized HPC work-
flows and ensembles have additional resource limitations, e.g.,
CPU, memory, storage, I/O, and network, which are specified
by the workflow and negatively impact its performance. These
restrictions limit the performance of highly parallel memory
and data-intensive workflows where most tasks require a large
amount of memory to store the input, intermediate, and output
data of various tasks of HPC workflow. Similarly, accurately
estimating the memory requirements of workflow tasks to
allocate enough memory is challenging resulting in a loss of
critical computation during failures [38].

C. Tiered Memory Systems

Tiered memory systems utilize the latest advancements in
memory subsystems to provide large memory to servers and
workflows. It allows workflows to scale by utilizing additional
memory available beyond the total available DRAM on each
server. In tiered memory systems, the DRAM tier is utilized
for high-speed, low-latency access to frequently accessed data,
whereas PMem [39] bridges the gap between volatile and
non-volatile memory to provide a balance between speed and
persistence. Recently CXL [40], [41] has been explored to
provide high-speed, low-latency memory access between the
host processor and devices while expanding overall memory
capacity and bandwidth [25], [42]. CXL memory also enables
direct access to additional memory resources and optimizes
data movement by providing byte-addressable, cache-coherent
memory in the same physical address space and allowing
transparent memory allocation using standard memory alloca-
tion APIs. Even with colocated memory-intensive tasks, HPC
jobs rarely use the entire allocated memory and often leave a
large amount of unused memory during their life cycles. For
instance, our evaluations (Section IV) demonstrate that during
the initial 120 seconds of training BERT [43] model, ∼55%-
80% of the allocated memory remains idle, thereby becoming
cold memory pages. Moving these cold memory pages to a
slower memory tier can allow hot memory pages to reside in
fast memory tiers and improve application performance. Intel-
ligently placing data between different memory tiers based on
their access pattern ensures that frequently used data remains
in high-speed low-latency memory tiers, thereby minimizing
the need for costly swaps to slower persistent storage.

Figure 1 shows the impact of allocating tiered memory
to different containerized workflows. The setup consists of
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Fig. 1: Impact of tiered memory on workflows with SSD-based swap.

512 GB of main memory, 1 TB persistent memory, and emu-
lated CXL memory using a remote NUMA socket (detailed in
Section IV-C). The performance of all workflows significantly
drops when onboard system memory is limited and memory
pages are swapped to disk-based swap storage. Allocating
memory from different tiers improves the performance of each
workflow regardless of the workload type and memory access
pattern, however, bandwidth-intensive tasks benefit more due
to additional bandwidth available over the CXL interface.
Moreover, the performance is further improved when the
memory pages are actively migrated to CXL-based memory
instead of disk-based swap storage.

With the popularity of containerized HPC workflows, there
is a need to rethink the management of tiered memory to
support granular memory allocation for workflow tasks, in-
telligent data placement techniques for latency-sensitive tasks,
and enable fast data sharing between local and remote tasks
from the same or different workflows to increase the resource
utilization and reduce the execution time of HPC jobs. To
the best of our knowledge, we are the first to explore tiered
memory for containerized HPC jobs and propose specialized
memory allocation and management policies to meet latency,
bandwidth, and capacity requirements of workflow tasks.

III. TIERED MEMORY MANAGEMENT FOR HPC JOBS

In this section, we outline the design objectives and detail
our proposed memory management policies for optimizing
workflow execution on HPC systems utilizing tiered memory.

A. Design Objectives

The main goal of our proposed memory management poli-
cies and runtime is to minimize the execution time of HPC
workflows by mitigating the impact of inefficient memory
allocations, replacement, and movement policies of existing
tiered memory approaches. The key objectives of the proposed
policies are as follows:

1) Design intelligent memory management policies to fully
utilize distributed heterogeneous memory subsystems
to improve the overall memory utilization, and reduce
workflow failures due to limited memory [44], [45], thus
improving the overall system throughput.

2) Mitigate the impacts of using tiered memory on work-
flow performance by using intelligent page allocation
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Fig. 2: High-level system architecture with IMME leveraging tiered
memory for containerized HPC workflows.

and replacement policies that leverage the access la-
tencies of different memory tiers, the interconnection
bandwidth, and local memory availability.

3) Design and develop a highly efficient and lightweight
runtime that manages allocation and movement of ad-
ditional memory requests from HPC workflows and
transparently moves memory pages between memory
tiers to maximize the overall system performance.

4) Enable workflows to use tiered memory with minimal
overhead and modifications to the user code.

B. High-level System Overview

The high-level architecture of our proposed runtime is
shown in Figure 2. The workflow is first submitted to the WMS
where it is converted to an executable workflow represented by
a DAG. Our proposed runtime ensures that the HPC workflows
optimally leverage additional memory from the memory tiers
and enable workflow-aware memory allocation to jobs. Work-
flow containers can request memory from specific memory
tiers which can be different from the initial memory allocation.
Our allocation policy serves such memory requests by effi-
ciently allocating memory pages from the requested memory
tier. It identifies the best memory tier based on the workflow
characteristics, i.e., latency sensitivity, bandwidth and capacity
intensive, and execution makespan, and allocates either the
entire block from a single tier or from multiple memory tiers
including the local and CXL memory. Our target capacity-
intensive jobs, such as training DL models [46], [47] and
large-scale simulations [48], require large memory capacity
for continued execution and are independent of their latency
and bandwidth requirements. If enough local memory is not
available, then our page replacement policy and proactive
swapping mechanism move existing memory pages to the
appropriate lower memory tiers to provide large contiguous
memory space for workflows.

