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Abstract—Cost estimation is crucial in the performance mod-
eling of parallel algorithms and allocation of computational
resources on distributed systems. This paper presents a novel
methodology for estimating the cost of constrained producer-
consumer (CPC) algorithms. In CPC algorithms, the computation
is performed by classes of nodes (tasks), separated in time.
The methodology combines data flow analysis with communi-
cation latencies to determine the production and consumption
of data on different processors, which helps in determining the
amount of computations and communication. The cost metric
that we develop in this paper uses computational imbalances
and communication load, and determines a single cost value.
The resulting metric is unique, as it provides the first model
that targets CPC algorithms. It has wide application in Ge-
netic Algorithms, molecular dynamics, scheduling schemes and
computational epidemiology. We provide a general method for
determining the application-specific constants of the cost metric.
As an example, we extract the constants for EpiSimdemics (a
highly scalable contagion simulator), and give guidelines for
applying the procedure to other CPC algorithms. Our evaluations
show that the cost metric estimated the execution times of a
contagion simulator with less than a 6.5% error. The metric can
be used in optimal assignment of computational resources.

Keywords-Cost Estimation; Producer-Consumer Parallel algo-
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I. INTRODUCTION

Producer-consumer-based modeling is a natural and widely
used approach for modeling complex systems composed
of multiple interacting entities. A large group of parallel
algorithms belonging to the class of producer-consumer models
can be classified as constrained producer-consumer (CPC)
algorithms, also called bulk synchronous parallel (BSP) [1], [2]
model. Processing of a CPC parallel program on a distributed
system is performed iteratively by classes of tasks, (C1,. . .,CN ),
in N phases. The tasks in successive classes have a producer-
consumer relationship. In the first N-1 phases, tasks in Ck

produce messages for tasks in Ck+1 to consume. In the last
phase (phase N), tasks in CN produce messages for tasks in
C1 to consume. One distinguishing feature of these types of
algorithms is that the processing of consumer tasks will not
start until they receive all the messages destined for them.

A large number of applications belong to the class of CPC
algorithms. They range from modeling Genetic Algorithms [3],
[4] and molecular dynamics [5], to simulating the outbreak
of epidemics [6]–[8] and threat of mobile malware [9], from

modeling the human immune system [10] to understanding the
consumer purchasing behavior [11], and many others. Besides
applications, many frameworks naturally fit into the CPC
category. One such example is iterative mapreduce [12], [13],
where the program is run iteratively by sets of mappers and
reducers. In iterative mapreduce, the mappers and reducers
work as producers and consumers, alternatively.

Given that a considerable number of applications are modeled
using CPC algorithms, we posit that it is worthwhile to
explore the load characteristics of such applications aimed
at estimating their execution cost. The cost metric will help in
evaluating various data partitioning and load balancing schemes,
estimating the execution cost of a study, or a series of studies
and in the allocation of computational resources. Moreover,
a number of future applications, including load balancing
schemes and performance analysis tools, can benefit from
it.

An interesting feature of many CPC algorithms is that the
computations performed by its tasks are a function of the
number of messages exchanged between them. In each iteration,
the producer needs to send data to a subset of the consumers
in the form of messages, where, the consumers perform
computations on received messages. Given the semantics of the
simulation algorithm and data-flow analysis, we can determine
the number of computations performed by each task.

In this paper, we present a novel methodology for estimating
the cost of CPC algorithms. Our work combines data flow
analysis with estimation of computational imbalances and
communication load to develop a cost metric, which estimates
the execution cost of a CPC parallel program. The cost
metric has N+1 components: N computational components
(one for each class) and one communication component. The
execution cost of a class (of tasks) is determined by the most
compute-heavy processor (in the presence of synchronization,
as shown in Figure 1), therefore, we use the load of the most
loaded partition (of each class) to quantify its computational
load. The communication load is measured in the number
of messages exchanged between processors, referred to as
remote messages. We use only one component to represent the
communication load in the cost metric. The regression method
(that we use in Section V to fit the model and determine their
constants) will adjust the communication components and their
constants according to the communication latencies in the target
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Fig. 1. The execution times of two classes (Class1 and Class2) of tasks
on seven processors. Due to synchronization, the most loaded processors,
PE0 during Class1 execution and PE4 during Class2 execution, make other
processors wait for them to reach synchronization.

application. The assignment of tasks to partitions plays a vital
role in the total cost of simulation. We assume the assignment
of one partition (of every class) to each computational element
(e.g., core). But, the model is equally applicable when assigning
multiple partitions of a class to a processor(s).

