
TagIt: An Integrated Indexing and Search Service
for File Systems

Hyogi Sim†,∗, Youngjae Kim‡, Sudharshan S. Vazhkudai∗, Geoffroy R. Vallée∗, Seung-Hwan Lim∗, and Ali R. Butt†
Virginia Tech†, Oak Ridge National Laboratory∗, Sogang University‡

{hyogi,butta}@cs.vt.edu,youkim@sogang.ac.kr,{vazhkudaiss,valleegr,lims1}@ornl.gov

ABSTRACT
Data services such as search, discovery, andmanagement in scalable
distributed environments have traditionally been decoupled from
the underlying file systems, and are often deployed using external
databases and indexing services. However, modern data production
rates, looming data movement costs, and the lack of metadata,
entail revisiting the decoupled file system-data services design
philosophy.

In this paper, we present TagIt, a scalable data management
service framework aimed at scientific datasets, which is tightly inte-
grated into a shared-nothing distributed file system. A key feature
of TagIt is a scalable, distributed metadata indexing framework,
using which we implement a flexible tagging capability to support
data discovery. The tags can also be associated with an active oper-
ator, for pre-processing, filtering, or automatic metadata extraction,
which we seamlessly offload to file servers in a load-aware fashion.
Our evaluation shows that TagIt can expedite data search by up to
10× over the extant decoupled approach.

CCS CONCEPTS
• Software and its engineering→ File systems management;
• Information systems → Distributed storage;

KEYWORDS
Distributed file systems, Search process, Indexing methods

ACM Reference Format:
Hyogi Sim†,∗ , Youngjae Kim‡ , Sudharshan S. Vazhkudai∗ , Geoffroy R. Vallée∗ , Seung-
Hwan Lim∗ , and Ali R. Butt† . 2017. TagIt: An Integrated Indexing and Search Service for
File Systems. In Proceedings of SC17, Denver, CO, USA, November 12–17, 2017, 12 pages.
https://doi.org/10.1145/3126908.3126929

1 INTRODUCTION
Big data management and analytics services play an ever crucial
role in modern enterprise data processing, business intelligence,
and scientific discovery. While the use of such services in the enter-
prise has received much of the attention, their use for scientific data
analysis promises to produce the most impact. Consider scientific
experimental facilities (e.g., Large Hadron Collidor [19], Spallation
Neutron Source [15]), observational devices (e.g., Large Synoptic

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
SC17, November 12–17, 2017, Denver, CO, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5114-0/17/11. . . $15.00
https://doi.org/10.1145/3126908.3126929

Survey Telescope [20]) and computing simulations of scientific phe-
nomena (e.g., on supercomputers [18, 21]), which produce massive
amounts of data that need to be analyzed for insights. For example,
a 24-hour run of the fusion simulation, XGC [22], on the Titan
machine [21] generates 1 PB of data each timestep, spread across
O(100,000) files on the parallel file system (PFS), Spider [38]. The un-
derlying storage system contains 1 billion files, and sifting through
them to discover relevant data products of interest can be extremely
cumbersome. Thus, there is a crucial need for fast and streamlined
data services to search and discover scientific datasets at scale.

There are a number of well-established large-scale parallel and
distributed file systems, such as GPFS [42], Lustre [8], HDFS [43],
GlusterFS [17], Ceph [45], PanFS [46], PVFS [40], and GoogleFS [28].
However, these focus on scalable storage and failure resilience, but
do not support the tight integration of scalable search and discov-
ery semantics into the file system. While services such as indexing,
searching and tagging exist for discovery in commodity, desktop
file systems such as HFS+ [5] for Mac OS X or Google Desktop [4],
such services cannot be simply extended or incorporated into PFS,
especially at scale. Thus, many scientific communities still resort
to manually organizing the files and directories with descriptive
filenames, and use extensive file system crawling to locate data prod-
ucts of interest. Besides problems with scaling, such approaches
lack the ability to capture more descriptive metadata about the data.
This has led to ad hoc solutions and cumbersome approaches us-
ing manual annotations and domain-specific databases [1, 3]. Such
solutions decouple the file system and the search/discovery infras-
tructure, where users explicitly publish the data products stored in
the file system to an external catalog, and provide metadata, out of
band of the data production process on the file system.

A number of factors underscore the need to revisit the decoupled
philosophy for designing data services for scientific discovery. First,
the decoupling of search/discovery from the file system inevitably
results in inconsistencies between the data files and the external
index. Second, since collecting metadata is a human-intensive pro-
cess, oftentimes users only provide basic metadata during data
publication to external catalogs, consequently limiting its efficacy.
Instead, we argue that there is significant value in providing hooks
so that users can annotate datasets in situ, as part of the file sys-
tem. File systems already provide extended attributes as a way to
add more metadata to files, which can be exploited to augment
domain-specific information. Third, the dearth of metadata is only
exacerbated by the rapid growth in data production rates and vol-
ume, and it can be very cumbersome for users to provide metadata
about all of these data products in a post hoc fashion, i.e., (much)
later than data production. There is a wealth of information buried
within these files, which if harnessed efficiently can help answer

SC17, November 12–17, 2017, Denver, CO, USA H. Sim et al.

numerous data disposition questions. Fourth, growing data produc-
tion rates imply that the data movement cost also grows manifold.
Typically, the process of data analysis entails the discovery of rel-
evant data or regions/variables of interest within the data, e.g., a
variable within a netCDF [10] dataset, by posing a query to an exter-
nal database catalog, and then moving the data from the file system
to an analysis cluster for post processing. This process incurs a lot
of unnecessary data movement. Instead, file system servers could
potentially aid in such data reduction during the discovery process,
thereby minimizing data movement. Finally, profiling of large-scale,
production storage systems has shown that there are enough spare
cycles on the file servers to take on additional services, e.g., Spider
servers have been shown to experience less than 20% of their in-
dividual peak throughput for 95% of the time [30, 33]. While this
may vary across deployments, there is the possibility of using the
spare cycles for additional services.

Contributions
We present an integrated approach, TagIt, to address the above
identified challenges. The goal of this project is to enable the index-
ing and search of data, resident on file systems, facilitating the fast
and efficient discovery of data. Our design of TagIt integrates a data
management service into the GlusterFS distributed file system [17],
to support scalable indexing and search of scientific data.
Tagging Associating an index term or a “tag” to stored data for
later quick retrieval has been shown to be very effective in com-
modity, desktop file systems [5], e.g., picture tagging, and improve
productivity manifold. However, the underlying truly distributed
architecture and scale requirements severely restrict the use of such
systems in large-scale parallel and distributed file systems. TagIt ex-
trapolates such capabilities to petabyte-scale file systems, wherein
users can associate a richer context to collections of files by adding
their own tags in order to quickly discover them, e.g., associating
a piece of metadata, “10th checkpoint of the Supernova explosion
job run,” to be able to quickly retrieve and operate on the tens of
thousands of files from a job simulating Supernova explosions.
DistributedMetadata Indexing To realize the tagging function-
ality, we have designed a consistent and scalable metadata indexing
service that indexes user-defined extended attributes, and is tightly
integrated into a shared-nothing distributed file system. Hosting the
metadata indexing service inside the file system effectively simpli-
fies many consistency issues associated with the external database
approach. The metadata index database is fully distributed across
the available file system servers, each of which manages a horizon-
tal shard of a global metadata index database for distributed query
processing. The approach does not have any centralized compo-
nents that can bottleneck in a large-scale deployment, and provides
the needed scalability for complex queries, by evenly distributing
the load to the available file system servers. Our scaling experiment
indicates that TagIt scales to support large deployments, indexing
over 105 million files from the production Spider PFS snapshot,
using 96 logical volume servers (§ 5.2).
Active Operators We go beyond tagging to also support execut-
ing operations on tagged files. We have developed the ability to
apply an operation or a filter on the file collections or specific por-
tions of a file such as a stored variable (akin to marking a feature in

Desktop Computers or Clusters

mountpoint

Dynamic
View

!"#$!$%&'$!"#$!$%&'$
"!()*+"-like

dynamic view interface

Server 1

Volume

Servers

Shared-Nothing File Placement
 File A (data + metadata) -> Server 1
 File B (data + metadata) -> Server 2
 File C (data + metadata) -> Server 3

Server 2 Server 3

...