1) System Characteristics: In this paper, we use heteroge-
neous memory systems that include at least two memory tiers

TABLE I: APIs to allocate/deallocate tiered memory.

API Description

void* allocate_TM(size, flags)
Allocates tiered

memory based on flags

void free_TM(void *ptr)
Releases tiered

memory

including the DRAM, PMem, and CXL memory supported by
NVMe, SSD-based storage, and similar technologies in mem-
ory and storage subsystems. We note that distributed HPC ex-
ecution environments, such as Aurora [19], and Pegasus [21],
host a subset of these memory and storage tiers at each
server. We also assume that the tiered memory is accessible on
every node in the cluster including PMem and CXL memory
over the CXL interconnect, which provides high-bandwidth,
low-latency, cache-coherent access to memory resources and
supports multiple memory types, including DDR5 [49], and
HBM [40]. Similarly, multiple tasks of a workflow can be
scheduled on a server to achieve higher system throughput
and improve workflow performance.

C. System Design

In this section, we describe the details of our proposed
runtime to reduce the total execution and access latency
for containerized workflows with tiered memory-aware page
allocation, replacement, and movement policies.

1) Tiered Memory Manager: The Tiered Memory Manager
is the main component of our runtime, that handles coordina-
tion between components of our proposed runtime by using a
manager and a client deployed on the cluster nodes. The main
responsibilities of Tiered Memory Manager are: 1) identify
various memory types; 2) categorize memory into tiers; 3)
create staging buffers on each tier; 4) dynamically adjust
buffers based on utilization; and 5) track the hotness/coldness
of workflow pages. The Tiered Memory Manager identifies
various memory types available on the HPC systems and
classifies them into tiers with the primary tier being the DRAM
memory. The classification of memory into tiers depends
on the available memory capacity, access latency, maximum
attainable bandwidth, and the interconnect type. It also creates
staging buffers on each tier based on the fair-share approach,
tier characteristics, and available memory. These buffers are
dynamically adjusted based on the memory utilization on each
tier and the workflow requirements. Moreover, staging buffers
required for transparent data movement across memory tiers
are created for each compute node. Lastly, Tiered Memory
Manager also tracks the hotness of each page of the work-
flows. The heatmaps are used to identify frequently accessed
pages and least frequently accessed pages for efficient page
movement between the memory tiers.

The memory allocation, deallocation, and management are
done transparently by the runtime based on the workflow
requirements and the memory access patterns of the given ap-
plication. The Tiered Memory Manager exposes APIs, shown
in Table I, that can be used by workflows to request tiered



Fig. 3: Tiered memory layout for HPC workflows.

memory for expansion, staging input data, or storing interme-
diate and output data beyond the initial memory allocation.
These APIs are used to allocate and deallocate memory from
a specific tier by setting the appropriate flag and for creating
shared memory regions between workflows. For example, HPC
workflows can use the APIs to request memory from the
PMem tier to store data structures that need to be retained.
Similarly, for frequently accessed data memory from the CXL
tier can be requested to store the prefetched data for caching
purposes. The APIs are designed for seamless integration,
allowing them to be incorporated into the existing workflow
code with minimal modifications.

Once a request is received, the Tiered Memory Manager
services the request by identifying the ideal memory tier and
returning the address space. The requested memory size is in
bytes and the flag accepts a combination of the following val-
ues: LAT,BW,CAP, SHL which represent latency-sensitive,
bandwidth-intensive, capacity, and short-lived, respectively.
The LAT flag represents memory that is extremely sensitive
to access latency and the page placement necessitates the use
of the fastest memory tier. Similarly, the BW flag represents a
memory access pattern that requires the highest access band-
width from either a single or multiple memory tiers. The CAP
flag represents memory that is not susceptible to access latency
or bandwidth and is primarily use to store pages that are not
actively accessed. Lastly, the SHL flag represents memory
that is shared between multiple workflows. The flags passed
through these APIs allow the user to pass hints regarding the
memory resource requirement of workflows. However, these
flags are purely advisory and are not mandatory for successful
execution. If no flags are provided, then the Tiered Memory
Manager assigns either single or multiple flags to each work-
flow based on the previous execution logs, heuristics, and
predictor [38]. The Tiered Memory Manager also monitors
page access patterns and uses this monitoring data for efficient
memory allocation and moving data across memory tiers.

Figure 3 shows the layout of the tiered memory system,
which consists of CXL-based memory and PMem resources
and can span across a cluster of servers. Tiered Memory
Manager handles all memory access from each workflow to
the tiered memory and keeps track of the memory allocations
to workflows. It also monitors the memory allocations on each
server and dynamically adjusts the memory allocation based
on the current memory utilization on each server.

