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1 INTRODUCTION
The current trend for high performance computing (HPC) systems
is that massively parallel HPC applications can su�er from imbal-
ance in computation and I/O performance, with I/O operations
becoming a limiting factor in application e�ciency [3]. The Lustre
�le system [5] is one of the most widely-used parallel �le systems,
supporting seven of the top ten supercomputers in the latest Top-
500 list (November, 2018) [1].

HPC system designers and system administrators need to un-
derstand both �le system and application behavior so that they
can design and tune HPC systems to run as e�ciently as possible.
In order to draw meaningful conclusions about how to improve
parallel �le system designs for all users of an HPC system, we need
to analyze statistics captured from the �le system itself (from �le
system data on compute nodes and from data on servers that man-
age the I/O requests from HPC applications) independently of user
applications.

In this poster, we collect and study �le system statistics from two
Livermore Computing systems with 15 PiB Lustre �le systems at
Lawrence Livermore National Laboratory (LLNL), namely Quartz
and Cab1. We collect two types of data from these systems.

• Aggregate Job Statistics: This data represents aggregate
statistics collected from �le system daemons on compute
nodes for all jobs that ran on these two systems during the
logging period: for Cab April 2015 – March 2018, and for
Quartz April 2017 – March 2018.

• Time-Series Job Statistics: This data represents time series
data collected at 60-second intervals from the metadata
server and object storage servers of Lustre for each job;
i.e., for each job, we record summary statistics for every
minute of the running job during which I/O operations
occurred. We collected this data from Quartz for the period
June 7, 2018 – July 10, 2018.

2 BACKGROUND
2.1 Lustre Distributed File System
The architecture of the Lustre �le system is shown in Figure 1 [6].
The Management Server (MGS) is responsible for storing the con-
�guration information for the entire Lustre �le system in the Man-
agement Target (MGT). The Metadata Server (MDS) manages all
the namespace operations for the �le system and are stored in an
Metadata Target (MDT). Object Storage Servers (OSSes) provide the
1Cab was decommissioned in June 2018.
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Figure 1: An overview of Lustre architecture.

storage for the �le contents on one or more Object Storage Target
(OST)s. Applications access the �le system data via Lustre clients.
The internal high-speed data networking protocol for Lustre �le
system is is managed by the Lustre Network (LNet) layer.

2.2 Clusters

Table 1: Cluster Con�gurations.

Cab Quartz
Processor Architecture Xeon 8-core E5-2670 Xeon 8-core E5-2695
Operating System TOSS 2 TOSS 3
Processor Clock Rate 2.6 GHz 2.1 GHz
Nodes 1,296 2,634
Total Cores 20,736 96,768
Total Memory 41.5 TB 344.06 TB
Interconnect QDR In�niband Intel Omni-Path 100 Gb/s
T�ops 426.0 3,251.4

Table 1 gives an overview of the two compute clusters (Cab and
Quartz) at LLNL used in our study. Both clusters have a 15 PiB
Lustre �le system as primary storage.

2.3 Data Collection
2.3.1 Aggregate Job Statistics. Both Cab and Quartz use the

SLURM job scheduler [7] to run a prolog and an epilog script which
records the counts from the Lustre proc�le (/proc/fs/lustre/llite/lustre-
�le-system/stats) for each node in the application allocation before
and after a job script completes. These per-node totals are then
summed to obtain the total for the job which is stored in an RDMS
database and queried.

The speci�c statistics used are:
• starttime, endtime, duration, uid, nodes
• mkdir, mknod, open, rename, rmdir, unlink
• read_bytes, write_bytes, read_bytes_count, write_bytes_count
• recv_bytes, recv_count, send_bytes, send_count



2.3.2 Time-Series Job Statistics. We collected Lustre JobStats
data [4] from the servers using Telegraf [8] and a customized lus-
tre2 plugin which samples the statistics by reading the proc �les –
/proc/fs/lustre/mdt/*/job_stats on MDS, and /proc/fs/lustre/obd�lter/*/job_stats
on OSSes. We took one sample every 60 seconds. The data gath-
ered by Telegraf was stored in in�uxdb [2]. The raw samples were
dumped from in�uxdb as CSV for analysis.

The speci�c statistics used are:
• MDS - jobstats_create, jobstats_mkdir, jobstats_mknod, jobstats_open,

jobstats_rename, jobstats_rmdir, jobstats_unlink
• OSS - jobstats_read_bytes, jobstats_read_calls, jobstats_write_bytes,

jobstats_write_calls
• jobid, time - Every statistic has a job ID and timestamp.

3 ANALYSIS
On Cab, the aggregate job statistics were collected for a period of
three years. 2,854,478 total jobs ran during this period. The number
of unique users which ran the jobs is 994.

On Quartz, the aggregate job statistics were collected for a year.
1,401,897 jobs ran during the one year and there were 584 unique
users.

Observation 1: Most of the users (greater then 65%) perform
signi�cant I/O in jobs, and the users mostly run write-intensive jobs.
This can be seen in Figure 2.

(a) Cab (b) Quartz

Figure 2: Total Reads and Writes per User (Zero values on
the right side show users who performed no I/O to Lustre).

Observation 2: 90% of jobs run for less than 2 hours and are
allocated less than 100 nodes. The mean value for duration of these
jobs is less than 52 minutes. This is evident from the Cumulative
Distribution Function (CDF) in Figure 3.

(a) Quartz: CDF Duration (b) Quartz: CDF #Nodes

Figure 3: Cumulative Distribution Function for Duration
and #Nodes in Quartz.

Observation 3: Less than 22% of users submitting write-intensive
jobs perform e�cient writes. Jobs with ine�cient writes have total
bytes written greater than the mean total write bytes across all
jobs and bytes written per call is less than the mean value of writes
per call across all jobs. Jobs with e�cient writes have both write

bytes as well as the bytes written per write call greater than the
respective mean values across all jobs.

Observation 4: I/O performed by a job is not correlated with
month, day of the month, day of the week, or presence of a holiday.
This is shown in Figure 4.

(a) Quartz: I/O Per Day (b) Quartz: I/O Per Day of Week

Figure 4: I/O Heat Map for 2017 per day and per day of the
week in Cab and Quartz.

Observation 5: 90% of jobs never write bursts larger than 1% of
memory size. It is seen that the write bytes over time is periodic.
Therefore, we assume that the bursts represent writing a single �le
and we add up the write bytes to get the size of the �le. Figure 5
shows that most of the jobs spend 100% of the I/O minutes in
utilizing less than 1% memory.

Figure 5: % I/O duration vs. write burst size as % of memory.

4 CONCLUSION
Our studies have indicated interesting results which show that most
jobs are write-intensive, showing the importance of improving �le
system write performance. Our analysis also led us to believe that
focus should be on jobs which run for short duration as the majority
of the jobs run for less than an hour. Also, there should be e�orts to
educate HPC users to develop applications which perform e�cient
writes. This would improve I/O performance as well as help in
reducing I/O contention among jobs.
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