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Abstract
Federated learning (FL) has emerged as a new paradigm of
machine learning (ML)with the goal of collaborative learning
on the vast pool of private data available across distributed
edge devices. The focus of most existing works in FL systems
has been on addressing the challenges of computation and
communication heterogeneity inherent in training with edge
devices. However, the crucial impact of I/O and the role of
limited on-device storage has not been explored fully in FL
context. Without policies to exploit the on-device storage for
placement of client data samples, and schedule clients based
on I/O benefits, FL training can lead to inefficiencies, such as
increased training time and impacted accuracy convergence.
In this paper, we propose FedCaSe, a framework for effi-

ciently caching client samples in-situ on limited on-device
storage and scheduling client participation. FedCaSe boosts
the I/O performance by exploiting a unique characteristic—
the experience, i.e., relative impact on overall performance,
of data samples and clients. FedCaSe utilizes this informa-
tion in adaptive caching policies for sample placement inside
the limited memory of edge clients. The framework also ex-
ploits the experience information to orchestrate the future
selection of clients. Our experiments with representative
workloads and policies show that compared to the state of
the art, FedCaSe improves the training time by 2.06× for
accuracy convergence at the scale of thousands of clients.
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1 Introduction
Modern machine learning (ML) is no longer constrained to
running on well-endowed data center clusters alone, rather
is being increasingly done closer to the sources of data such
as edge devices [20]. As mobile devices become more promi-
nent, the potential to train powerful models with end-user
data has garnered a lot of interest [6]. This new paradigm
of ML in a distributed collaborative nature, known as fed-
erated learning (FL), had a reported global market value of
$110.8 million in 2021, and is expected to grow at 10.7% an-
nually [2]. While promising, FL poses numerous challenges,
which make it different from traditional ML. First, many un-
reliable devices that can drop out any moment can end up
participating in training. Second, the end-user devices are ex-
tremely heterogeneous in terms of training data, computing
power, communication capabilities, etc., making selection
and efficient cooperation between them challenging.

To address the challenges associated with data heterogene-
ity and system heterogeneity, researchers and practitioners
have put forward a number of techniques [8, 10, 11, 28, 34,
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Figure 1: Training time comparison between clients
using memory cache and flash storage.

38, 41–43] for client scheduling and client data sampling
to improve the accuracy of the global model and reduce
the training time. However, one crucial aspect of system
heterogeneity–the memory capacity of client devices, has
remained mostly unexplored. While a recent paper [14] ex-
amined the impact of limited on-device storage in FL and
proposed policies for on-device data selection, it does not
fully consider the case of efficiently handling heterogeneous
memory cache and flash storage available across devices
when I/O is a bottleneck.

To understand the impact that memory and flash device
can have on FL training time, we perform two sets of exper-
iments using ResNet-18 [16] model on the FEMNIST [16]
dataset. In one, we allow multiple clients to train by fetch-
ing all samples from the memory cache. In the other, we
allow the clients to fetch samples only from the flash device.
Figure 1 shows that clients fetching from the flash storage
took 5.1× longer to complete the training consisting of 150
rounds. This observation underscores that efficiently exploit-
ing the limited memory cache on client devices can improve
performance when training on I/O-intensive workloads.

One way to exploit the limited device memory is through
caching client data samples. However, adapting the caching
policies across a large number of distributed, heterogeneous
client devices is non-trivial as it requires rethinking existing
FL client scheduling and data sampling methods, especially
with I/O performance as the focus. In particular, there is a
need to orchestrate three connected components—(1) client
scheduling, (2) client data sampling, and (3) client data sam-
ple caching—in such a way that can improve the training
time and accuracy convergence of FL workloads.

In this paper, we design FedCaSe—a novel solution aimed
at improving FL accuracy and training time in scenarios
involving a large number of diverse client devices with het-
erogeneous memory and data. At the core, FedCaSe builds
atop three strategies. First, FedCaSe uses a new sample selec-
tion strategy for samples that have demonstrated the most

significant potential to improve model accuracy, i.e., experi-
enced samples, and caching them within client memory for
efficient, repeated training. Second, FedCaSe identifies ex-
perienced clients based on their record of improving model
accuracy and reducing wall clock training time, which is
gathered through training on the selected influential samples
in the previous step. Third, FedCaSe schedules experienced
clients with experienced samples in their cache for multiple
rounds to ensure robust model training, which reduces the
overall training time.