2) Page Allocation Policy: By default, memory is allocated
for workflows from the local system memory to maximize

Algorithm 1: Page Allocation Policy for HPC work-
flows with Tiered Memory.

Input : w id: unique workflow identifier, s: requested mem size,
f : list of flags to denote mem characteristics (LAT :
lat-sensitive, BW : bw-intensive, CAP : cap-intensive,
SHL: short-lived), alloc map: global mem alloc maps for
all workflows, ev: global map of evictable mem available
on each tier-(local, pmem, and cxl)

Output: A: memory allocation plan containing a map of memory
allocation required from each memory resource

1 Function TierAlloc(w id, s, ⟨f⟩):
2 if f == NULL then
3 f = predict flags(w id, s)
4 if type(f) == list then
5 ffirst = f.pop()
6 sizefirst = predict flag mem size(ffirst, w id)
7 TierAlloc(w id, sizefirst, ffirst)
8 TierAlloc(w id, s− sizefirst, f)
9 A← ⟨local : 0, pmem : 0, cxl : 0⟩

10 if alloc map.find(w id) then
11 A← alloc map[w id] // Find prev. alloc
12 end
13 m = A[local] +A[pmem] +A[cxl] // Alloc’d memory
14 while m < s do

// Prioritize local memory for
lat-sensitive and short-lived tasks

15 if f == LAT or f == SHL then
16 if ev[local] > 0 then
17 A[local]+ = min(s−m, ev[local])
18 else if ev(pmem) > 0 then
19 A[pmem]+ = min(s−m, ev[pmem])
20 else if m < s then
21 A[cxl]+ = s−m // Unlimited CXL mem

// Tiered memory allocation for high-bw
22 else if f == BW then
23 r ← 0 // Remainder for the next tier
24 for tier ∈ [local, pmem, cxl] do
25 frac[tier] = r + s× (BW [tier]/BW [total])
26 curr max = min(frac[tier], ev[tier])
27 A[tier]+ = curr max
28 r = curr max− frac[tier]
29 end

// Addn. memory capacity through CXL
30 else if f == CAP then
31 A[cxl]+ = s−m
32 m = A[local] +A[pmem] +A[cxl]
33 end
34 alloc map← alloc map ∪A
35 update evictable(A)
36 return A

performance and reduce the total execution time. However,
memory pages are excessively swapped to the slower tiers,
e.g., swap space, when the system memory runs out which
degrades the performance of running jobs [50], [51]. Our page
allocation policy maximizes job performance and reduces the
impact of swapping to slower tiers by efficiently utilizing
tiered memory and by considering workflow characteristics
and the execution sequence. Similarly, it also handles the
allocation of additional memory from the tiered memory once
the DRAM memory runs out of available space. The policy
ensures that the additional memory allocated from the tiered
memory has minimal overhead and takes into account the
latency requirements of HPC workflows.

Our proposed page allocation policy is shown in Algo-
rithm 1. It takes workflow attributes as input, which includes
a unique workflow identifier (w id), the size of the requested



Fig. 4: Memory allocation and page movement for workflows.

memory (s), and an optional list of flags regarding the memory
characteristics of the workflow (f ). We predict the amount
of memory required for each flag using previous execution
logs, heuristics, and existing memory predictors [38], [52].
Specifically, the heuristics generate page temperatures by
analyzing the page access frequency on each memory tier.
For instance, if a job allocates 40 GB of memory and only
512 MB of pages are accessed 80% of the time during the
first 20 seconds of execution, then 512 MB of memory is
determined to be latency-sensitive (LAT ) while the remaining
memory is classified as capacity-sensitive (CAP ) for the first
20 seconds of execution. To look up execution logs, we utilize
workflow configuration information, parameters, flags, etc. For
cases where logs are not available or the exact match is not
found, we utilize the nearest match as hints for the predictor.

Once the flags are recursively decomposed in atomic values
with their corresponding sizes, the current memory allocation
of the function on each memory tier (Lines 9-12) is fetched.
The total size required is updated for the given function based
on previous allocations (Line 13). Next, we iteratively allocate
suitable memory pages from each memory tier based on
the function requirements (Lines 14-33). For latency-sensitive
(LAT ) and short-lived (SHL) workflows, the policy attempts
greedy allocation of memory starting from the fastest to
the slowest tier in a cascading fashion (Lines 15-21). This
approach mitigates the challenge of higher access latency for
such workflows. Part of the memory belonging to the latency-
sensitive and short-lived workflows is pinned to guarantee the
required performance and the remaining portion is tagged as a
pageable region that can be used for swapping and replacement
as shown in Figure 4. For simplicity, our policy assumes that
an unlimited memory is available over the CXL interconnect
and the remaining memory can be directly allocated from
CXL. Although such greedy-based decomposition leads to
suboptimal initial allocations for workflows that are launched
at a later time by forcing them to allocate memory from high-
latency slower memory tiers (e.g., CXL), our page replacement
algorithm (discussed in Section III-C3) effectively mitigates
this overhead. For latency-sensitive workflows, our runtime
pre-faults [53] the memory addresses to reduce the overhead
of page faults during memory access.