Network

Index DB Manager

IPC Manager

Active Manager

Brick

Index DB Manager

IPC Manager

Active Manager

Brick

Index DB Manager

IPC Manager

Active Manager

Brick

Integrated Metadata Index Database

$%&'$ utility

Figure 1: Overview of TagIt architecture.

a picture), which will be performed on the file system servers. This
can be particularly useful when a user wishes to extract a large
multi-dimensional variable, e.g., temperature, from a collection of
files, upon which to run some analysis, e.g., mean temperature of
an ice sheet dataset, instead of moving entire petabytes of data.
Moreover, the user can also save and tag the results of such an
active operation. This is similar to the ‘find -exec’ functionality,
except that the operations are conducted on the file system servers,
avoiding costly data transfers between the client and the file system.
Our evaluation of the active operator feature on a large scientific
dataset shows that it is very promising. For example, computing
the decadal average for a large atmospheric measurement data col-
lection (a 150 GB AMIP dataset with more than 130 files), used by
the climate community, suggests that TagIt’s active operator can
complete 10× faster than the traditional out-of-band calculation of
the average, without having to move data to clients.
Automatically Extracting Metadata and Indexing To facili-
tate more sophisticated searches that can only be answered with
richer metadata, a unique feature of TagIt is automatic extraction of
metadata from files. Such operations can again be performed on the
file system servers, but to reduce the impact on the servers, we limit
them to a subset of files that the user deems worthy, e.g., a tagged
collection. We can further index the extracted metadata similar
to the user-defined metadata. Our results with the 150 GB AMIP
climate dataset indicate that this advanced feature of extracting
the metadata attributes (over 30 variables with arrays of values for
each one) and indexing them only increases the index size on the
file servers by 631 KB, suggesting the approach is very viable and
can scale to larger collections of data efficiently.

2 TAGIT OVERVIEW
The key design goals of TagIt are as follows: (i) Making file systems
inherently searchable; (ii) enabling metadata capture; (iii) minimiz-
ing data movement; and (iv) building easy-to-use system tools and
interfaces. In order to build a file system that natively supports
scientific data discovery service, we have prototyped TagIt atop
GlusterFS [17]. Particularly, GlusterFS features a shared-nothing
architecture, which allows us to seamlessly integrate our ideas and
demonstrate its efficacy in deployable systems.

Figure 1 presents the architecture of TagIt. Users can read and
write data objects from the file system via a mount point. TagIt’s

TagIt: An Integrated Indexing and Search Service
for File Systems SC17, November 12–17, 2017, Denver, CO, USA

enabler GlusterFS is a shared-nothing [44] distributed file system.
In GlusterFS, each backend file system is independent and self-
contained. File metadata such as filenames, directories, access per-
missions, and layout are distributed and stored in backend file sys-
tems called bricks. Each brick is simply a directory inside a mounted
file system (e.g., XFS). A logical volume server exports files inside a
brick to clients. File metadata is stored in the same volume server
as the associated file. This means that all operations to a single file
are effectively isolated to a single volume server, obviating the need
for centralized metadata servers.

In the above shared-nothing file system structure, we have in-
tegrated data management services within the volume server to
manage the metadata index database, active operations for server-
side data optimization, and metadata extraction. TagIt supports
tagging of datasets using arbitrary user-defined file metadata that
is internally stored as an extended attribute of the file. To facilitate
search operations associatedwith such tags, TagIt internally indexes
the tags and any metadata attributes about the datasets. The search
index database of all attributes is tightly integrated into the file
system itself, providing a strong consistency between the data file
and the index. Moreover, the index is distributed across the volume
servers, avoiding any centralized points, thereby achieving scala-
bility. Beyond basic search, TagIt also supports active operations,
which perform server-side data reduction or extraction to mini-
mize data movement. Moreover, TagIt supports automatic metadata
extraction to reduce laborious user annotation tasks. TagIt han-
dles metadata extraction as an automatic active operation when
processing data, and further indexes the extracted metadata for
future search operations. Since such server-side processing can
impact system performance, the automatic extraction is only done
for datasets that the user has deemed worthy. Finally, dynamic
views allow users to intuitively manage tags and active operators
via virtual file system entries.

3 FILE SYSTEM-INTEGRATED METADATA
INDEXING

In this section, we discuss the key building blocks of our approach,
and how we build the metadata indexing mechanism and integrate
it in GlusterFS.

3.1 Inverted Metadata Index Database
We adopt an inverted index data structure to facilitate efficient
lookup of files in response to a search query. Inverted metadata
index is used widely in Internet searches to identify pages that
contain a particular search term. However, the approach has not
been applied previously in the context of file system searching
and querying at scale. Here, given a search term, we need to find
collections of files with matching attributes.

Traditional file systems maintain file metadata in an inode, while
the directory maintains a table of inodes to represent its files and
sub-directories [37]. Thus, for any given pathname, the metadata is
retrieved using a forward index structure. In our case, we wish to
find a file collection, not only based on the pathname but also based
on their metadata. The standard file system indexing structure is
therefore not suitable for our needs, as it would require an exhaus-
tive crawling of the entire file system, which is too costly with

Volume Server #1

Metadata Index Database

Brick #1

Index Shard #1

11 10001

1000010

GFIDGID

GFID

data1

data2

NAME

/test

PATH

/test21 11

1020

GIDFID

FILE

temperature20

NAMENID

xNAME

.

.

SVALIVAL

. 29.99

-3.45.10

11

XID

80 20

NIDGID RVAL

81 20

xDATA

Volume Server #2

Index Shard #2

Brick #2

Volume Server #N

Index Shard #N

Brick #N
data1 DataMetadata

data2 DataMetadata

Figure 2: Sharded metadata index database in TagIt. Each index
shard is tightly coupled with the local brick.

growing scale. By using an inverted index, our solution offers two
major advantages: (i) enabling search queries based on user-defined
attributes as well as system-defined attributes such as standard file
system stat attributes, and (ii) avoiding crawling the file system.
We implement the inverted index (henceforth referred to as index)
using a relational database. We do not use key-value stores, as they
are not well-suited for the lookup of multiple attributes from multi-
ple tables at once, which is required by many practical file search
operations (Table 2).

The relational schema is depicted in Figure 2. The index is im-
plemented using four tables, GFID, FILE, xNAME, and xDATA. The
database schema manages any user-defined attributes and system
stat attributes in a unified way. File attributes are stored in two
separated tables, xNAME and xDATA. For example, when a user
assigns a new attribute, temperature as −3.45◦C and 29.99◦C to
files, data1 and data2, respectively, the attribute’s name is added
to the xNAME table. The attribute’s value is added to the xDATA
table, along with other necessary fields from GFID and FILE tables.
Later, these files can be identified by performing a search based on
the temperature attribute, e.g., find files with temperature < 0. The
standard stat attributes are similarly stored (pre-populated) with
pre-defined names in the xNAME table (st_size, st_mode, etc.).

3.2 Metadata Index Distribution
For the indexing service to support a large-scale file system, we
need a scalable design, as well as fault tolerance and durability ca-
pabilities, i.e., fast recovery upon server failures and preventing
server failure propagation. To this end, we split the metadata index
into multiple partitions, so the load can be distributed between all
the available volume servers. Note that the metadata index is de-
ployed on existing file system servers, and not on additional servers.
Practically, the metadata index database is horizontally divided into
multiple partitions, and the partitions are scattered across the avail-
able volume servers. This horizontal partitioning is called database
sharding [41], and each partition is referred to as a shard. With this
architecture, each shard has its own (inverted) index database, i.e.,
its own table structure and search indices that are used to complete
operations on database records (e.g., searching or updating records)
independent of other shards. The database partitioning technique
can effectively reduce the overall overhead associated with search
operations by exploiting themultiple independent shards in parallel,
as long as the records are evenly distributed across the shards.

SC17, November 12–17, 2017, Denver, CO, USA H. Sim et al.

Furthermore, as explained in § 2, operations on a file are limited
to a single volume server that stores both the file data and metadata.
In TagIt, we also provide this shared-nothing property to distribute
all the records of the index database to the volume servers. Specifi-
cally, TagIt follows the file distribution algorithm of the underlying
GlusterFS, i.e., each index database shard is populated with the
metadata of files locally stored on the backend file system of the
server (Figure 2). This tight coupling of the metadata index shard
and the backend file system ensures that metadata and data are
co-located, which has several benefits. Since files are uniformly
distributed across volumes, the shards are also evenly distributed,
effectively providing load balancing. Moreover, the shards catering
only to their local volumes avoid any consistency issues across
servers. Finally, the distribution of the shared index effectively iso-
lates single server failures, simplifying the recovery process without
affecting other servers in the cluster.