As an example, we tested our cost metric for EpiSim-
demics [6], [7], [14], a scalable parallel simulator that models
the spread of contagion in a population. Appropriate co-
efficients for the three cost metric components (two compu-
tational components and one communication component) are
derived using regression modeling and execution times from
running a variety of data-sets. The cost metric demonstrates the
benefits in optimal scheduling and allocation of computational
resources (see Section VII). Moreover, it compares the perfor-
mance of partitioning algorithms. We illustrate the method for
EpiSimdemics; however, the methodology is equally applicable
to the broad class of CPC parallel applications. The complexity
of the model increases linearly with an increase in the number
of classes.

Although our definition of CPC model is similar to BSP,
we have some differences/additions to it. First, in CPC, the
computational load of tasks in a class is related to the amount
of incoming and outgoing messages. Second, CPC models
are iterative, where each iteration has N phases. Third, the
cost of the algorithm is not necessarily linear, and may
be a combination of linear and non-linear terms. Fourth,
we show a detailed statistical modeling to extract the cost
equation and constants associated with its components. Finally,
we capture the computation/communication overlap using
statistical modeling.

In particular, our key contributions are:

• First study of computational and communication loads in
the Constrained Producer-Consumer parallel algorithms,

• A cost metric for the cost estimation of CPC algorithms,
• Methodological determination of the cost metric constants

for EpiSimdemics using statistical regression analysis, and
• Demonstration of the benefits of the cost metric in

performance evaluation and allocation of computational
resources on a distributed system.

The rest of the paper is structured as follows. Section
II formulates a general form of CPC algorithm. Section III
performs load analysis of CPC algorithms. Section IV develops
a metric for the cost estimation of CPC algorithms. Section V
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Fig. 2. Entities in CPC parallel-program are shown by a multi-partite
interaction graph. The nodes represent the tasks, and the edges show data
dependency between the tasks.

develops a methodology for modeling fitting and determination
of constants. Section VI determines the cost metric for
two example applications (EpiSimdemics and ASPARAGOS).
Section VII demonstrates the benefits of the cost metric
in performance evaluation and allocation of computational
resources. Section VIII compares this work to the related state-
of-the-art and Section IX presents concluding remarks.

II. THE CONSTRAINED PRODUCER-CONSUMER
ALGORITHM

In this section, we show a generalized form of the CPC
parallel-algorithm. Entities in the model can be characterized
by a multi-partite interaction-graph as shown in Figure 2. The
vertices represent the tasks, and the directed edges correspond
to communication from one task to another.

Based on the type of computation they perform the tasks are
divided into N distinct sets of nodes. Tasks in successive classes
act as producers and consumers. In each step, the consumers
ensure that they have received all the messages sent to them
before starting to process them.

1: initialize(); . assign tasks to processors
2: for time-step = 1 to termination condition do
3: for k = 1 to N do
4: foreach c ∈ Ck do
5: MOc ←compute(c); . process received messages

and generate new messages
6: sendMessages(MOc); . send messages
7: end for
8: foreach c ∈

{
C1 if k = N ;
Ck+1, otherwise

do

9: MIc ←receiveMessages();
10: compute new task state
11: end for
12: synchronize(); . ensure all msgs received
13: end for
14: end for

Fig. 3. The general CPC parallel-algorithm, where c represents a task. MOc

refers to the outgoing messages of task c, MIc refers to the incoming messages
of task c, and N refers to the total number of phases. The termination condition
can refer to a specific number of time-steps or a more complex convergence
criterion.
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The algorithm progresses through several time-steps. A time-
step is divided into N phases, one per class.