For bandwidth-intensive workflows (BW ), we use a multi-
path memory access approach that allocates memory on each
available tier (local, pmem, cxl) to provide maximum avail-
able bandwidth to the workflow. The memory allocated on
each tier is directly proportional to the available read/write
throughput observed from that tier. For cases where faster
memory tiers experience higher contention levels, and the re-
quired memory is not available (Line 26), only partial memory
is allocated (Line 27), and the remainder of memory from
the next fastest memory tier (Line 28). Finally, for capacity-

Algorithm 2: Page Replacement Policy to manage
hot/cold pages across multiple memory tiers.

Input : r: Number of pages to replace from memory
Output: None

1 begin
2 t← 0 // Number of replaced pages
3 while t < r do
4 victim pages← lru pagable(r − t)
5 victim pages← remove lat or shl(victim pages)
6 t+ = victim pages
7 move out(victim pages)
8 update pg table(victim pages)
9 end

10 update alloc map(r)
11 end

intensive (CAP ) workflows, the entire memory is allocated
directly from the CXL memory tier. Finally, based on the
amount of memory allocated on each tier, the corresponding
allocation entry in the global allocation and eviction maps are
updated (Lines 34-35) and the memory allocation plan A is
returned.

We note that the algorithmic complexity of the proposed
page allocation policy is a linear function of the number
of memory tiers. However, since we consider the case of
only three memory tiers, the complexity becomes constant
O(1). Such low complexity is particularly important for time-
sensitive HPC workflows.

3) Page Replacement Policy: Many page replacement tech-
niques have been extensively studied for conventional memory
subsystems [54]–[57] to create space in DRAM for pages that
have been swapped out to slower storage tiers. The default
behavior of the Linux kernel is to select a set of candidate
pages based on various heuristics [54], such as least-recently-
used, most-recently-used, and optimal page replacement, that
can be evicted to a disk-based swap partition to be replaced
with the requested page. However, this approach is agnostic to
the underlying heterogeneous memory tiers and results in sub-
optimal page replacements to slower disk-based storage tiers,
leading to resource underutilization, performance degradation
due to major page faults, and low system throughput.

To address the above challenges, we propose a page re-
placement policy, shown in Algorithm 2, to mitigate the
impact of suboptimal page faults to accommodate bandwidth-
intensive and time-critical HPC workflows. We adopt a dy-
namic memory eviction model based on the characteristics of
the function such as latency-sensitivity or short-lived function.
Our page replacement does not depend on the input flags
or predictor output, however, these flags enable fine-tuned
page replacement for specific workflow types. Note that the
predictor is only used for estimating initial allocation using
previous execution logs or heuristics in the absence of flags.
The replacement policy also considers page temperatures and
memory access patterns for all colocated workflows to identify
and prioritize the eviction of cold pages. The algorithm takes
the number of pages to be replaced (r) as input based on
the system-level page faults and filters out the memory pages
belonging to the above class of applications (Lines 4-5) based
on the victim pages identified by the Linux kernel. The



filtered pages are tracked and moved to the lower memory
tier rather than swapped out to the underlying disk-based swap
space (Line 7). Once the victim pages are identified, they are
swapped to the swap space and replaced with the requested
page by the application. Finally, the allocation map is updated
with the replaced pages (Line 8). Our page replacement policy
ensures that the memory pages belonging to the latency-
sensitive and short-lived workflows are not blindly swapped
out by the Linux kernel resulting in major page faults that
eventually degrade application performance.

4) Intelligent Page Movement Policy: To improve applica-
tion performance and reduce the latency of accessing memory
pages, we propose an intelligent page movement policy that
proactively moves memory pages between various memory
tiers and implements a proactive page-swapping mechanism
that swaps out memory pages to the CXL memory. To mitigate
the negative impacts of proactive swapping, the swapped-
out memory pages are cached in the page cache if there
is enough memory available on the main memory and are
marked as dispensable and the corresponding page table entry
is updated. If enough system memory is not available, then
the memory pages are simply moved to the CXL memory
tier. Once the system memory runs out, instead of swapping
pages to the swap space, the pages in the page cache are
first swapped out and then the workflow memory pages are
swapped. The page movement from the main memory is
based on workflow characteristics, e.g., latency-sensitivity, to
the CXL memory and then eventually to the local disk. The
proactive page swapping also performs memory compaction to
reduce fragmentation and enable contiguous memory blocks
to be allocated to workflows for colocating more workflows
on the system, thus improving system utilization.

The proposed page movement policy also moves pages be-
tween persistent and CXL-attached memory tier based on the
available page access heatmaps as discussed in Secion III-C1.
This enables the runtime to effectively move pages to faster
memory tiers that were previously identified as cold but later
categorized as hot pages. Our application-aware intelligent
page movement policy prioritizes application pages that do
not belong to latency-sensitive or short-lived applications. If
a page belonging to the above classes of applications must
be moved, then the policy prioritizes pages belonging to the
pageable memory region as defined in the page allocation
map. Our intelligent page movement policy minimizes the
impact of page swapping by enabling the swapped pages to be
available in the fastest available memory tier. Finally, our page
movement policy reduces the number of major page faults and
subsequently increases the number of minor page faults as the
page is accessible on other memory tiers or the page cache.