3.3 Synchronous Index Update
Solutions that are based on an index external to the file system
require periodical crawling of the file system to keep the external
database up-to-date and consistent with the file system. Solutions
such as change logs to automatically capture file system updates
have significant performance impact and thus are often not de-
ployed on extreme-scale storage systems. Crawling entails the en-
tire directory tree to be scanned and, for each file and directory, all
of the attributes to be fetched, and is significantly slow. For instance,
a crawling of the Spider file system [38], with about 32 PB and 1
billion files, takes over 20 hours. However, even with such a costly
process, the records in the external index will get stale. To address
this limitation, all file operations in TagIt trigger an update of the
local index of the volume server, as part of the regular file system
control path, rather than through an out-of-band mechanism. As a
result, we refer to such an update as being synchronous. However,
adding the extra burden of an index update to every file operation
can substantially slow down the file system performance. In the
following, we explain how TagIt is designed to minimize such a
runtime impact.
Index Update TagIt index shards are updated upon every file
operation that causes changes to the file system metadata. Such
file operations include creating or deleting a file or a directory,
changing attributes (e.g., changing the ownership or permission),
and appending data to a file. All file operations in GlusterFS are
implemented via I/O requests that are sent to the target volume
servers, which use I/O threads to service the requests. We have
added a synchronous update functionality to these threads. After
completing the operation, an I/O thread checks whether the oper-
ation has changed any file attributes, and if so, updates the index
shard accordingly. While the I/O thread is updating the index shard,
it creates an UNDO log in memory, and exclusively modifies the
index shard by acquiring an exclusive database lock. Such serial-
ized database accesses affect the response time of all file operations,
especially when thread concurrency for file operations increases.
TagIt minimizes this overhead—associated with the critical sec-
tion where multiple I/O threads wait for acquiring the database
lock—by spawning a separate database update thread that exclu-
sively updates the index shard. When an I/O thread needs to update

the index shard, it creates and enqueues an “update request” to a
shared queue. The database update thread continuously dispatches
the update requests from the queue and applies the updates to the
index shard. This design may introduce a slight latency, especially
when a volume server is heavily loaded. We measured the latency
by increasing the number of clients, each running heavy file and
directory creation operations, and found it to be mostly negligi-
ble, e.g., under a millisecond for up to eight clients per a server
(§ 5.1). Given the significant benefit our update approach provides
for the foreground I/O operations, we argue that the delay offers a
reasonable tradeoff.
Consistency As we discussed above, the asynchronous database
update in TagIt may introduce a delay before an update request is
dispatched and applied to the index database by the index update
thread. For example, if metadata, X, is added to a file as an extended
attribute, there may be a slight delay for the metadata to be prop-
agated to the index database. Therefore, a search request for X
could experience inconsistent results for a brief time. We chose the
asynchronous update model due to its lower performance impact
on file operations. However, for applications requiring stronger
consistency, TagIt provides a command-line utility (tagit-sync)
for ensuring all enqueued updates are promptly updated to guaran-
tee consistent results, similar to sync(1) utility. The tagit-sync
command provides stronger consistency while still minimizing the
overhead for all file operations, by shifting the burden on the appli-
cation requiring the higher consistency. Note that consistency of
standard metadata read operations (e.g., stat(2), getxattr(2),
etc.) is not affected by our asynchronous index update, since TagIt
directly sends such operations to the backend file system.
Durability Changes to the database on index shard update should
be written to the disk or SSD in order to survive unexpected server
failures. However, triggering additional I/O operations for this pur-
pose may decrease the overall server performance. Instead, each
index shard is backed by a database file that is stored on the same
backend file system, and the database file is mapped into memory
(using mmap(2)) at runtime. As a result, TagIt does not trigger any
extra I/O operations on database transaction commits, but instead
relies on the periodic dirty page sync performed by the operating
system. In other words, the consistency of the index shard only de-
pends on the status of the backend file system; while this may lead
to a loss of the index database records on server failures, TagIt can
quickly recover any lost records as follows. Like most modern file
systems, GlusterFS relies on a journal to track file system updates
and prevent data loss. TagIt exploits the journal to avoid scanning
the entire backend file system for identifying any missing updates
in the index shard. After a server failure, the backend file system
is recovered; then, TagIt detects the unclean shutdown and scans
the journal in reverse order, looking for any missing updates in the
index shard. For each missing file entry, TagIt fetches the associ-
ated metadata from the backend file system, by invoking stat(2),
listxattr(2) and getxattr(2) on each missing file in the re-
covered backend file system, and populates the index shard. The
recovery process happens on a per volume server basis, since each
index shard is only associated with a single backend file system on
the same volume server.

TagIt: An Integrated Indexing and Search Service
for File Systems SC17, November 12–17, 2017, Denver, CO, USA

3.4 Distributed Query Processing
TagIt processes a search query for a collection of files by broadcast-
ing the query to all index shards. The communication overhead
from the query broadcast increases in proportion to the number
of servers; however, benefits from processing the query in parallel
increases as the complexity of the query increases. Thus, TagIt can
achieve significantly improved performance particularly for compli-
cated file search queries, evenwith the query broadcasting overhead
in a large-scale cluster, i.e., 96 volume servers (§ 5.2). However, for
queries that require global aggregation and processing of results
from the index shards (e.g., top-k queries), we will need further
processing at the client to conduct a global analysis of individual
query results. This is because, the shared-nothing model prohibits
the volume servers from talking to each other. Finally, TagIt is ex-
pected to yield improved performance when the file search query
is combined with further advanced actions, e.g., applying a specific
operation to the resulting files, minimizing data movement.

4 TAGIT SERVICES
4.1 Service Architecture
We use the indexing mechanism to build advanced data services,
such as tagging, active operators, and dynamic views. Tagging allows
custom marking/grouping of files, and supporting it in petabyte-
scale PFS has the potential to enable discovery of relevant data
products from among hundreds of millions of files. Further, active
operators (which run on the file servers) can be associated with the
collections to minimize data movement between file servers and
clients. The results can themselves be further tagged and indexed.
These features allow for automatic metadata extraction as well.
Finally, TagIt also supports virtual directories, where a user can
associate a file search operation to a virtual directory for easy
interactions and scripted operations on the selected files.

We have implemented a data management service framework
inside the file system to support the above services. We also provide
access to the services via a command-line utility, ‘tagit’. tagit re-
lies on standard UNIX system calls, such as setxattr(2) and
getxattr(2). Figure 3 shows the service architecture of TagIt
and its different software components. On the client side, data man-
agement requests triggered by tagit are sent to IPC Managers or
Dynamic View Managers according to the type of the requested
service. The IPC Managers handle communications between clients
and servers through the GlusterFS translator framework [17], while
Dynamic View Managers handle the dynamic views. On the server
side, volume servers have both a IPC Manager for handling commu-
nications with clients, and an Index DB Manager for managing the
local index shard. Furthermore, Active Managers execute the service
side of the active operators. Finally, normal file I/O operations are
handled through the I/O Manager provided by GlusterFS.

4.2 Data Management Services
Tagging Users can manage tags, e.g., create or delete a tag, us-
ing the tagit command, which in turn uses standard extended
attribute operations (e.g., setxattr(2) and removexattr(2)) on
the servers as needed, and Index DB Manager updates the index.
Later on, such user-defined tags can be used in the context of a

FUSE
mountpoint

gfapi

IPC Manager
(client)

I/O Manager
(client)

GlusterFS Translator Framework

Dynamic View
Manger

Service Meta?

GlusterFS Translator Framework

IPC Manager
(server)

I/O Manager
(server)

Index DB
Manager

Active Manager

Index Shard Brick

Network

Client Server

create view

search
& active operation

n
o

rm
a
l
fi

le
 I
/O

n
o

rm
a
l
fi

le
 I
/O

q
u

e
ry

q
u

e
ry

&
 t

a
g

g
in

g

operators

active operations

Normal I/O Operations
Data Management Operations

access view(/.meta)

query & taggingsymbolic links

!"#$%" utility

Figure 3: Service architecture of TagIt.

file search, together with other file attributes, e.g., name, size, etc.
The restrictions for creating tags follow Linux’s extended attribute
policy. attribute in Linux VFS, For example, the size of each tag is
limited by an extended attribute in the Linux VFS (i.e., 255 bytes
for the name and 64KB for the value). The maximum number of
extended attributes for a single file is file system-specific (e.g., un-
limited in XFS), and the space consumption for storing extended
attributes counts towards file system quotas. Therefore, even if a
user deems too many files to be important, and creates tags, the
enforced FS quota will prevent any overage.
Active Operators TagIt provides an easy interface for applying
operators to a file collection of interest. The operators are run on
the volume servers to avoid transferring data between clients and
servers. Operators can be any user-specified commands, which are
applied to file collections that results from a search query request.
Suppose a user wants to run the ncdump program against all netCDF
files in a directory, e.g., /proj1. The user executes the command
‘tagit-execute /proj1 -name=*.nc -exec=ncdump’. Upon ex-
ecution of the command, the IPC Manager on the client broadcasts
a request to all volume servers, which is similar to what happens
when executing a file search. The IPC Manager on each server re-
ceives the search query and executes the request as it would do for
a normal file search, but, instead of returning the results back to the
client, the Active Manager executes the command (e.g., ncdump) on
each file in the search result. The Active Manager also buffers the
output of the command. When all active executions complete, the
buffered output is returned to the client. Finally, the client receives
the output from all the servers, combines them, and presents the
output to the user. This sequence is depicted in Figure 4(a), and it
is referred as Operatorsimple.

TagIt also allows users to specify a format-transformation com-
mand as an operator (e.g., resizing image files or extracting a vari-
able, temperature , from netCDF files) and run it against a set of
searched files. Consider a search query, wherein a user wants to
compute the average temperature of the monthly atmospheric mea-
surement data (netCDF files) over a decade, from the Atmospheric
Model Intercomparison Project (AMIP) experiment [27]. The files
contain several properties (e.g., temperature, salinity) with their
associated values that describe the experiment and are encoded in
netCDF format. Let us further assume that the netCDF files have
been tagged within TagIt, with theAtmosphericMeasurement meta-
data. Our indexing of both the tags and the file system stat metadata
will ensure that the netCDF files corresponding to the monthly
atmospheric measurements over the last decade are quickly identi-
fied. However, without the ability to just extract the temperature
variable (arrays of values) from the monthly data, and apply the

SC17, November 12–17, 2017, Denver, CO, USA H. Sim et al.