1) At the start of each phase k, tasks in Ck generate and
send messages. The message has a destination task in
Ck+1 if k<N. Otherwise the message is destined for a
task in C1.

2) After all the tasks in Ck have finished sending their
messages, a synchronization happens. This is a global
synchronization, guaranteeing that all messages have
been received by all the consumers.

3) The consumer tasks process their received messages, and
update their state before starting the next phase.

4) When tasks in C1 have received their messages from
tasks in CN , the next time-step starts.

III. LOAD ANALYSIS AND CHARACTERIZATION

In this section, we perform load analysis of the gen-
eral CPC algorithm discussed in Section II. The parallel
CPC program can be characterized by an interaction graph,
G(C1, . . . , CN , E), as shown in Figure 2. The vertices repre-
sent the tasks, and the edges correspond to communication
dependencies between those tasks. The weight of a vertex gives
the relative computational load of that task, and the weight of
an edge gives the relative amount of communication required
between the tasks. Vertices (tasks) are grouped into N distinct
classes (C1, . . . , CN ). Each task works as a producer and a
consumer, alternatively, and is assigned to exactly one class.

An important feature of CPC algorithms is the communi-
cation and its relationship with computation. The quantitative
relationship of the data received on a consumer task, and the
computation performed by it is application-specific. However,
the computation performed by a task in a CPC application is
related to the number of consumed and produced messages.
For determination of the number of computations of a task,
the number of messages generated or received by it needs to
be known.

A. Computations

The processing of a task belonging to class Ck happens in
two steps. First, it consumes messages received from tasks in
the producing-class (Cj).

Cj =

{
CN if k = 1;
Ck−1, otherwise

, Cl =

{
C1 if k = N ;
Ck+1, otherwise

This step usually involves updating tables, generating a new
population, filtering data elements or a combination of these.
Second, it generates messages for tasks in the consuming-class
(Cl). The task works as a mapper and performs a selection
on the data (i.e., selection, fitting, crossover, classifying,
categorizing and mapping, etc.). Therefore, the total number
of computations performed by a task, fk(c), where c ∈ Ck,
is a function of the processing done on messages received
from tasks in Cj , and computation performed in generating
messages for tasks in Cl, and is quantified in Equation 1.

fk(c) = f(OD(c), ID(c)) (1)

where OD(c) is the number of messages sent by task c, and
ID(c) is the number of messages received by task c.

The function fk(c) is very application-specific and could be
a combination of linear and non-linear terms (constant, poly-
nomial, exponential, etc.). For example, in EpiSimdemics [6],
the algorithm that models the spread of disease in population,
the computation is performed by two classes of tasks. The
number of computations performed by the task in the first
class is linear to the number of generated messages, and the
number of computations performed by the task in the second
class is proportional to the number of received messages. In
Section VI-A, we will quantify the number of computations
performed by tasks in EpiSimdemics as a function of the
number of incoming and outgoing messages, using application
semantics and regression analysis. The procedure used is
equally useful for all CPC algorithms.

B. Communication

The tasks exchange data in the form of messages. If the
generating and receiving tasks are on the same processor, then
the message is delivered locally. Otherwise, it is remote. As the
overhead of the local message is negligible, we use the total
number of remote messages exchanged across all processors to
quantify the communication load. The communication may be
overlapped with execution, and the overlap, if it happens, can
make the cost estimation of the entire application difficult. The
amount of communication-computation overlap is application-
specific, and a general rule cannot be established to estimate
it in advance. In Section VI-A, we use statistical regression
modeling to capture the overlap in an example application
(EpiSimdemics). The guidelines can be used to measure the
communication-computation overlap in any CPC program.