5) Management of Shared Memory Across Workflows: CXL
memory provides a fast backend to improve the performance
of shared memory regions for HPC workflows. Input or read-
only data shared between workflows can be staged in the CXL
memory, which can be leveraged by the HPC job scheduler
e.g. SLURM, to launch workflows at scale and minimize
the scale-up time and data transfers between workflows. For

example, launching thousands of HPC workflows using a
custom Singularity container image requires the image to be
moved to all the servers that will run the job workflows. This
creates a network and I/O bottleneck when a large number
of workflows access the same data resulting in an increased
execution time to prepare the runtime and increase the cold-
start latency for containers. For simplicity, we assume that the
workflow manages the shared memory and handles locking
mechanisms as offered by several libraries [58], [59] to block
read or write operations during an ongoing write to the shared
memory region. We provide three strategies for efficiently
managing shared memory between workflows at the workflow
and platform levels. First, shared memory pages are made
locality-aware by incorporating the location of workflows
accessing the shared memory by the HPC job scheduler. Such
memory pages are hosted on the CXL memory accessible
to both workflows, and the memory pages are cached in
the local buffers for fast access on each server. Second, to
improve the capability of the HPC job scheduler to scale up
workflows and reduce the cold start latency, we leverage the
CXL memory to host container images and application data.
Third, our proposed runtime keeps track of the memory tagged
as shared memory and ensures that during a scale-down event,
the shared memory is not deallocated. The shared memory is
freed when all references in the corresponding page tables
have been removed. These approaches ensure that the shared
memory is effectively allocated, managed, and utilized for
large-scale containerized HPC workflow deployments.

IV. PERFORMANCE EVALUATION

In this section, we present the evaluation of the proposed
memory management policies for HPC workflows using tiered
memory. We explain our prototype implementation, evaluation
methodology, testbed, workflows, and performance metrics
that we use to analyze and compare our proposed runtime
with baseline and other alternative execution approaches.

A. Prototype Implementation

We implemented the proposed runtime using approximately
1500 lines of C code including two Linux Kernel modules,
and integrated it with the HPC job scheduler SLURM [60],
container framework Singularity [10], and Pegasus [28] WMS.
Our runtime allocates the initial memory and serves workflow
requests using the provided APIs for allocating and deallo-
cating memory across the tiered memory. In our prototype
implementation, we modify SLURM to support the required
flags along with the job script to infer hints about the charac-
teristics of workflow for allocating and deallocating memory
for that workflow. Our hand-tuned implementation customizes
the page allocation and replacement policies to incorporate
additional memory tiers hosting one workflow per container
and launching multiple workflows on the HPC cluster.

B. Evaluation Methodology

We compare our runtime with the baseline scenario where
HPC workflows are colocated and frequently run out of



memory resulting in swapping out of memory pages. We also
compare its performance with a more realistic scenario where
workflows memory is allocated from CXL memory without
considering the workflow performance characteristics. In our
evaluation, we study the following metrics to demonstrate the
effectiveness of our proposed approach: total workflow execu-
tion time, number of page faults, total execution makespan
of HPC workflows submitted as batch jobs, and workflow
and cluster scalability. The total execution time is the time
required to complete the scheduled workflows and return the
results. The bandwidth and latency numbers are reported for
the CXL memory allocated to the workflows and compared to
the local memory and swap space. Lastly, we use the number
of memory accesses, the amount of data swapped to disk,
and CXL memory to gauge the performance of the memory
management policies. To evaluate workflows that have varying
memory access patterns we randomly select workflows and
substitute them with versions that request additional memory
during execution using our APIs and incorporating specific
flags. This approach ensures that the experimentation environ-
ment remains dynamic, facilitating the exploration of various
memory access patterns that may evolve during execution. We
run each experiment 10 times and report the average. Overall,
we observe a negligible variance, i.e., less than 5% between
different executions of the same experiment in our evaluation.

C. Evaluation Setup

1) Testbed: Our evaluation setup consists of a cluster of
8 bare-metal servers connected using 10G Ethernet. Each
server has two Intel Xeon Gold 6126/6240R/6242 processors,
contains 512 GB of main memory, 1 TB of Intel Optane
DC persistent memory, and runs Ubuntu 22.04 LTS server
operating system. We deploy SLURM along with Singularity
on all servers in our evaluation setup. We provision the tiered
memory using the local DRAM, persistent, and CXL memory
available on the servers via the CXL interconnection. The CXL
memory is emulated [40], [61], [62] using the remote NUMA
socket as advocated by POND [63] and CXLMemSim [62]. In
our testbed, we observe the local and remote NUMA latencies
to be ∼80 ns and ∼140 ns, respectively, which represent the
approximate latency of a CXL-attached memory [46], [63].