Specifically, this paper makes the following contributions.

• We characterize the potential of clients (i.e., client ex-
perience) having heterogeneous memory to improve
accuracy and reduce wall clock time for the FL model.

• We introduce an experience-based score (i.e., sample
experience) for data sampling of clients having hetero-
geneous memory to identify the sample’s potential in
increasing accuracy and improving read hit ratio (RHR)
in limited heterogeneous memory cache of clients.

• We design a novel reverse-optimization technique (RO)
to adaptively drive the scheduling of experienced clients
in future rounds to improve FL performance.

• Wepresent the design and implementation of FedCaSe–
a new FL framework that leverages the experience of
millions of clients and their samples to improve overall
performance atop heterogeneous memory devices.

• We incorporate FedCaSe in a widely-used FL frame-
work [27] and compare against a series of baselines
and advanced scheduling, sampling, and caching meth-
ods. Results on a testbed of up to 2800 clients show that
compared to the state of the art, FedCaSe improves
the experienced client participation up to 29.1×, im-
proves the global read hit ratio (RHR) by up to 81.7×
(locally up to 318.58×) given the heterogeneous limited
memory cache of clients, and thus ensures accuracy im-
provement rate up to 2.06× faster based on wall clock
time, up to 1.4× faster based on number of rounds
while keeping the round duration up to 2.4× less.
FedCaSe is open-source and publicly available at

https://github.com/R-I-S-Khan/FedCaSe/.

2 Background & Motivation
This section explores the key concepts of Distributed Deep
Learning and Federated Learning, providing essential con-
text for the entire paper. Furthermore, we perform an ex-
ploratory analysis on the potential of harnessing both client
and sample experiences to improve the training performance
by effectively mitigating I/O bottlenecks.
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Figure 2: Improvement of test accuracy for three different clients using different samples for training from the
EMNIST dataset.

2.1 Distributed Machine Learning
With the rise in the adoption of ML, it is no longer limited
to single-node or single-process settings. At present, even
though it might run in a single node for research purposes,
it is often, if not always, run with multiple accelerators. This
procedure of running ML workloads using multiple accel-
erators or nodes to satisfy the computational requirements
is known as distributed ML. The two most common forms
of distributed machine learning are data-parallel and model-
parallel distributed training.
The entire dataset is partitioned across all participating

nodes in equal chunks in data-parallel settings. In contrast,
themodel is partitioned acrossmultiple accelerators inmodel-
parallel settings, and different accelerators compute different
parts of the entire model. These kinds of distributed training
are often conducted in large in-house clusters of homoge-
neous computational nodes. Moreover, the dataset is par-
titioned into equal chunks across the participating nodes.
Models are trained on these datasets in batches through
iterative forward and backward passes over the model to
minimize a loss function—a mathematical function for quan-
tifying the difference between the predicted values generated
by a model and the actual observed target values in a dataset.
Minimizing the loss function means finding the model pa-
rameters that best fit the available data. The notable concern
to us is that there often is no heterogeneity in data quantity
and quality along with system resources in distributed ML.

2.2 Federated Learning
Federated Learning (FL) [31] follows the same paradigm of
distributed ML in that the computation is not limited to one
client. In this case, the agenda is for multiple clients to train
a global model with their respective local datasets multiple
times (i.e, rounds) and then pass on the trained local models

back to a global server, which aggregates the local model
parameters of the different clients to produce a more robust
global model which all of the clients will later use. This col-
laboration benefits clients by allowing them to retain their
data while accessing a powerful model trained on otherwise
unavailable data. FL deployments have a constraint on se-
lecting clients to participate in each round from the entire
global set of clients in order to reduce communication and
computational overhead: updates are collected from N (con-
figurable) participants that completed training the earliest
each round [6]. In FL, client local models are trained while
the master model only aggregates the model weights from
all clients. Aggregation (tensor calculation) and selection are
high-speed compared to the local client training, causing
no bottlenecks at the aggregator and scheduler level. The
main difference between FL and traditional distributed ML
is in data heterogeneity, system heterogeneity, and network
heterogeneity among the participating clients, making FL
significantly more challenging than conventional ML.
To tackle the heterogeneity, efforts have been made to-