IV. THE COST METRIC

In this section, we develop a cost metric that quantitatively
measures the cost of CPC algorithms. The cost metric is
an extension of the min-max model developed in [15] and
covers the algorithms/models where the computation happens
in phases between classes of tasks. The key feature that enabled
our approach is the communication load and synchronization
separated computations. Figure 1 shows that due to synchro-
nization, the execution cost of a simulation is dominated by
the maximally-loaded or most-imbalanced processors (PE 0 by
Class 1 tasks and PE 4 by Class 2 tasks). Therefore, we use the
computational imbalances and communication load to estimate
the cost of CPC parallel simulations as shown in Equation 2.

Mcost = k1IC1 + k2IC2 + ....+ knICN + kcCL (2)

In the equation, ICj is the computational imbalance in Class
Cj tasks, and CL is the communication load. The constants,
k1, . . . , kn, and kc show the relative contribution of components
of the cost metric towards the cost of simulation. The metric
is applicable to a broad class of CPC algorithms, where the
nodes can be represented by a multi-partite interaction graph.

We quantify the computational and communication compo-
nents of the cost metric in terms of incoming and outgoing
messages (edges). Throughout the paper, we refer to the sum
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of incoming and outgoing messages as the degree. We denote
the total degree, in-degree and out-degree of a task c by D(c),
ID(c), and OD(c), respectively.

In distributed processing environment, the tasks are assigned
to partitions where each partition contains one or more tasks of
a particular class. Each task is assigned to exactly one partition.
The computational load of partition i belonging to class Ck is
denoted by L(Pki). It is the sum of the computational loads of
all the tasks in that partition and is quantified in Equation 3.

L(Pki) =
∑
c∈Pki

fk(c) (3)

The processing of classes is separated in time. In an ideally
load-balanced assignment of CPC tasks, each partition of a
class will have an equal computational load (i.e., mean-load of
class). The mean-load of Ck is denoted by Lk and is quantified
in Equation 4.

Lk =

R∑
i=1

L(Pki)

R
, (4)

where R is the total number of partitions. A partition is most
imbalanced in terms of computations of class Ck if it has the
maximum computational load. We measure the computational
imbalance in Ck by ICk, which is quantified in Equation 5.

ICk =
max((L(Pki))− Lk)

tLk
(5)

tLk =

R∑
i=1

L(Pki) (6)

In the Equations 5 and 6, tLk is the summation of com-
putational loads of all the tasks in Ck. The factor tLk (the
total Class-load) works as a normalization factor and keeps the
imbalance in bounds. If ICk is zero, then the computation of
Ck is perfectly balanced across all the partitions, which means
that every partition is assigned tasks (of Ck) with a total load
of Lk. In contrast, ICk is equal to one, which means that the
load of Ck is maximally imbalanced (, and this happens when
one partition receives all its tasks).

After quantifying the computational imbalance, we discuss
the communication load. Communication load is the ratio of
remote messages to total messages. It is zero CL when there are
no inter-process messages. In contrast, CL is one (maximum)
when all the messages are remote.

Another important component of cost analysis is synchro-
nization overhead, which we do not explicitly time, but it is
covered by regression modeling that we perform in the next
section.

V. MODEL FITTING AND EXTRACTION OF CONSTANTS

We use the multi-variable regression analysis to fit the cost
metric and determine its constants. The regression analysis
is useful for complex algorithms where a simple analytical
solution is hard to find. They generate concurrent activity
per data element and unpredictable, fine-grain communication
requests, which makes it harder to apply standard model

reduction techniques. Here are the general guidelines for
determining the cost metric and its constants for any CPC
algorithm.

1. Identify cost metric components: The regression method
expresses the response parameter (simulation time) as a linear
combination of the predictor (independent) variables. Each
application will have its own set of independent variables:
one computational component for each class and one com-
munication component. In the cost metric in Equation 2,
IC1, . . . , ICN and CL are independent variables, while Mcost
is the dependent variable.

2. Collect data for all variables: We need to collect data
from running the target application on a number of data samples.
The data samples are chosen to cover a wide range of input data
and to help create a more generalized model. For regression
analysis, the required number of samples are at least ten times
more than the number of variables [16].

3. Check data for normality: Data collected in the previous
step is checked for normality using histogram plotting in
statistical softwares (i.e., R, SPSS and JMP, etc.). A well-
shaped cosine plot shows that the data is normally distributed
in ranges for all variables.