2) Evalation Workflows: Modern HPC workflows [64]–[67]
typically consist of core scientific computing (SC) simula-
tions [5], surrogate deep-learning (DL) tasks that assist the
core simulation [68]–[70], data compression/decompression
(DC) [71]–[73] for collective communications and storage, and
data mining (DM) [74]–[76] required by analytics engines to
steer the experimental trajectory in real-time. In our evalua-
tions, we consider HPC workflows composed of these where
each workflow represents jobs with unique characteristics,
i.e., computing (requires powerful CPUs), data (processes
large volumes of data), bandwidth-intensive (requires large
bandwidth), latency-sensitive (requires fast access), and short-
lived. DL is a data and bandwidth-intensive workflow in which
we train the popular NLP model, i.e., Bert [43], over the
IMDB dataset [77] for a total of 5 epochs. The DM workflow

 0

 100

 200

 300

 400

 500

DL DM DC SC

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

IE CBE TME IMME

Fig. 5: Impact of our runtime on the studied execution environments.

is a latency-sensitive workflow running a task on Spark that
performs ETL [78] over the US census data [79] and computes
the diversity index. The DC workflow is a compute and data-
intensive workflow in which we run Zip [80] compression on
a set of 50 GB input files. The SC workflow runs BFS using
igraph [81] on a binary tree.

3) Execution Environments: To study the impact of our
memory management policies, we define four realistic exe-
cution environments for running HPC workflows based on
the availability of memory and storage subsystems. These
execution environments are:

1) Ideal Environment (IE) represents an ideal baseline
environment with enough local memory.

2) Constrained Baseline Environment (CBE) represents a
more realistic environment with limited system memory
and memory pages are frequently swapped out.

3) Tiered Memory Environment (TME) is based on the
Constrained Baseline Environment but uses tiered mem-
ory for memory allocation with default Linux page
promotion and demotion based on page temperatures.

4) Intelligent Memory Management Environment
(IMME) is based on the Tiered Memory Environment
and uses our intelligent memory management policies.

D. Performance Results

In this section, we present the performance results of our
proposed approaches by executing the workflows on the stud-
ied execution environments and comparing their performance.

1) Impact of Tiered Memory on Total Execution Time of
HPC Workflows: We study the impact of allocating tiered
memory to HPC workflows and report the total execution time
for the studied execution environments. The results are shown
in Figure 5. We observe that the Ideal Environment takes the
least execution time for all studied workflows because suffi-
cient system memory is available to host the entire footprint of
HPC workflows in memory. We observe degraded performance
for the Constrained Baseline Environment as compared to
Ideal Environment due to the limited system memory avail-
ability and frequent swapping of workflow memory pages to
slower tiers. Similarly, the performance of latency-sensitive
and short-lived, i.e., the DM workflows, drops significantly due
excessive swapping and contention. However, the availability
of tiered memory in the Tiered Memory Environment reduces
this impact by providing a faster alternative and performs
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Fig. 6: Impact of our proposed runtime on the workflow performance
with varying tiered memory availability.

better than the Constrained Baseline Environment. Similarly,
for Intelligent Memory Management Environment, we observe
that our runtime utilizes tiered memory to improve the per-
formance of workflows by allocating memory to appropriate
workflows, intelligently moving pages between memory tiers,
and proactive swapping memory pages to the CXL memory
tier. Overall, we observe that the Intelligent Memory Man-
agement Environment reduces the execution time of studied
workflows by up to 7%, 87%, and 25% as compared to the
Ideal Environment, Constrained Baseline Environment, and
Tiered Memory Environment, respectively.

We also study the impact of varying tiered memory alloca-
tions on the execution time. Figure 6 shows the results. Here,
we vary the tiered memory allocation from 10% to 50%, where
each data point represents the percentage of workflow memory
allocated from the CXL memory tier. In the Tiered Memory
Environment, we observe that as we increase the allocation of
CXL memory to the workflows, the execution time increases
due to the additional latency associated with accessing the
CXL memory. We also observe that the Tiered Memory Envi-
ronment does not manage tiered memory efficiently and causes
bandwidth-intensive workflows to not fully utilize the addi-
tional available bandwidth, and latency-sensitive workflows
to experience additional latency over the CXL interconnect.
Since our proposed runtime allocates tiered memory based
on workflow requirements and characteristics, we observe a
reduced execution time for the studied workflows. Moreover,
workflows that require additional memory continue to execute
by expanding their memory footprint on the tiered memory
which would otherwise crash due to limited local memory
or fixed memory allocations. Overall, we observe that our
memory management policies improve workflow performance
by up to 80% as compared to the Tiered Memory Environment
by efficiently allocating and managing memory tiers based on
workflow characteristics and requirements.

2) Impact of Page Allocation Policy on Workflow Perfor-
mance: We study the impact of our page allocation policy
on workflow performance by launching multiple instances
of the studied workflows on the HPC cluster. To evaluate
the effectiveness of our allocation policy, we report the total
execution time of each workflow in Figure 7. We com-
pare our page allocation policy with two approaches: 1) the
Default Allocation policy where the system memory and
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Fig. 8: Impact of our memory allocation policy on the execution
makespan of the studied workflows.