wards guided client selection [28], clustering [8], or improv-
ing upon existing ML algorithms [29, 40]. Although these
works focus on improving client communication, compu-
tation, or client selection, none fully consider the I/O im-
pact of client samples in a scaled-up federated setting. Some
works [24, 26] look at client data sampling, but these are lim-
ited to in-house homogeneous cluster settings. While limited
storage in client devices has been brought to attention [14],
proper methods of exploiting limited memory cache due to
I/O bottleneck has not been fully investigated.
In this work, we examine the I/O bottleneck from thou-

sands of diverse client devices with limited memory cache
during large-scale FL. We prototype our solution for image-
based workloads, i.e., computer vision, as these workloads
are known to be I/O-intensive [5, 24, 32, 33, 37] in scaled
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Figure 3: CDF of the number of clients selected during
random scheduling on the FEMNIST dataset.

cross-device FL [20, 21]. However, our approach is general
and works with other FL modes and I/O-intensive workloads.

2.3 Exploiting Client Experience
In typical cross-device FL, clients are randomly scheduled
for a particular round. The random nature of client selection
is suboptimal, creating scenarios where clients are scheduled
only once throughout training. Selecting a client once means
that a particular client has been trained for only one round.
To better understand the distribution of the number of times
clients get trained during random selection and the impact of
rounds, we analyze random-scheduling-based client training
with benchmarking datasets.

Impact of Rounds on Training. First, we look at the
impact of rounds on improving the accuracy of an ML model.
We track an increase in accuracy improvement while train-
ing a ResNet-18 [16] model using three clients on the EM-
NIST [12] dataset. We divide the entire EMNIST dataset into
1000 random chunks and assign three random chunks to
three clients, respectively. Each client’s data is heteroge-
neous and each client has a different set of samples from the
EMNIST dataset. Figure 2 looks at accuracy improvement
rate (not the global accuracy) across rounds for each client
(x-axis) when clients train on their individual datasets. We
observe that after round one, all clients achieve a local accu-
racy less than 10%. The accuracy increases as the number of
rounds increases. This phenomenon indicates that selecting
a client only once for training in FL is not ideal and that
training a client for multiple rounds is more impactful.

Impact of Random Client Scheduling. Second, we an-
alyze the number of times clients get selected when client
scheduling occurs randomly. We train a ResNet-18 model
on the FEMNIST [7] dataset, a federated version of the EM-
NIST dataset. In each round, 100 out of 2800 total clients are
randomly selected each round for training over 150 rounds.
Figure 3 shows that 11.9% of the total clients are scheduled
for training only once and around 20.4% of the clients have
been scheduled less than three times, indicating that a sig-
nificant portion of clients are receiving insufficient training

opportunities, which may hinder their contribution to the
overall model accuracy.
As shown in Figure 2, clients need to be trained more

than once or twice to reach a reasonable accuracy. However,
if more time is taken for a round to complete due to I/O
overhead from the flash storage, it can negatively impact the
training performance. Hence, characterizing clients’ expe-
rience based on their impact on decreasing round time and
increasing accuracy and using that as a metric for increasing
client participation in future client scheduling decisions can
likely improve the performance and quality of FL training.

2.4 Exploiting Sample Experience
As previously noted, significant heterogeneity exists in the
available data samples among clients. In this section, we
demonstrate how leveraging this sample heterogeneity across
multiple clients can effectively reduce I/O bottlenecks.

Impact of Client Data Sampling. It is known from prior
research [18, 22, 30, 44] that some samples in a dataset are
more important than others as they contribute more to im-
proving the accuracy of an ML model. We verify this claim
through our accuracy improvement experiment in §2.3 on
the three clients shown in Figure 2. Table 1 shows the start-
ing and end accuracy of the three clients on a test dataset. We
observe that different clients having different samples have
different starting and end accuracies, indicating that certain
samples can indeed influence the accuracy of the model in
different ways. Moreover, the accuracies of different clients
vary across the training. For example, although client 2 has
the highest starting accuracy, client 3 ends training with the
highest accuracy. In this case, the experience of the clients
as well as the samples belonging to it towards improving
model accuracy varies throughout the training. We plan to
exploit this variance to our advantage.