4. Perform model fitting: The model is extracted using
cross-validation techniques [17]. This requires using two
samples of data: Sample1 for fitting the model and Sample2
for validating the obtained-model. The data collected in step
1 is divided into two samples (about 50% each) by statistical
software. Based on the analysis of correlation and scaler plots
of Sample1, a multiple regression analysis is employed to fit the
model. The model is determined using the residual plot and R-
square value. In the residual plot, if the variances of errors are
fairly evenly dispersed around the zero mean line across all the
levels of predicted values, the assumption is not violated. The
model can be improved by adding linear and non-linear terms
(polynomial and exponential, etc.) of independent variables
and applying transformations to them. The model fitting can
also be performed automatically by statistical software.

5. Validate the model: The results of the predicted model
determined using Sample1 can be validated on Sample2 by
comparing the R-square values. R-square value shows the
ability of independent variables in explaining the variability in
the dependent variable. It varies between 0.0 - 1.0, where a
value of 1.0 shows the perfect fit.

6. Check the model for over-fitting: It is very important to
check the model for possible over-fitting. The over-fitting can
be avoided in three steps. First, validate the model using cross-
validation techniques [17]. Second, collect enough samples
of the data (with dependent and independent variables) [16].
Finally, avoid over-interpretation by clearly stating the assump-
tions made (and providing enough details for another researcher
to replicate the work).

In the next section, we apply the methodology discussed to
determine the cost metric for EpiSimdemics.

VI. EXAMPLE ALGORITHMS

In this section, we apply regression modeling to determine
the cost metric and its constants EpiSimdemics [6], [7], [14].



5

TABLE I
COEFFICIENSTS FOR COST METRIC COMPONENTS GENERATED USING STATISTICAL REGRESSION MODELING.

Unstanderdized Std. Error Standerdized T Sig. Collinearity Stats
Constants Coefficients Coefficients Tolerance VIF

Constant .003 .000 27.332 .000
IC1 k1 .051 .007 .061 6.946 .000 .994 1.134

IC2 center k2 .747 .009 .833 81.855 .000 .652 1.534
IC2 center sq k2b 35.813 1.626 .181 22.023 .000 .994 1.006

CL kc .004 .000 .201 19.467 .000 .631 1.585

We also perform the cost analysis of a combinatorial genetic
algorithm, called ASPARAGOS [3].

A. EpiSimdemics

EpiSimdemics is a scalable parallel simulator that models
the spread of contagion across a social contact network. The
network is a bipartite graph containing person and location
nodes. Each edge between a person node and a location node
represents a visit to a location by that person. The persons
produce messages and send them to locations to consume. The
locations compute interactions (e.g., transmission of contagious
disease) between all pairs of spatially and temporally co-
located people and send the outcomes back to the persons.
EpiSimdemics is a good example of CPC modeling, where
person computation is performed by C1 tasks and location
computation is performed by C2 tasks.

1) Load Analysis: Before applying regression analysis, the
user needs to determine a quantification for the computational
components in terms of incoming and outgoing messages.
In EpiSimdemics, the number of messages that person tasks
receive are negligible, we estimate the relative computation time
of person tasks by the number of messages that they generate
(f1(c) = OD(c)). The number of messages that the location
tasks generate are negligible, therefore the relative computation
time of location tasks is estimated by the number of messages
that they receive (f2(c) = ID(c)). For space reasons, we omit
the details of load analysis. We use imbalance definitions in
Equation 5 and load definitions (of persons and locations) in
this section to quantify IC1 and IC2 respectively.

Next, we apply statistical regression analysis to fit the model
and determine constants for the three cost metric components
of EpiSimdemics.

2) Data for Regression Analysis: Data for regression analy-
sis is collected from running EpiSimdemics on 732 samples
of three data sets, Alabama (AL), Florida (FL) and California
(CA). Here is the methodology used to create data for regression
analysis.