CXL memory are allocated to workflows regardless of its
requirements; 2) the Uniform Allocation policy allocates CXL
memory to all workflows in a uniform fashion regardless
of the workflow requirements. We observe that the Default
Allocation policy allocates CXL memory to workflows based
on its demand without catering to the class it belongs to
and results in degraded performance for latency-sensitive and
short-lived workflows. This approach is beneficial for latency-
sensitive workflows and capacity-intensive workflows, but the
performance of latency-sensitive workflows degrades as soon
as the memory footprint overflows to tiered memory. The
Uniform Allocation policy results in the worst performance
for latency-sensitive workflows as they experience additional
access latency of the tiered memory due to interleaving.
However, interleaving results in improved performance for
bandwidth-intensive workflows due to the availability of addi-
tional bandwidth. Overall, the Uniform Allocation outperforms
the Default Allocation, however, the memory allocation is not
aware of the workflow characteristics. The performance of
Uniform Allocation can be further improved with weighted
interleaving, however, setting weights does not consider the
characteristic for all workflow types. We also observe that our
memory allocation policy reduces the total workflow execution
time by intelligently allocating CXL memory to workflows
to minimize the impact of additional access latency. Overall,
we observe that our allocation policy reduces the execution
time by 44% and 8% on average as compared to the Default
Allocation and Uniform Allocation strategies, respectively.

We also study the impact of our memory allocation policy
on each class of workflow by varying the percentage of
available DRAM to each workflow as a function of its working
set size (WSS). The results are shown in Figure 8. We observe
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Fig. 9: Impact of our page movement policy on workflow page faults.

that as the amount of DRAM available to latency-sensitive
workflows decreases, the memory access time increases re-
sulting in a significant impact on makespan and performance.
Similarly, for bandwidth-intensive workflows, we observe that
our memory allocation policy leverages the available CXL
memory to improve the overall throughput by leveraging the
additional memory tiers. For Tiered Memory Environment, we
observe that as the memory available to workflows decreases,
the hot pages are promoted to DRAM reducing the impact
of additional latency of CXL memory. Moreover, the speedup
is achieved as the additional memory availability reduces the
impact of swapping to slower storage for the Ideal Environ-
ment. Moreover, workflows that require large memory capacity
to successfully execute, benefit from potentially unlimited
memory availability from the CXL memory. Overall, we
observe that our memory allocation policy reduces the overall
makespan by 25%, 85%, 35%, and 71% on average compared
to Ideal Environment for deep learning, data mining, data com-
pression, and scientific workflows, respectively. Similarly, we
observe that our memory allocation policy reduces the overall
makespan by 8%, 31%, 9%, and 22% on average compared to
Tiered Memory Environment for deep learning, data mining,
data compression, and scientific workflows, respectively.

3) Impact of Page Movement Policy on Workflow Perfor-
mance: We study the impact of our intelligent page movement
policy by observing the page fault statistics for the studied
workflows. The results are shown in Figure 9. We observe
that in the Ideal Environment, the Linux kernel swaps out
memory pages based on the least recently used (LRU) policy
regardless of the workflow requirements or characteristics.
This causes a performance drop in latency-sensitive workflows
which are most susceptible to additional latency when pages
are swapped back in by the Linux kernel. We observe that
with the availability of CXL memory, our page movement
policy reduces the number of pages that are swapped to the
disk by reducing the major page faults, thereby, improving
workflow performance. However, workflows that are extremely
sensitive to latency suffer additional latency when reading and
writing from CXL memory. Our intelligent page movement
policy reduces the number of major page faults by moving
pages to the CXL memory which in turn increases minor
page faults for each workflow. Furthermore, Linux swapping
increases workflow execution time even with CXL memory.
We observe that our intelligent page movement policy per-
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Fig. 10: Impact of our runtime on execution time of 3000 workflows
on an 8-node cluster.

forms workflow-attuned page movement and ensures that the
memory pages are available in the fastest tier and pages of
latency-sensitive and short-lived workflows are protected from
swapping. Our intelligent memory movement also performs
proactive swapping in the background in addition to moving
memory pages between various memory tiers. Our proactive
swapping moves out workflow memory pages that are less
sensitive to the overhead of moving pages back into the
memory. This enables keeping more pages of latency-sensitive
and short-lived workflows in the memory. Overall, we observe
that our workflow-attuned page movement and proactive page-
swapping improve workflow performance by 46% as compared
to the default swapping policy.

4) Scalability Analysis of our Proposed Runtime on Work-
flow Performance: We increase the size of the HPC cluster
and the number of concurrent workflows to study the impact of
our proposed runtime on a large HPC cluster. We launch 2000
instances of the studied workflows (150 for DL, 1100 for DM,
150 for DC, 600 for SC workflows) concurrently and observe
the impact on the workflow execution time. Figure 10 shows
the results of this experiment. We observe that the execution
time is significantly reduced with the increasing number of
cluster nodes thanks to the overall memory allocation and
page movement on each server leveraging the CXL memory
effectively. With the Constrained Baseline Environment, the
execution time is the highest due to the limited resource avail-
ability and the contention at each node of the cluster. As the
memory utilization of the system increases due to colocation,
the Tiered Memory Environment efficiently utilizes the tiered
memory to promote hot pages to faster tiers improving the
overall workflow performance. Moreover, we observe that for
large-scale invocations, the overall execution time and the
workflow startup time are reduced with Intelligent Memory
Management Environment due to the effective placement of
shared files on the CXL memory that is accessible to all
the nodes in the cluster. Overall, we observe a performance
improvement of up to 51%, 76%, and 32% compared to the
Ideal Environment, Constrained Baseline Environment, and
Tiered Memory Environment, respectively.