In FL, client models are aggregated to improve the global
model. Hence, we can prioritize client participation along
with their samples at certain intervals for improving the
global model. For example, Figure 2 shows that during round
10, both clients 2 and 3 has a local accuracy over 30% but
client 1 has around 20%. In this case, we can improve the
global model’s accuracy by prioritizing clients 2 and 3 during
round 10 and training more on the samples belonging to
them. Hence, to improve global model accuracy by merging
client contributions, it’s essential to carefully consider the
impact of each client when selecting them and their data
samples for future training rounds. By monitoring how client
performance and sample characteristics vary, prioritizing
clients with higher-quality or more experienced samples can
accelerate model improvements. Training more intensively
on these experienced clients with valuable data will allow
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Table 1: Contribution towards accuracy improvement
is different in each round for different client samples.

Client ID Round-1 Acc (%) Round-20 Acc (%)
1 5.05 45.81
2 9.04 46.69
3 7.56 50.71
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Figure 4: Global read hit ratio (RHR) of different
caching policies in a heterogenous FL setup of 1000
clients.

the model to converge faster and achieve better accuracy in
fewer rounds, enhancing overall system efficiency.

I/OBottleneck inTraining.As I/O bottleneck is a known
problem [13, 37] in training models, recent works [24, 26]
have tried to introduce caching solutions to tackle it. While
promising, these solutions are specially catered for homo-
geneous node settings found in traditional, centralized, dis-
tributed training and do not fundamentally solve the severe
heterogeneity posed by numerous client devices in FL. In
FL, client devices are equipped with fast-processing accel-
erators [1, 3], which are more data-hungry compared with
devices equipped with only CPUs, thus I/O might become a
bottleneck in some FL clients. We can measure the I/O per-
formance through looking at the global RHR and local RHR
of the clients. Global RHR is the ratio of the total number of
hits of all clients over the sum of their total hits and misses.
Local RHR is the ratio of the total hits of a particular client
over the sum of its total hits and misses.
This I/O bottleneck is exacerbated by the fact that client

devices can have heterogeneity in memory cache capacity
and the number and size of the data samples. Figure 4 shows
that a traditional policy, LRU (least recently used), has a poor
global RHR of less than 1% in an FL setup of 1000 clients
having 10% working set size (WSS). Although employing
new optimizations like no evictions (MinIO [32]) and sample
substitution (Quiver [26]) can increase the RHR, it is still less
than 10%. A lack of a client selection technique that looks
at previous patterns means that a client that warmed up its
cache in the current round might not be used in the future,
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Figure 5: Heterogeneous memory creates problems in
efficient utilization of memory cache of FL clients.

resulting in low global RHR. Our target policy should achieve
at least a 10% hit ratio when clients cache 10% WSS, with
potential to improve beyond 10% (not bounded).
We further investigate the clients’ local RHR. Figure 5

shows no client can reach an RHR of 0.1 (i.e., 10%) for LRU
and MinIO. Only 19% of the clients have an RHR over 10%
for Quiver. As a portion of the samples of each client are
randomly selected for each round to reduce time [27], LRU
evicts samples from the cache every time a new sample ar-
rives. Moreover, a random selection of samples entails that
samples in the cache might not even be used later. Hence,
even after employing policies like Quiver or MinIO, only a
small portion of the clients get to use the samples inside the
cache. If clients cache 10% WSS, then an ideal policy (our
target) should be able to exploit previous patterns in training
to utilize all of the samples from their limited cache so that
the local RHR becomes at least equal (but can be more) to
the WSS. At the same time the ideal policy should priori-
tize selecting experienced and warmed-up clients so that
the global RHR also increases above 10%. In this case, intelli-
gently driving the client and sample selection can provide
more opportunities for improvement.

3 FedCaSe Design
Our study in §2 sheds light on the potential to address the I/O
bottleneck posed by heterogeneous client devices in an FL
setting andmotivates a new cooperativemechanism between
client scheduling, sampling, and caching co-designed with
the FL framework. This section presents the challenges and
design principles of FedCaSe, followed by the design detail.

3.1 Challenges
We aim to utilize the limited memory available in client
devices to enhance the training performance at client granu-
larity and use the obtained performance benefit at the client-
level training to drive future clients’ scheduling decisions
to improve the FL performance. This is challenging as there
exists heterogeneity in terms of available memory space, the
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Figure 6: (a) FedCaSe architecture overview. (b) An illustration of how FedCaSe’s components interact in a single
FL round.

number and size of client data samples, and the computa-
tional and communication abilities of the clients. Although
existing policies propose certain techniques, they are limited
to addressing only the computational and communication
heterogeneity across clients. They overlook one key aspect,
i.e., storage heterogeneity across clients. Our main task is
realizing a framework that takes clients’ caching and schedul-
ing decisions in FL while considering the heterogeneity in all
areas surrounding clients to provide enhanced performance.