We first create 64 partitions of AL, FL, and CA sets
using k-way and multi-constraint features of Metis [18], [19]
partitioning scheme. Metis created partitions serve as base
cases for generating other samples. The base cases give 18%
remote communication, and close to balanced person and
location loads (using definitions of person and location loads
in Section VI-A1). We modify the base cases by randomly
moving persons and locations from some of the tasks to

 
 

 
 

Fig. 4. Distribution of error do not critically deviate from the homoscedasticity
for Sample1.

other tasks to create a total of 732 samples. This creates
different person imbalances (IC1), location imbalances (IC2)
and communication loads (CL) in each sample. In the 732
samples, remote communication is varied over the range of 18%
- 100% of total communication. IC1 and IC2 is varied over the
range cover of 0% - 100% of mean person and location load
respectively, thus forming a representative sample of the space
of possible partitions. After collecting the data, we perform
statistical modeling to determine the cost equation and its
constants.

3) Model Fitting: The statistical analysis was conducted
using SPSS [20] version 20.0 on 732 samples with four
variables: simulation runtime (T), person computational im-
balance (IC1), location computational imbalance (IC2) and
communication load (CL). The histogram plot in Figure ??
illustrates that the data is fairly normally distributed for
all variables. We divided the 732 samples randomly into
two samples (approximately 50% by SPSS). According to
the results of the preliminary analysis of Sample1, such as
descriptive statistics and correlations between variables, a
multiple regression analysis was applied to Sample1 to fit
a parsimonious model that best fits to the data.

As shown in Table I, the final model includes a quadratic term
(IC2 center sq) for a mean-centered variable (IC2-0.0083)
as well as three linear terms (IC2 center, CL, and IC1). The
quadratic term was determined while adding the square and
cube terms of the independent variables to improve the fitness.
The final model was reached when the variances of errors
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were normally distributed around the zero mean line across all
levels in the residual plot 4. Independent variables in the final
model account for 97.8% of the variability in the dependent
variable (r2=0.956). In Table I, the regression coefficients
of IC2 center, IC2 center sq, IC1, and CL are positive
and statistically significant (p-value<0.001), implying that
increase of each independent variable when controlling for
other independent variables increases the simulation time (T).
Analysis of normality shows that the data is fairly normally
distributed for all variables.

4) Model Validation: We evaluate the results of the final
predicted model on Sample2. To investigate how much variation
in T in Sample2 is explained by the regression model obtained
from Sample1, we created a new variable, predicted T, using
the equation from Sample1 and then computed the correlation
coefficient (r = 0.981). Comparing the R-square (0.962) from
Sample2 with the R-square (0.954) from Sample1, it is slightly
larger unexpectedly rather than shrinking. This shows that our
model is valid.

We avoided the possible over-fitting by following the three
steps mentioned in Section V.

The equation is very application-specific and applicable to
EpiSimdemics only, and can be used for all of its data-sets.
The equation can be used for a varied number of processing
units. But, it is machine-specific and EpiSimdemics will
need a separate equation for each architecture. However, the
methodology is general, and is applicable to all applications.

B. Genetic Algorithm: ASPARAGOS

ASPARAGOS [3] is an important parallel Genetic Algorithm,
which uses poly-sexual voting to find optimum solutions to
population genetics. The algorithm defines a genetic repre-
sentation of the optimization problem and creates an initial
population of individuals. The processing happens in two steps.
In the first step, the individuals perform local hill climbing
to increase their fitness. After the hill climbing, they send
messages to all members of the neighborhood and the global
best individual for mating. In the second step, the individual
creates a new offspring (from mating) with genetic operator
using crossover, from which an outcome message is sent to
the visiting parent. If the offspring is fitter than the individual,
the individual is replaced with it. The algorithm goes through
iterations until the desired fitness is achieved by at least one
individual. The numbers of individuals and the neighborhood
size is fixed across iterations. However, the neighborhood for
different individuals may overlap with each other.

This application is a good example of CPC modeling, where
the hill climbing and selection is computed by C1 tasks and
crossover is computed by C2 tasks. Each task is assigned a
number of individuals, and each processor is assigned exactly
one task of every class.