2.2 return result

IPC
Manager

Active
Manager

Index DB
Manager

1.1 file search query

1.2 return target file list

2.1 active execution

2.2 index result

2.3 return result

IPC
Manager

Active
Manager

Index DB
Manager

1.1 file search query

1.2 return target file list

2.1 active execution

(a) OperatorSimple (b) OperatorAdvanced

Figure 4: Control flows of active operators inside a volume server.

mean function on the TagIt volume servers, we will need to move
entire datasets to the client, which may contain other attributes
such as salinity, etc. To address this, TagIt supports the format-
transformation operator. This can be achieved by appending an ex-
tra argument specifying a directory, in which the transformed files
will be stored. Internally, this works identically to Operatorsimple, ex-
cept that the Active Manager now creates an output file (in the spec-
ified directory) per execution: ‘tagit-transform -outdir=/new
-tag-id=dataset -tag-val=Measurement -exec=gettemp’.
The output files generated by the gettemp program will appear in
the /new directory. This exploits the GlusterFS feature that each
brick mirrors the entire directory tree but can also project newly
created files in the local brick to clients. Only error codes from the
runs are returned to the client. Note that the active operators in
TagIt aim to reduce the data movement between the storage system
and the client by providing a convenient framework for server-side
data reduction. Applications may still need to perform additional
operations, such as aggregation or sorting, to complete the analysis
that requires extra communications, e.g., data shuffling.

We have extended Operatorsimple to interface it with the index
services in order to provide more advanced capabilities. Suppose a
user wants to extract the metadata of searched file collections, run
the operators on them, and index the results after the operators are
executed. For that, the user can specify the ‘-index’ argument to
the tagit command. In this context, the Active Manager buffers
the output from each execution, as it does with a Simple Execution.
However, in addition, each line of the output is parsed as a key-
value pair (e.g., dimension=5) and the parsed pairs are tagged,
i.e., added to the index shard and set as extended attributes to the
input file(s). This process is depicted in Figure 4(b) and referred as
Operatoradvanced.
Security If users use active operators to execute untrusted bi-
nary code, the volume server can compromise the performance
and security of the entire file system. To preclude malicious and
buggy behaviors in untrusted user programs, the IPC Manager can
manage a quarantined environment to run user supplied programs.
Specifically, TagIt can adopt the Linux Container [7] for an isolation
environment, and create an unprivileged container (i.e., lacking the
superuser privileges) without any external network connections.
We currently dedicate two CPU cores and 4GB memory to the con-
tainer from a 12 core, 64GB volume server in our testbed (Table 1).
Further exploration for building a secure environment is beyond
the scope of this work.
Automatic Metadata Extraction Although TagIt can perform
Operatoradvanced automatically for all the files in the file system,
the sheer volume of data in extreme-scale file systems will over-
whelm the file servers. Instead, TagIt allows users to trigger the
automatic metadata extraction only for file collections that the user

has deemed worthy. Specifically, a user can register a directory for
automatic metadata extraction with an attribute such as ‘tagit-
autoindex /some/dir’. After the directory is registered, TagIt
automatically extracts metadata from all the files with specific file
format extensions such as hd5 and nc under the directory and
indexes them. Internally, every volume server in TagIt maintains
additional records of ‘{extension, extractor}’ and the list of
registered directories. When this feature is enabled, on every file
close operation, TagIt additionally checks whether automatic extrac-
tion should be triggered. It is triggered only if the file is modified,
the file has a known-type extension, and, lastly, one of the parent
directories appears in the list of automatic extraction directories.
If so, the file is enqueued to the extraction queue. An extraction
helper thread (per volume server) applies the extractor program
on the queued files.

The automatic metadata extraction framework also helps users
keep the tags (or attributes) always up-to-date, i.e., consistent to
associated data files. Specifically, if an attribute P has been extracted
from a file F via the automatic metadata extraction framework, P
becomes inconsistent if the contents of F change. TagIt has an
elegant way to address this by virtue of the registration mechanism
outlined above. Since users need to register a directory for TagIt to
automatically extract the metadata, whenever the contents of the
file F change, TagIt will rerun the extractor program and update
P. As a result, the contents of the file F and the associated attribute
P will remain consistent without any user intervention.
Dynamic Views A dynamic view provides a way to the users to
save their search queries, and is created with the tagit command
by passing an additional ‘-create-view’ argument and a view
name, for any file search request. Upon receiving the request, the
Dynamic View Manager writes the dynamic view information to a
temporary data file, view list. The view list file is local to the client,
i.e., maintained on a per-client basis. After its creation, a new virtual
directory appears under /.meta/views. The /.meta is a root of
the virtual entries (i.e., temporarily existing only in memory) in
GlusterFS, similar to /proc in Linux. Each time a user reads the
/.meta/views directory, the Dynamic View Manager dynamically
generates directory entries based on the view list file. Also, each
directory entry is associated with a file search query that is specified
during the creation of a view. Correspondingly, when a user reads
a particular dynamic view directory, the Dynamic View Manager
performs the distributed query through the IPC Managers. With the
result of the query (list of files), the Dynamic View Manager creates
symbolic links pointing to the search result files. This process,
and dynamically generating directory and symbolic links, happen
solely on the client, without burdening the file servers. Further, all
directories and symbolic links under /.meta/views are transient,
without occupying any memory or disk space when they are not
accessed. Note that the dynamic view is similar to Views in a
relational database [25]. In fact, the dynamic view in TagIt can be
seen as a database view that is externally managed and wrapped
by a file system interface.

Although, a dynamic view only exists temporarily by default
on a single client, there exist cases in which certain views may
need to be kept permanently and globally (e.g., sharing the view
between multiple clients). In TagIt, users can create permanent
dynamic views, and make an existing dynamic view permanent

TagIt: An Integrated Indexing and Search Service
for File Systems SC17, November 12–17, 2017, Denver, CO, USA

 0

 2000

 4000

 6000

 8000

1 2 4 8 16

IO
P

S

Number of clients

GlusterFS
TagIt-Sync

TagIt-Async

 0

 10000

 20000

 30000

 40000

1 2 4 8 16

IO
P

S

Number of clients

GlusterFS
TagIt-Sync

TagIt-Async

 0

 500

 1000

 1500

 2000

1 2 4 8 16

IO
P

S

Number of clients

GlusterFS
TagIt-Sync

TagIt-Async

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 4 8 16

IO
P

S

Number of clients

GlusterFS
TagIt-Sync

TagIt-Async

(a) SSD — create (b) SSD — unlink (c) SSD — mkdir (d) SSD — rmdir

 0

 2000

 4000

 6000

 8000

1 2 4 8 16

IO
P

S

Number of clients

GlusterFS
TagIt-Sync

TagIt-Async

 0

 10000

 20000

 30000

 40000

1 2 4 8 16

IO
P

S

Number of clients

GlusterFS
TagIt-Sync

TagIt-Async

 0

 500

 1000

 1500

 2000

1 2 4 8 16

IO
P

S

Number of clients

GlusterFS
TagIt-Sync

TagIt-Async

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 4 8 16

IO
P

S

Number of clients

GlusterFS
TagIt-Sync

TagIt-Async

(e) HDD — create (f) HDD — unlink (g) HDD — mkdir (h) HDD — rmdir

Figure 5: Performance overhead of metadata indexing in the file system. mdtest [9] benchmark was used to generate metadata-intensive
workloads. We used two different storage volume configurations, with SSDs ((a)–(d)) and with HDDs ((e)–(h)), to observe the performance
impact of storage device characteristics.

as well. All permanent views appear globally on all clients. This
is achieved by keeping the list of the permanent dynamic views
using a special hidden file (/._views) inside the file system. The
permanent dynamic views appear under /.meta/views/sticky,
and are handled similarly as the (temporary) dynamic views. Note
that, in this context, a client only needs to fetch view names and
search queries from the file server upon the execution of a user
request. Once the name and search query of a permanent dynamic
view are acquired, all directories and symbolic links are processed
on a single client as for the (temporary) dynamic views.

4.3 Discussion
The techniques used in TagIt are applicable to other PFS such as
Lustre [8] and Ceph [45], with appropriate modifications. TagIt
mainly requires modest computational resources on the PFS servers
to run the lightweight database shards and active operators. For
example, Ceph supports a key-value store, RocksDB [12], for sup-
porting atomic object writes, which TagIt can use for indexing
and other operations. Similarly, basic tagging can be supported
as before. One consideration is that PFS with centralized servers
already suffer from performance bottlenecks (e.g., Lustre, which is
moving to multi-server DNE [2]). Thus, advanced TagIt services
such as indexing of the tags can (should) only be run on PFS with
multiple, distributed metadata servers that can handle the extra
load. Finally, to support active operations for striped files, e.g., on
Lustre or GPFS [42], we will need to aggregate the stripes from the
backend servers. This requires additional communication and data
movement between the servers, and may impact performance.