The key insight of FedCaSe is steering I/Os, and more specifi-
cally, manipulating a cache-oriented sampling selection policy
through a lens of FL scheduling, has a (positive) impact on
FL training. The reason behind this is that different clients,
along with their associated data samples, vary in their ability
to perform in a heterogeneous setting, therefore revealing in-
teresting exploitation opportunities to enhance the training
performance by intelligently prioritizing clients and samples
having a higher experience in improving FL performance.
Leveraging this insight, FedCaSe models a large FL de-

ployment as a geo-distributed, “virtual” object cache; the ob-
jective of this newly identified cache optimization problem
is to minimize training time and maximize training quality
through caching the most experienced samples. To achieve
the objective, we present a codesign of FL scheduling al-
gorithm and per-client sample caching policies. However,

translating potential exploit opportunities into FL training
improvements poses non-trivial challenges.

First, different clients have heterogeneity regarding avail-
able memory storage, computation, and communication abil-
ities. Hence, it becomes challenging to factor in these vari-
ables and prioritize clients for training. An ideal priority
scheme would characterize clients’ experience to navigate
client heterogeneity and enhance the FL performance.
Second, in each round of FL, numerous clients need to

be scheduled. Scheduling only experienced clients might be
detrimental to the overall training as there might be other
clients which have not been trained. Hence, properly fixing
the 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 : 𝑛𝑜𝑣𝑖𝑐𝑒 (EN) ratio becomes non-trivial.

Third, clients have heterogeneity in the size and quantity
of samples residing within them. Again, some samples might
carry more utility toward improving the model accuracy.
Since memory cache is limited within the clients, designing
caching policies for each client individually for the samples
residing within them becomes challenging.

3.2 FedCaSe Overview
FedCaSe consists of threemain components—the client sched-
uler, the client data sampler, and the client data cache. The
scheduler works in tandem with the aggregator. It calculates
the experience of clients based on their ability to increase
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the model accuracy (model utility) and their ability to de-
crease the wall clock time (I/O utility). Then, it uses the
client experience as a metric to decide the appropriate expe-
rienced:novice (EN) ratio of scheduling for the next round
using an optimization model. Once the clients are sched-
uled for training, the FedCaSe client data sampler works at
the client level to calculate sample experience for all of the
client’s samples based on their ability to improve the model’s
accuracy (model utility) and prospect towards further train-
ing (train utility). Based on the sample experience, it decides
the best combination of samples for training. During training,
the FedCaSe cache keeps the client memory cache updated
with the most experienced samples for faster retrieval to min-
imize training time and maximize training quality. Figure 6
shows the architecture overview of FedCaSe.

3.2.1 Client Scheduler. The client scheduler performs two
main functions: (1) calculating the client experience from
the client model and I/O utility; and (2) fixing the experi-
enced:novice (EN) client ratio for scheduling clients.
To calculate the client experience from various heteroge-

neous variables, FedCaSe uses three techniques. The first
technique captures a client’s relative accuracy improvement
performance (model utility) compared to others. The second
technique captures the relative improvement in decreasing
wall clock time (I/O utility) by a client compared to oth-
ers. The third technique calculates a composite experience
score using the model and I/O utility that takes into account
the impact of both utilities. FedCaSe client scheduler then
uses the computed experience score as a metric to determine
how many and which experienced clients will take part in
training in the following rounds. To determine the ratio of ex-
perienced:novice (EN) clients, FedCaSe uses a novel reverse
optimization (RO) technique grounded in ML.
All these techniques combined help in conducting train-

ing with the clients, which will help increase the accuracy
of the global model and decrease the round training time.
Algorithm 1 shows the steps for client scheduling. At the
global server level, scheduling involves tracking client ex-
perience scores and running RO policy, with no additional
computations beyond standard FL procedures.