Class1 (C1) Computation: Tasks in Class1 perform two
computations: hill climbing and partner selection. Local hill
climbing of individuals is done with a simple 2-opt exchange
(placement of two processes is exchanged). The exchange
happens if it improves the evaluation function. Hill climbing
happens until no improvement happens. Its complexity is

O(n2), where n is the size of neighborhood. In partner
selection, the individual sends messages to all the individuals
in the neighborhood and the global best individual. Therefore,
we estimate the relative compute time of C1 task by the
number of its incoming and outgoing messages, called degree
(f1(c) = D(c)).

Class2 (C2) Computation: Tasks in Class2 perform mating
between individuals. The individual mates with all the members
of the neighborhood and the global best individual. Since the
neighborhood size is fixed, each task is performing similar
amount of computation. Similar to C1 tasks, the compute time
of C2 tasks can be estimated using their degree (f2(c) = D(c)).

Communication Load: For mating, tasks in C1 send messages
to tasks in C2. Similarly, tasks in C2 receive outcome messages
from tasks in C1. Communication is local if the sending task
and receiving task are on the same processor, otherwise it
is remote. Communication load is measured in the number
of remote messages exchanged in all processors. Since the
neighborhood sized is fixed and the number of individuals
are fixed, the communication load stays the same through
iterations.

The cost metric for ASPARAGOS will have three compo-
nents: two computational (one for each class) and one commu-
nication component. The constants are application-specific, and
each genetic algorithm will have its own set of constants.
The cost metric and its constants can be generated using
regression modeling with data from different population sizes.
The extraction process will go through model fitting, validation
and over-fitting steps. More details about the procedure are
listed in Section V.

VII. EXPERIMENTAL EVALUATIONS

In this section, we show the ability of the cost metric in
estimating simulation cost. Later in the section, we discuss
the utility of the cost metric in optimal scheduling (in the
assignment of the number of processors) when running multiple
simulations in parallel.

A. Experimental Setup

Hardware: Our experiments were performed on a high-
performance computing cluster consisting of 318 compute
nodes. Each node has two octa-core Intel Sandy Bridge CPUs
and 64 GB of memory. The cluster uses infiniband (40Gbps)
technology for interconnections.

Data: We use EpiSimdemics to simulate the spread of H5N1
avian influenza across subsets of the social contact network of
the US population. The algorithms presented were evaluated
using North Carolina (NC) and California (CA) data sets. Each
test is executed for 120 time-steps (i.e., simulated days).

B. Cost Estimation and Strong Scaling

In this section, we show the ability of the cost metric in
estimating the execution times of EpiSimdemics. We present
strong scaling numbers for NC and CA data. NC data can fit
into the memory of a single node, while CA data requires a
minimum of two nodes. Pre-partitioned data is assigned in a
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Fig. 5. Comparison of the cost metric predicted and actual execution times when simulating NC and CA data. The data was partitioned using Round-Robin
and Metis schemes. (a) The cost metric estimates the running times of NC with very a small error. (b) The cost metric estimation is slightly better for the
larger data, CA, than NC. (c) The maximum estimation error is 6.5% only (NC on 4K processors).

one-to-one mapping of partitions to processors. More details
about the partitioning schemes (Round-Robin and Metis) and
their performance in EpiSimdemics can be found in [19].

Figure 5 compares the cost metric estimated running times
and actual running times for simulating NC and CA data. The
matching slopes of the actual and predicted curves shows
that the cost metric accurately estimates the strong scaling
running times for most cases. The lines diverge differently
for the two partitioning methods, showing the difference in
performance. The cost metric was able to accurately predict
this difference. The cost metric is slightly less accurate at
predicting the execution times for a very large number of
partitions. While a further study is required, one thought is
that the synchronization overheads become dominant once a
larger number of processors are in use [21], since the ratio
of computation to communication decreases as we distribute
data to more processors. CA, which is 4 times bigger than
NC, shows a smaller error at high partition counts. Figure 5(c)
shows the error in estimating the execution costs of NC and CA.
The error increases up to 6.5% when estimating the execution
time for NC on 4K processors. This shows that the cost metric
predicts execution times even for a large number of processors
with only a small error.