5 EVALUATION
Implementation TagIt has been implemented atop GlusterFS 3.7,
an open-source distributed file system. We extended the transla-
tor framework in GlusterFS to implement index database services
(index shard) and science discovery services (active operator and
dynamic views). On the server side, an index shard translator is
implemented using a light-weight database, SQLite [16]. On the
client side, dynamic views are implemented in the meta translator,
a virtual file system framework in GlusterFS. TagIt command-line

utilities are implemented using the GlusterFS library (glapi). For
evaluating TagIt, we consider two implementations—TagIt-Sync
and TagIt-Async. In TagIt-Sync, the index database is synchronously
updated, while in TagIt-Async, a dedicated thread is spawned to
update the database asynchronously (§ 3.3).
Testbed Table 1 shows our testbed, where we used a private
testbed with 32 nodes connected via 1 Gbps Ethernet, configured as
16 servers and 16 clients. For a realistic performance comparison,
we used both synthetic and real-world workloads. For synthetic
workloads, we used mdtest [9] and IOR [6] benchmarks for file
metadata and file I/O intensive workloads, respectively. For a real
workload, we used real-world scientific datasets such as the AMIP
atmospheric measurement datasets [27]. All experiments were re-
peated six times, unless otherwise noted, and we report an average
with a 95% confidence interval.

Server (16) Client (16)
CPU 12-core Intel Xeon E5-2609 8-core Intel Xeon E5-2603
RAM 64 GB 64 GB
OS RHEL 6.5 (Linux-3.1.22) RHEL 6.5 (Linux-3.1.22)
Network 1 Gbps Ethernet 1 Gbps Ethernet
Storage Intel 240 GB SSD, Seagate 1 TB HDD N/A

Table 1: Testbed specification.

5.1 Metadata Indexing Overhead
In our first test, we study the performance overhead of the inte-
grated index databases of TagIt on the GlusterFS volume servers,
while servicing file I/O operations.
Metadata-IntensiveWorkloads Figure 5 shows the performance
comparison of TagIt and GlusterFS for metadata-intensive work-
loads, including file operations (e.g., create and unlink) and direc-
tory operations (e.g., mkdir and rmdir). We increase the number of
clients from 1 to 16. In order to see the impact of the storage device
characteristics, we considered both SSD and HDD volume server
configurations.

Figures 5 (a)–(d) show the results with the SSD volume configu-
ration. In file operations (Figure 5 (a)–(b)), we see that both TagIt
and GlusterFS scale linearly with respect to the number of clients.
Further, we can see that the throughput of TagIt-Async is only

SC17, November 12–17, 2017, Denver, CO, USA H. Sim et al.

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 4 8 16

N
o
rm

a
liz

e
d
 I
O

P
S

Number of Clients

GlusterFS

TagIt-Async

TagIt-Sync

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 0 1 2 3 4 5 6 7 8 9 10

1, 2, 4 and 8 Clients

16 Clients

U
p
d
a
te

 D
e
la

y
 (

µ
s
)

Request Sequence (x1000)

(a) Normalized throughput (b) Queue delay

Figure 6: Experiments with an overloaded server. (a) shows the
normalized throughput, and (b) depicts queueing delays of database
update requests.

4% lower than the throughput of GlusterFS, on average. However,
TagIt-Sync exhibits a noticeably decreased throughput compared
to GlusterFS, due to frequent database file sync operations. For
directory operations (Figures 5 (c)–(d)), TagIt-Async and GlusterFS
scale only up to 8 clients. This can be attributed to the fundamental
design of GlusterFS, in which all directories are replicated in every
volume server (§ 2). Figures 5 (e)–(h) show the results with the
HDD volume configuration. Not surprisingly, we have similar ob-
servations as in Figures 5 (a)–(d), except that the throughput under
TagIt-Sync are too low to be discernible in the graphs.
Impact of Server Congestion The preceding experiments were
conducted with the number of clients being less than or equal to
the number of servers. In our next test, we consider a case in which
servers are overloaded by more clients. To create the overloaded
condition, we increased the number of clients from 1 to 16 while
keeping a single server. Each client concurrently creates 10,000 files
in its own directory.

In Figure 6 (a), we observe that TagIt-Sync does not scale with
more than four clients. In contrast, TagIt-Async scales similarly to
GlusterFS. However, with 16 clients, we notice TagIt-Async shows
lower throughput than GlusterFS. This is because the database
update thread in TagIt (§ 3.3) is overloaded and cannot keep up with
the speed of incoming requests. This can introduce a non-negligible
delay for updating the database, which in turn may result in an
inconsistency between the file system and the index database (§ 3.3).
To investigate the delay, we measured database update latencies of
the first 10,000 create requests. Figure 6 (b) presents the delays with
respect to the request sequence in time-series. We observe that, for
up to eight concurrent clients, the delays are under 1 millisecond for
all requests. However, the delay increases up to above 20 seconds
with 16 clients. Overall, TagIt-Async performs similar to GlusterFS,
and it is important to properly estimate the maximum server load
to keep the metadata index database consistent.
I/O Intensive Workloads Figure 7 shows the performance over-
head of metadata indexing for representative I/O patterns for scien-
tific applications. In specific, we perform our tests for both a single
shared file I/O model (N processes reading and writing to a single
file, N1-Read and N1-Write in the figure) and a per-process file I/O
model (N processes reading and writing N files, NN-Read and NN-
Write in the figure). For the N1 tests, a single shared file is created
for 16 clients, and each client concurrently appends 4 MB at a time
until the aggregate size of file operations per client reaches 1 GB
(16 GB total). For NN tests, each client writes in its own file sepa-
rately. Overall, for both tests, we see little performance degradation
due to the metadata indexing in TagIt.

 0
 50

 100
 150
 200
 250
 300
 350
 400

N1-Read N1-Write NN-Read NN-Write

A
g

g
r.

 B
W

 (
M

B
/s

)

GlusterFS-SSD
TagIt-Async-SSD

GlusterFS-HDD
TagIt-Async-HDD

Figure 7: Performance comparison of GlusterFS and TagIt-Async
for parallel I/O workloads. IOR benchmark [6] was used to generate
N1 and NN workdloads.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

F-create
F-stat F-read F-remove

D-create
D-stat D-remove

N
o

rm
a

liz
e

d
 I

O
P

S GlusterFS TagIt-Async

Figure 8: Metadata indexing overhead of TagIt for a large deploy-
ment. F- and D- denote the file and directory operations, respec-
tively.

Crash Recovery TagIt recovers from a server failure by repopu-
lating any lost updates to the index database. From a single server
failure, the recovery program of TagIt can recover 351.95 files per
second, e.g., for the lost metadata updates of 10,000 files, TagIt can
repopulate the local index shard within 30 seconds.
Indexing Overhead at Scale Here, we evaluate the performance
of TagIt on a large cluster to study how TagIt performance scales
with an increased number of volume servers and clients. The testbed
cluster consists of 104 diskless nodes, each of which is equipped
with two four-core Intel Xeon E5410 processors (total eight cores)
and 16 GB RAM. The nodes are connected via an infiniband network
(Mellanox MT25208, 10Gbit/sec). We configured the file systems
(GlusterFS and TagIt-Async) with 80 volume servers using 80 phys-
ical nodes. A memory file system (tmpfs) was used as a backend
storage on the volume servers. The rest of the 24 nodes were used
as clients. To evaluate the metadata indexing overhead, we ran the
mdtest benchmark by spawning two processes on each client node
(total 48 client processes). Figure 8 shows the result with seven dif-
ferent metadata operations, namely create, stat, read, and remove
(unlink) for files and directories (with the exception of reads for
directories). F- and D- denote file and directory operations, respec-
tively. Each test was run five times, and since there was very little
variation between the runs, we only present the average. For each
operation, the TagIt-Async throughput is normalized to the Glus-
terFS throughput. We observe that the indexing overhead of TagIt
is less than 5% in all cases, except for the file remove operation
(F-remove) where the overhead is around 10%. Since file remove
(unlink) is the fastest metadata operation in GlusterFS (Figure 5),
its indexing overhead is more discernible than other operations.
Overall, this result is consistent with our previous observation, and
the indexing overhead of TagIt is not affected by the cluster scale
due to the shared-nothing architecture.

5.2 File Search Performance
In our next tests, we evaluate the effectiveness of file searches in
TagIt compared to an external database approach. Since SQLite does
not support the server mode, 16 MySQL servers (identical to the
number of volume servers in TagIt) are used to evaluate the external

TagIt: An Integrated Indexing and Search Service
for File Systems SC17, November 12–17, 2017, Denver, CO, USA

Description Attributes Tables Results (#)
Q1 Locate files and directories with pathname containing ‘never-existing’. name FILE 0
Q2 Count the number of all regular files under ‘/proj’, owned by a user. path, mode, uid FILE, xNAME, xDATA 1
Q3 Find regular files with a ‘.mpi’ extension owned by a group, under ‘/proj’. path, name, mode, gid FILE, xNAME, xDATA 3
Q4 List all files owned by a group. path, mode, gid FILE, xNAME, xDATA 647
Q5 List all regular files which have been created in the last 24 hours. path, mode, ctime FILE, xNAME, xDATA 50,552

Table 2: Various file search queries tomeasure the query performance. Attribute column showsmetadata required to answer the query, while
table column shows database tables that hold the metadata columns.