We also study the impact of concurrent workflow invo-
cations on the overall execution time of batch HPC jobs
containing all studied workflows with varying, i.e., 100, 200,
400, and 800, instances. The results are shown in Figure 11.
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We observe that as the number of concurrent workflows
increases, the execution time also increases due to resource
contention at servers. We observe a negligible overhead, i.e.,
4%, of our proposed runtime as the workflows are scaled
up due to efficient multi-tiered memory allocation policy and
intelligent page movement to ensure that the workflow startup
time is reduced. Overall, we observe that our proposed runtime
reduces the execution time by up to 19%, 48%, and 4%
compared to the Ideal Environment, Constrained Baseline
Environment, and Tiered Memory Environment, respectively.

V. RELATED WORK

Workflow Management Systems and HPC Workflows:
Modern large-scale HPC workloads typically consist of multi-
ple complex workflows represented as DAG, and executed on
HPC systems. To address complex data, task, and resource
dependencies, workflow management systems (WMS) are
used to run such HPC workloads. WMSs such as Balsam [32],
Pegasus [28], and Cromwell [29] have been extensively used
for steering complex scientific experiments [82], real-time
data analysis [83], ensembles [84], deep-learning based sur-
rogates [85], etc. for both baremetal and containerized execu-
tions. WMSs utilize HPC schedulers such as SLURM [60] or
COBALT [86] to handle scheduling requests. However, none
of the WMSs perform task scheduling based on the memory
requirement of the workflow/tasks, resulting in suboptimal
resource allocation, utilization, and reduced performance.
Tiered Memory Systems: Tiered memory systems in HPC
address the increasing memory capacity, bandwidth, and la-
tency requirements of HPC workflows. These systems leverage
different memory technologies, e.g., DRAM, PMem, and
CXL-based memory, where each memory type offers distinct
performance characteristics [87], [88]. DRAM provides high-
speed and low-latency access while PMem offers non-volatile
memory and bridges the gap between DRAM and storage, en-
abling data persistence even during power loss [89]–[91]. CXL
memory provides fast, high-capacity, and low-latency access
to applications enhancing scalability and resource pooling in
tiered memory systems for improved HPC performance [41],
[92]–[94]. Tiered memory systems also improve overall mem-
ory utilization by intelligently allocating data to the most
appropriate tier based on access patterns and performance
requirements [95]–[97]. However, neither the applications nor
the platforms are optimized to leverage the true potential

of tiered memory systems resulting in degraded application
performance and system utilization.
Memory Management Approaches: Tiered memory man-
agement approaches have been extensively explored by sev-
eral studies such as Nimble [57], TPP [98], HeMem [99],
Pond [41], AutoTM [100] etc. These approaches perform
application-agnostic memory allocations and page movement
across various memory tiers. However, these techniques result
in degraded performance for colocated HPC workflows with
diverse memory requirements. Moreover, they perform strictly
hierarchical page movement and do not perform concurrent
tiered memory allocation to optimize bandwidth through par-
allel interconnects. Other efforts [101]–[105] either solve the
challenge of memory management for terabyte-scale appli-
cations (e.g., HM-Keeper [101]) or partially optimize and
automate memory management across multiple memory tiers.
Similarly, MTM [106] performs application-transparent page
management based on profiling, multi-tiered page migration
policy, and huge page awareness. Our approach extends on
the general design ideas of the above state-of-the-art tiered
memory approaches, and incorporates applications’ memory
characteristics for efficient memory management.

VI. CONCLUSION

Containerized HPC workflows have gained rapid adoption
for running HPC workloads due to their native support for
high concurrency and scalability. However, running multiple
containerized HPC workflows present unique challenges as-
sociated with memory including performance penalties due
to limited memory bandwidth, latency, and workflow-agnostic
page management. Recently, tiered memory systems have
been explored to address the above challenges, however,
current memory management approaches do not perform
application-attuned memory allocation and management to
maximize workflow performance. In this paper, we explore
tiered memory systems for running containerized HPC work-
flows and propose application-attuned intelligent page allo-
cation, movement, and replacement policies to improve per-
formance. We integrate our proposed runtime with popular
HPC scheduler (SLURM) and container runtime (Singularity)
and evaluate its performance using diverse HPC workflows
with various computing, capacity, bandwidth, and latency
requirements. Our evaluation shows that our proposed runtime
reduces workflow execution times by up to 51%, 87%, and
35% as compared to the ideal, realistic, and optimized tiered
execution environments, respectively. In the future, we plan to
extend our page allocation policy to support variable latency
and bandwidth to enable more efficient page replacement and
movement. Furthermore, we plan on extending our implemen-
tation to include accelerator memory.
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