C. Resource Allocation using the Cost Metric

Since the cost metric predicts the strong scaling running
times with small error, we can use it to perform the cost analysis
of studies before launching the jobs. We can determine an
optimal allocation of processors to run each data that minimizes
the time to completion. Figure 6(c) shows that we get the best
performance when both the jobs are executing in parallel: NC
running on 896 processors and CA running on 3200 processors.

We showed the usefulness of the cost metric in resource
allocation of NC and CA; however, the metric is general and
can be used in job scheduling (resource allocation) of any
data running EpiSimdemics. The job scheduling algorithms are
well-studied, and we are not claiming any such contribution.
But, the cost metric can be used as an estimation function
to enable the job scheduler to determine optimal assignment.
Moreover, it is not necessary that all the jobs need to run
in parallel to minimize the time to completion. Rather, the
jobs can run in groups (subset of jobs), and get the optimal
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Fig. 6. Cost metric estimated execution times for running NC and CA data
in parallel. NC was run on k cores and CA on n-k cores. n, the total number
of cores (4K in this case), is fixed. The time to completion, max(CA-Pred,NC-
Pred), is minimized the most when NC is run on 896 cores, and CA is run on
3200 cores.

performance (minimize the time to completion of running all
the groups).

VIII. RELATED WORK

Load analysis and cost estimation metric provide powerful
tools for performing resource allocation, performance mod-
eling and load balancing in constrained producer-consumer
algorithms. Leslie [1], [2] introduced the bulk synchronous
parallel (BSP) model for modeling of parallel algorithms. In
BSP, the computation is performed in N step separated by
synchronization. BSP is similar to CPC, but in CPC, the com-
putational load may not be linear in terms of communication.
Also, we perform a detailed cost analysis of CPC algorithms,
which cover the computation-communication overlap, but the
BSP model doesn’t consider the computation-communication
overlap. Shen et al. [22] proposed a cost function for evaluating
the effectiveness of task assignment. The cost function measures
the maximum time for a task completion. Although the method
is useful for task-scheduling, it does not cover the cost analysis
of CPC algorithms. Angelia and Asuman [23] presented an
analysis of a distributed computation model for optimizing
the sum of objective functions in multiple agents. The model
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is good, but requires dynamic updates for cost estimation
and is not practical for static cost analysis. Ding et al. [24]
evaluated the min-max clustering principle for measuring the
load balancing in partitions. Ercal et al. [25] also developed
a cost function that the task assignment algorithms try to
minimize. However, the models are not directly applicable
to CPC algorithms that we consider in this paper. Our work
provides a detailed statistical modeling for extraction of the
cost metric and its constants.

IX. DISCUSSIONS AND FUTURE WORK

This paper presents a novel approach for quantifying the
computational loads of CPC algorithms in terms of com-
munication dependencies. Another important contribution of
this work is the development of a cost metric for parallel
CPC algorithms. The imbalance in workloads on different
processors is known to be a bottleneck for high resource
utilization. This is important in CPC programs, because the
processing of classes is sequential, and the most loaded partition
of every class makes the next class wait for it to reach
synchronization. We use the most imbalanced partition of each
class and remote communication to estimate the execution cost
of CPC algorithms. The constants associated with components
of the cost metric are very important and show the relative
contribution of computational and communication loads in the
total cost of simulation. Each application has its own set of
constants, and we outline a detailed statistical methodology for
extracting them. We illustrated the method for EpiSimdemics;
however, the methodology is equally applicable to a broad
class of CPC algorithms.

The cost metric predicts the strong scaling running times
with small error and has wide application in resource allocation
algorithms and performance evaluation of partitioning (load
balancing) schemes.

Our short-term goal is to show the applicability of the cost
metric to a variety of hardware, including peta-scale HPC
systems. In long term, we want to extend our developed cost
metric for use in dynamic load balancing of CPC simulations.
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