Number of Clients 1 2 4 8 16
System MySQL TagIt MySQL TagIt MySQL TagIt MySQL TagIt MySQL TagIt

Q1

Total Runtime (s) 2.780 0.840 3.716 1.580 7.689 3.026 19.659 5.843 41.846 11.392
Avg. Latency (s) 0.043 0.016 0.050 0.018 0.074 0.033 0.087 0.061 0.154 0.152
95th Percentile 0.056 0.018 0.085 0.033 0.175 0.063 0.424 0.124 0.866 0.249
99th Percentile 0.059 0.024 0.086 0.035 0.191 0.064 0.429 0.125 0.875 0.250

Q2

Total Runtime (s) 15.499 6.840 68.599 13.471 165.501 26.408 401.340 53.409 815.478 103.839
Avg. Latency (s) 0.306 0.131 1.202 0.164 0.909 0.292 1.640 0.542 9.885 1.192
95th Percentile 0.309 0.136 1.366 0.268 2.809 0.530 6.167 1.075 16.043 2.125
99th Percentile 0.311 0.158 1.398 0.272 4.122 0.542 11.034 1.079 16.654 2.160

Q3

Total Runtime (s) 6.052 12.927 6.918 25.537 8.783 51.731 17.759 98.743 38.110 190.289
Avg. Latency (s) 0.032 0.064 0.034 0.097 0.038 0.169 0.051 0.216 0.077 0.613
95th Percentile 0.121 0.257 0.132 0.508 0.171 1.027 0.347 2.041 0.736 3.843
99th Percentile 0.121 0.259 0.146 0.520 0.183 1.056 0.368 2.099 0.783 4.108

Q4

Total Runtime (s) 16.711 8.508 67.476 16.278 161.971 32.474 409.635 64.828 795.376 131.545
Avg. Latency (s) 0.320 0.163 1.185 0.206 0.987 0.293 1.428 0.855 7.776 1.632
95th Percentile 0.325 0.168 1.339 0.318 2.724 0.635 6.044 1.427 15.646 2.691
99th Percentile 0.356 0.195 1.388 0.329 4.097 0.819 11.183 1.710 16.258 3.277

Q5

Total Runtime (s) 32.390 49.420 128.516 50.727 326.109 76.295 803.266 153.888 1512.220 312.241
Avg. Latency (s) 0.387 0.703 1.329 0.701 1.127 1.106 1.691 1.868 9.247 3.594
95th Percentile 0.647 0.905 2.525 0.912 5.540 1.603 10.832 2.949 29.763 6.089
99th Percentile 0.649 0.917 2.664 0.953 7.589 1.756 22.368 3.398 30.898 6.484

Table 3: Query performance under TagIt vs. the crawling approach with 16 MySQL servers.

database approach. Note that, in TagIt, such external servers are not
needed, because the database is integrated into the file system. We
used the same server machines with SSDs for both cases (Table 1),
and all SSDs were formatted with the XFS file system. For a realistic
workload, we used a snapshot of the Spider file system [38], taken
on July 1, 2015. The snapshot contains information on pathnames
and attributes of 1,303,156 files and 3,294 directories.
Index Database Population Overhead TagIt populates index
shards during file operations, whereas the external database ap-
proach has to perform a periodic update. Specifically, the external
database approach requires the following steps. First, the entire
file system has to be scanned to generate a current file system
snapshot. Second, databases are populated with the file system
snapshot. In our experiment, we developed an in-house program to
take a file system snapshot using find and stat system utilities
and populate the databases, although the scanning process could
be expedited [34]. The 16 MySQL servers of the external approach
were populated in parallel from 16 clients.

Table 4 compares database management overheads for TagIt
and the external database approach in terms of database space
and update overheads. Both approaches use the similar amount
of storage space for storing the databases. Specifically in TagIt,
the index shard per server only requires 110.63 MB. To build its
database, the external database approach takes about 96 minutes
to populate the index; 93 minutes to crawl the file system and
generate a file system snapshot, and about 4 minutes to update the
16 MySQL servers. Although the database population process could
overlap with the file system crawling process, its improvement

MySQL-16 TagIt
Database Size 1971.39 MB 1770.08 MB
Crawling/Update Time 96.10min N/A

Table 4: Database size and update time under TagIt vs. the crawling
approach with 16 MySQL servers.

would beminimal because the file system crawling time is dominant
in the entire database population time. Such long delays can lead
to inconsistency between the file system and the database and are
clearly undesirable, especially in large-scale file systems.
File Search Performance To compare the file search perfor-
mance, we used the databases that have been populated in the pre-
vious experiment, and tested with five realistic stat-based queries
for file searches as shown in Table 2. Note that these tests are also
representative of tagging-based file searches. To measure the query
performance, we wrote a C program that repeatedly executes a
given SQL query 50 times. To test a multi-user environment, we
measured the performance by increasing the number of clients to
16. We also used a warm-up period of a minute for each query test.
Table 3 shows the total runtime and the summary of individual
database request latencies for each case. We observe that TagIt can
process Q1 query about three times faster than MySQL. Note that
Q1 is a simple query that requires a full scan of an entire column
without resorting the database index. In our experiments, SQLite
could process this type of query faster than MySQL. For Q2, Q4, and
Q5, TagIt also outperforms MySQL. We see that TagIt outperforms
MySQL by a factor of 7, when using 8 or more clients.

In order to further investigate the lower query performance of
MySQL for Q2, Q4, and Q5, we analyzed the query load distribution

SC17, November 12–17, 2017, Denver, CO, USA H. Sim et al.

 0

 100

 200

 300

 400

 500

 600

1 2 3 4 5 6 7 8 9 10111213141516

562

R
e

c
o

rd
s

Server ID

MySQL-16
TagIt

 0
 5

 10
 15
 20
 25
 30
 35
 40

1 2 3 4 5 6 7 8 9 10111213141516

35,150

R
e

c
o

rd
s
 (

x
1

0
0

0
)

Server ID

MySQL-16
TagIt

(a) Q4 — 647 records (b) Q5 — 50,552 records

Figure 9: Distributions of records for MySQL and TagIt. The record
distribution of Q2 is similar but we do not show the result due to
the page limitation.

Systems r (Q1) r (Q2) r (Q3) r (Q4) r (Q5)
MySQL 2.678 53.638 2.188 52.456 99.731
TagIt 0.702 6.475 11.790 8.211 18.139

Table 5: Coefficients of linear runtime functions with the num-
ber of clients as an explanatory variable. In all cases, R2 values are
greater than 99%.

across servers. In particular, we counted the number of processed
result records of each query in all MySQL servers. Surprisingly,
we found that MySQL exhibits a heavily skewed distribution of
the result records across servers for these queries (Q2, Q4 and Q5),
as shown in Figure 9. In Figure 9, we can clearly see that there
is a severe load imbalance across the 16 MySQL servers in the
external database approach. For Q4, 562 records (total 647) are
processed on a single server, and similarly for Q5, 35,150 result
records (total 50,552) are processed on a single server. Moreover,
for Q2, a single server had all matching 124 records. The reason for
this heavily skewed record distribution can be attributed to the way
that the databases are populated. In the external database approach,
records are distributed based on the order in which they appear
in the snapshot file. The snapshot file is created by crawling the
file system tree, and files in the same directory are likely to appear
continuously. In contrast, TagIt evenly distributes the records to all
16 volume servers because the distribution of the records follows
the file distribution policy of GlusterFS, i.e., a distributed hash table.

Such a skewed distribution of records not only negates the benefit
of the parallel query processing, but also significantly slows down
the overall processing time. Note that a single query processing
internally involves communication with all 16 database servers
due to the nature of the sharded database architecture. Thus, a
query cannot be answered until the slowest server completes its
processing. We can observe this problem in Table 3, particularly by
comparing average latencies with 95th and 99th percentile latencies.
For instance, in MySQL with 8 clients, 99th percentile latencies are
6.7×, 7.8× and 13.2× higher than the average latencies for Q2, Q4
and Q5, respectively. For Q3, MySQL processes faster than TagIt.
It is because MySQL can prune the result record set based on the
file name (‘%.mpi’) prior to other conditions, which alleviates the
negative impact of the skewed record distribution.

We also compared the scalability of query processing perfor-
mance under increasing number of clients. For a fair analysis, we
used a simple linear regression with the runtime measurements in
Table 3. We compared the slope of the fit line for each query. Table 5
shows the coefficient (r), the slope of the fit line, of the runtime
function with the number of clients as an explanatory variable.
Note that a higher r value implies that the runtime increases more

 1

 2

 3

 4

 5

 6

 7

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96

T
im

e
 (

s
e

c
o

n
d

s
)

Q1 Q2 Q3

Figure 10: Query performance scaling under increasing volume
servers and 105 million files.

sharply as the number of clients increases. We observe that for
Q1, TagIt and MySQL have similar slopes, however for Q2, Q4 and
Q5, MySQL shows much higher slopes than TagIt, implying that
MySQL scales worse than TagIt. For Q3, we see that MySQL scales
better than TagIt.
Search Performance at Scale Next, we evaluate the overhead
of query broadcasting (§ 3.4). In particular, we build the file system
with 96 volume servers, and populate them with 105 million files
from the Spider II snapshot file. We perform this experiment using
48 nodes of the Rhea cluster at Oak Ridge Leadership Computing
Facility [11]. After populating the file system, the overall database
size is 140 GB (µ = 1.45 and σ = 0.07 across 96 volume servers). We
execute Q1, Q2, and Q3 in Table 2 from a single client while varying
the number of volume servers from 2 to 96. Note that for Q3, the
number of resulting records is 4,766 in this setup. Figure 10 shows
the result. We observe that executing Q2 and Q3 takes substantially
longer than Q1, mainly because of the difference in the complexity
of the queries. Q1 only needs to scan a single column (path) from
a single table, whereas Q2 and Q3 require scanning and joining
multiple database tables. In addition, for all queries, the benefit
of sharded architecture outweighs the overhead of broadcasting.
Using linear regression, we find that adding a single volume server
merely increases runtime by 0.013×, 0.018×, and 0.016× for Q1, Q2,
and Q3, respectively. For instance, executing Q3 with 96 volume
servers takes 6.1 seconds, which is only 1.6 seconds more than the
runtime with two volume servers (4.5 seconds).

5.3 Science Discovery Services
Evaluation of Operatorsimple To study the effectiveness of ac-
tive operators, we used the query of computing the decadal average
temperature of the AMIP atmospheric measurement datasets, com-
posed of 132 1.2 GB netCDF files (total 150 GB) (§ 4.2). We wrote
a dedicated program (operator), using the netCDF library, which
calculates an average of the temperature variables in a netCDF file.
We execute the program using two different methods, Offline and
TagIt. In Offline, the program is run on a client and reads files from
the file system. In TagIt, we offload the execution of the program
using the operator framework. In Offline, we increase the number
of threads from 1 to 8 to observe the impact of parallelism. We also
evaluated the impact on the performance of normal I/O operations
when they are performed during the program executions.

Figure 11(a) shows the results without any foreground I/O. We
observe that for Offline, the run time decreases as we increase the
parallelism. However, this happens only up to 4 clients. With 8
clients, the effect of parallelism almost disappears because of the
I/O contention between the threads. In contrast, we see that TagIt
performs noticeably faster than Offline. Note that TagIt not only
utilizes multiple file servers to run the operators, but also performs

TagIt: An Integrated Indexing and Search Service
for File Systems SC17, November 12–17, 2017, Denver, CO, USA

 0
 10
 20
 30
 40
 50
 60
 70

Offline-1

Offline-2

Offline-4

Offline-8

TagIt-C
TagIt-W

3.20 1.41R
u

n
ti
m

e
 (

s
e

c
)

Offline
TagIt

 0
 20
 40
 60
 80

 100
 120
 140

Read Write

B
a

n
d

w
id

th
 (

M
B

/s
)

Foreground I/O Only
w/ Offline-1
w/ TagIt-C

(a) Without foreground I/O (b) With foregound I/O

Figure 11: Performance impact of active operators in TagIt. (a) Per-
formance underOffline vs. TagIt. (b) Impact on foreground I/O oper-
ations. TagIt-C and TagIt-W show the cold and warm volume server
cache case, respectively.

near-data processing, minimizing data movement between the file
servers and the client. Moreover, due to the shared nothing archi-
tecture of TagIt, there is little I/O contention between the operators
running on the different servers. Figure 11(b) shows the results
when either Offline-1 (one thread) or TagIt-C runs concurrently
with a foreground I/O operation. To understand the impact from
overlapped executions, we launch a separate client that either reads
or writes a 1 GB file sequentially. Under the read workload with
Offline-1, the I/O bandwidth drops by about 30%. However, under
the write workload, there is little impact on the foreground I/O both
from Offline-1 and TagIt-C. This is because the foreground write
operations are cached by the client before reaching the servers, and
are not directly affected by the server-side contentions.
Evaluation of Operatoradvanced Next, we evaluate the use of
active operations to extract and index the metadata from scientific
data (e.g., netCDF). We study the performance impact of performing
the additional indexing on the file servers. Specifically, we compare
the performance of the following two cases. In the Operatorsimple
case, the file server executes a program that calculates a statistical
summary (min, max, mean, median, etc.) from a netCDF file. In the
Operatoradvanced case, the file server executes the same program,
but the result is also indexed as attributes of the netCDF file. This
involves setting extended attributes and adding records to the index
shard. We used the same AMIP dataset (132 netCDF files, 150 GB)
as before. Despite the additional processing on the file servers,
Operatoradvanced runs 10% faster (1.45 s vs 1.65 s on average across
6 runs) than Operatorsimple. This is because processing the results
locally on the file servers is faster than gathering all results on the
client. Note that, in the Operatorsimple case, the raw results are not
processed further, but are simply aggregated and displayed to the
user on the client.

In Operatoradvanced, indexing the extracted metadata from the
AMIP datasets increases the index database size. The raw data size
of the extracted metadata (31 attributes) from a single netCDF file
is about 1.5 KB and, with 132 netCDF files, the total database size
increases by 631 KB on 16 volume servers. That is, each netCDF file
increases the size of the index database by only about 3.2 KB. For a
larger scale test, consider the project directory snapshot (1.3 million
files) from the Spider file system used in § 5.2, which includes 787
complex files (631 netCDF, 180 FIT, and 4 HDF5 files). Suppose that,
for this experiment, all such files are indexed after extracting 31
metadata attributes. Then, the total index database size will increase
only by up to 2518.4 KB (787 × 3.2), or 157.4 KB per index database
shard, compared to the original database size (1770.08 MB, refer to
Table 4). While this is promising, it is also dependent on the data

collections and their metadata content. Therefore, we will need to
be judicious, and only extract and index metadata for data that the
user deems important.

6 RELATEDWORK
Managing metadata in a large-scale file system has been the fo-
cus of many works. GIGA+ [39] is a directory service that can
be stacked on any parallel file systems. FusionFS [49] employs a
distributed key-value store for a scalable metadata management.
Recently, DAOS [35] proposes a new parallel file system architec-
ture based on a distributed object-based storage, to address the
limitations of the traditional POSIX interface in emerging extreme-
scale platforms. Although these systems are scalable and alleviate
the metadata overhead of file systems, unlike TagIt, they do not
directly implement searchability that requires further indexing and
management of metadata, as we have previously explained in § 3.1.

File system searchability has mostly been achieved by using ex-
ternal applications in a post hoc fashion [4, 36]. However, keeping
the search index up-to-date with graceful performance degrada-
tion is non-trivial even in a single-user system [23]. The research
community generally anticipates magnified challenges for main-
taining a search index for large scale file systems. Spyglass [34]
reduces the crawling overhead, but the solution is specialized to
the architecture of the NetApp WAFL file system [31]. In contrast,
TagIt addresses such shortcomings and provides a scalable data
management service. VSFS [47] offers a searchable FUSE-based file
system interface that sits on other parallel file systems, and provides
a namespace-based file query language, similar to Semantic File
System [29]. However, VSFS still maintains a metadata index out-
side of the file system, and thus requires its own data distribution
and servers to scale [48]. The integrated design of TagIt precludes
such extra servers and custom distributions. HP StoreAll Express-
Query [32] is a production archival storage system that provides a
rich metadata service, using a distributed database [26]. As before,
the use of a decoupled metadata database is a limiting factor in
this system as well. Moreover, these systems do not support ad-
vanced data management services (§ 4). Apache Lucene/Solr [14]
supports automatic metadata extraction for well-known file types.
However, the system also requires file system crawling due to its
decoupled architecture. SciDB [13] is a database system specialized
for scientific applications, and provides pre-processing of datasets,
such as transporting a vector-based dataset. DataHub [24] offers
github-inspired scientific data management and sharing, based on
database techniques. However, both designs require using a custom
interface instead of a file system, which creates an unnecessary and
impractical hassle for users. In contrast, TagIt provides both search-
ability and pre-processing within the file system via the familiar
command line interface.

7 CONCLUSION
In this paper, we have presented a case for tightly integrating data
management services within file systems to enable rich search
semantics therein. Traditionally, such services are provided via
database catalogs external to the file system, which is not sustain-
able in the face of emerging data generation trends. TagIt maintains
a scalable and consistent metadata index database inside the file
system and offers advanced data management services including

SC17, November 12–17, 2017, Denver, CO, USA H. Sim et al.

tagging, search, and active operations, to expedite scientific discov-
ery processes. TagIt also features an easy-to-use user-interface; a
dedicated command line utility provides similar semantics of the
traditional find utility, and the dynamic view organizes data collec-
tions of interests in an intuitive directory hierarchy. Our evaluation
with TagIt implemented atop GlusterFS shows that TagIt is viable
and outperforms an external data management approach, without
the need for deploying any additional resources.

Acknowledgement
We would like to thank our shepherd, Suzanne McIntosh, for her feedback.
This research was supported in part by the U.S. DOE’s Scientific data man-
agement program, by NSF through grants CNS-1615411, CNS-1405697 and
CNS-1565314, and by the Institute for Information & communications Tech-
nology Promotion (IITP) grant funded by the Korea Government (MSIP) (No.
R0190-15-2012). The work was also supported by, and used the resources of,
the Oak Ridge Leadership Computing Facility, located in the National Cen-
ter for Computational Sciences at ORNL, which is managed by UT Battelle,
LLC for the U.S. DOE (under the contract No. DE-AC05-00OR22725).

REFERENCES
[1] ARM Climate Research Facility. http://www.arm.gov/.
[2] DNE 1 Remote Directories High Level Design - HPDD Community Space - HPDD

Community Wiki. https://wiki.hpdd.intel.com/display/PUB/DNE+1+
Remote+Directories+High+Level+Design.

[3] ESGF, Earth System Grid Federation. http://esg.ccs.ornl.gov.
[4] Google Desktop. http://desktop.google.com.
[5] HFS Plus - Wikipedia, the free encyclopedia. https://en.wikipedia.org/

wiki/HFS_Plus.
[6] IOR HPC Benchmark. http://sourceforge.net/projects/ior-sio/.
[7] Linux Containers - LXC - Introduction. https://linuxcontainers.org/lxc/

introduction/.
[8] Lustre. http://lustre.org.
[9] MDTEST. mdtest: HPC benchmark for metadata performance. http://

sourceforge.net/projects/mdtest/.
[10] Network Common Data Form (NetCDF). http://www.unidata.ucar.edu/

software/netcdf/.
[11] Rhea – Oak Ridge Leadership Computing Facility. https://www.olcf.ornl.

gov/computing-resources/rhea/.
[12] RocksDB. http://rocksdb.org.
[13] SciDB. http://www.paradigm4.com/.
[14] Solr - Apache Lucene. http://lucene.apache.org/solr/.
[15] Spallation Neutron Source | Neutron Science at ORNL. https://neutrons.ornl.

gov/sns.
[16] SQLite Home Page. http://www.sqlite.org.
[17] Storage for your Cloud. — Gluster. http://www.gluster.org.
[18] Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway |

TOP500 Supercomputer Sites. http://www.top500.org/system/178764.
[19] The Large Hadron Collider | CERN. http://home.cern/topics/

large-hadron-collider.
[20] The Large Synoptic Survey Telescope: Welcome. http://www.lsst.org/.
[21] Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA

K20x | TOP500 Supercomputer Sites. http://www.top500.org/system/
177975.

[22] XGC - Oak Ridge Leadership Computing Facility. https://www.olcf.ornl.
gov/caar/xgc/.

[23] Nicolas Anciaux, Saliha Lallali, Iulian Sandu Popa, and Philippe Pucheral. 2015.
A Scalable Search Engine for Mass Storage Smart Objects. Proceedings of the
VLDB Endowment 8, 9 (2015).

[24] Anant Bhardwaj, Amol Deshpande, Aaron J Elmore, David Karger, Sam Madden,
Aditya Parameswaran, Harihar Subramanyam, Eugene Wu, and Rebecca Zhang.
2015. Collaborative Data Analytics with DataHub. Proceedings of the VLDB
Endowment 8, 12 (2015).

[25] Donald D Chamberlin, JN Gray, and Irving L Traiger. 1975. Views, Authorization,
and Locking in a Relational Data Base System. In Proceedings of the May 19-22,
1975, National Computer Conference and Exposition.

[26] James Cipar, Greg Ganger, Kimberly Keeton, Charles B Morrey III, Craig AN
Soules, and Alistair Veitch. 2012. LazyBase: Trading Freshness for Performance
in a Scalable Database. In Proceedings of the 7th ACM European Conference on
Computer Systems (EuroSys ’12).

[27] W Lawrence Gates. 1992. AMIP: The AtmosphericModel Intercomparison Project.
Bulletin of the American Meteorological Society 73, 12 (1992).

[28] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google
File System. In Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP ’03).

[29] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James W. O’Toole, Jr.
1991. Semantic File Systems. In Proceedings of the Thirteenth ACM Symposium on
Operating Systems Principles (SOSP ’91).

[30] Raghul Gunasekaran, Sarp Oral, Jason Hill, Ross Miller, Feiyi Wang, and Dustin
Leverman. 2015. Comparative I/O Workload Characterization of Two Leadership
Class Storage Clusters. In Proceedings of the 10th Parallel Data Storage Workshop
(PDSW ’15).

[31] Dave Hitz, James Lau, and Michael A Malcolm. 1994. File System Design for an
NFS File Server Appliance. In USENIX Winter Technical Conference.

[32] Charles Johnson, Kimberly Keeton, Charles BMorrey III, Craig AN Soules, Alistair
Veitch, Stephen Bacon, Oskar Batuner, Marcelo Condotta, Hamilton Coutinho,
Patrick J Doyle, and others. 2014. From Research to Practice: Experiences Engi-
neering a ProductionMetadata Database for a Scale out File System. In Proceedings
of the 12th USENIX Conference on File and Storage Technologies (FAST ’14).

[33] Youngjae Kim, Raghul Gunasekaran, Galen M Shipman, David A Dillow, Zhe
Zhang, and Bradley W Settlemyer. 2010. Workload Characterization of a Lead-
ership Class Storage Cluster. In Proceedings of the 5th Petascale Data Storage
Workshop (PDSW ’10).

[34] Andrew W. Leung, Minglong Shao, Timothy Bisson, Shankar Pasupathy, and
Ethan L. Miller. 2009. Spyglass: Fast, Scalable Metadata Search for Large-scale
Storage Systems. In Proccedings of the 7th USENIX Conference on File and Storage
Technologies (FAST ’09).

[35] Jay Lofstead, Ivo Jimenez, Carlos Maltzahn, Quincey Koziol, John Bent, and Eric
Barton. 2016. DAOS and Friends: A Proposal for an Exascale Storage System.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’16).

[36] Udi Manber, Sun Wu, and others. 1994. GLIMPSE: A Tool to Search Through
Entire File Systems. In Usenix Winter Technical Conference.

[37] Marshall K McKusick, William N Joy, Samuel J Leffler, and Robert S Fabry. 1984.
A Fast File System for UNIX. ACM Transactions on Computer Systems (TOCS) 2, 3
(1984).

[38] Sarp Oral, James Simmons, Jason Hill, Dustin Leverman, Feiyi Wang, Matt Ezell,
Ross Miller, Douglas Fuller, Raghul Gunasekaran, Youngjae Kim, Saurabh Gupta,
Devesh Tiwari, Sudharshan S. Vazhkudai, JamesH. Rogers, David Dillow, GalenM.
Shipman, and Arthur S. Bland. 2014. Best Practices and Lessons Learned from De-
ploying and Operating Large-scale Data-centric Parallel File Systems. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’14).

[39] Swapnil Patil and Garth Gibson. 2011. Scale and Concurrency of GIGA+: File Sys-
tem Directories with Millions of Files. In Proceedings of the 9th USENIX Conference
on File and Stroage Technologies (FAST ’09).

[40] Robert Ross and Robert Latham. 2006. PVFS: A Parallel File System. In Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing (SC ’06).

[41] S Sarin, Mark DeWitt, and Ronni Rosenburg. 1988. Overview of SHARD: A System
for Highly Available Replicated Data. Technical Report. Technical Report CCA-
88-01, Computer Corporation of America.

[42] Frank B Schmuck and Roger L Haskin. 2002. GPFS: A Shared-Disk File System
for Large Computing Clusters.. In Proceedings of the 1st USENIX Conference on
File and Storage Technologies (FAST ’02).

[43] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The Hadoop Distributed File System. In IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST ’10).

[44] Michael Stonebraker. 1986. The Case for Shared Nothing. Database Engineering
9 (1986).

[45] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos
Maltzahn. 2006. Ceph: A Scalable, High-performance Distributed File System. In
Proceedings of the 7th Symposium on Operating Systems Design and Implementation
(OSDI ’06).

[46] Brent Welch, Marc Unangst, Zainul Abbasi, Garth A Gibson, Brian Mueller, Jason
Small, Jim Zelenka, and Bin Zhou. 2008. Scalable Performance of the Panasas
Parallel File System.. In Proceedings of the 6th USENIX Conference on File and
Storage Technologies (FAST ’08).

[47] Lei Xu, Ziling Huang, Hong Jiang, Lei Tian, and David Swanson. 2014. VSFS: A
Searchable Distributed File System. In Proceedings of the 9th Parallel Data Storage
Workshop (PDSW ’14).

[48] Lei Xu, Hong Jiang, Lei Tian, and Ziling Huang. 2014. Propeller: A Scalable
Real-Time File-Search Service in Distributed Systems. In Proceedings of 2014 IEEE
34th International Conference on Distributed Computing Systems (ICDCS ’14).

[49] Dongfang Zhao, Zhao Zhang, Xiaobing Zhou, Tonglin Li, Ke Wang, D. Kimpe, P.
Carns, R. Ross, and I. Raicu. 2014. FusionFS: Toward Supporting Data-Intensive
Scientific Applications on Extreme-Scale High-Performance Computing Systems.
In Proceedings of 2014 IEEE International Conference on BigData (BigData ’14).