Client Model Utility (𝐶𝑀𝑢 ). The model utility of a client
denotes the utility it carries towards improving the FL model
accuracy. To understand model utility, first, we observe the
loss (𝑙𝑐 ) of each round for a particular client. Loss quantifies
how far off the predicted values of a ML model are from the
actual values in the training dataset. Using loss for determin-
ing importance has been explored in literature [18, 22, 30, 44].
Instead of using raw losses, FedCaSe client scheduler collects
the loss of every client at the end of each round as soon as the
client finishes training and uses min-max scaling to assign a
relative model utility for each client in real time (Alg. 1, lines

Algorithm 1: FedCaSe Client Scheduling
1 Input: 𝐶: set of all clients
2 F : {} # sorted dict(client:experience), curr_clients: {}
3 Δ𝑙 : {}, Δ𝑑 : {} # set of loss and round diff. of clients
4 P: {} # set of EN ratios of rounds
5 𝑙𝑚𝑖𝑛 , 𝑙𝑚𝑎𝑥 : ∞, −∞, 𝑑𝑚𝑖𝑛 , 𝑑𝑚𝑎𝑥 : ∞, −∞
6 Function 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑐𝑙𝑖𝑒𝑛𝑡_𝑒𝑥𝑝(𝑐𝑙𝑖𝑒𝑛𝑡𝑠):
7 D: {}, L: {}# duration and loss sets of clients
8 for c in clients do
9 𝑑𝑐 , 𝑙𝑐 = train(client) # duration and loss

10 D = D ∪ {𝑑𝑐 }, L = L ∪ {𝑙𝑐 }
11 𝑙𝑚𝑖𝑛 , 𝑙𝑚𝑎𝑥 = min(𝑙𝑚𝑖𝑛 , 𝑙𝑐 ), max(𝑙𝑚𝑎𝑥 , 𝑙𝑐 )
12 𝑑𝑚𝑖𝑛 , 𝑑𝑚𝑎𝑥 = min(𝑑𝑚𝑖𝑛 , 𝑑𝑐 ), max(𝑑𝑚𝑎𝑥 , 𝑑𝑐 )
13 𝐶𝑀𝑢 = (𝑙𝑐 - 𝑙𝑚𝑖𝑛) / (𝑙𝑚𝑎𝑥 - 𝑙𝑚𝑖𝑛)
14 𝐶𝐼𝑢 = (𝑑𝑚𝑎𝑥 - 𝑑𝑐 ) / (𝑑𝑚𝑎𝑥 - 𝑑𝑚𝑖𝑛)
15 client_experience = 𝛼*𝐶𝐼𝑢 + 𝛽*𝐶𝑀𝑢

16 F [c] = client_experience # record experience
17 𝑐𝑢𝑟_𝑡 , 𝑐𝑢𝑟_𝑙 = find_cur_dur_loss(D,L)
18 return 𝑐𝑢𝑟_𝑡 , 𝑐𝑢𝑟_𝑙
19 Function 𝑔𝑒𝑡_𝑟𝑜𝑢𝑛𝑑_𝑑𝑖 𝑓 𝑓 (𝑝𝑟𝑒𝑣_𝑙 ,𝑝𝑟𝑒𝑣_𝑡):
20 𝑐𝑢𝑟_𝑡 , 𝑐𝑢𝑟_𝑙 = 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑐𝑙𝑖𝑒𝑛𝑡_𝑒𝑥𝑝(curr_clients)
21 𝛿𝑙 = 𝑐𝑢𝑟_𝑙 - 𝑝𝑟𝑒𝑣_𝑙 , Δ𝑙 = Δ𝑙 ∪ {𝛿𝑙 }
22 𝛿𝑑 = 𝑐𝑢𝑟_𝑡 - 𝑝𝑟𝑒𝑣_𝑡 , Δ𝑑 = Δ𝑑 ∪ {𝛿𝑑 }
23 return 𝑐𝑢𝑟_𝑙 , 𝑐𝑢𝑟_𝑡
24 Function 𝑓 𝑖𝑛𝑑_𝐸𝑁(Δ𝑙 , Δ𝑑):
25 T𝛿𝑙 = max(Δ𝑙 ) + std(Δ𝑙 ), T𝛿𝑑 = min(Δ𝑑 ) -std(Δ𝑑 )
26 𝜌𝑟 = regression(Δ𝑙 , Δ𝑑 , P, T𝛿𝑙 , T𝛿𝑑 )
27 return 𝜌𝑟

28 Function 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_𝑐𝑙𝑖𝑒𝑛𝑡𝑠(𝑇𝑐𝑙𝑖𝑒𝑛𝑡𝑠 ,𝑙𝑒𝑛𝑟𝑐):
29 𝑝𝑟𝑒𝑣_𝑙 , 𝑝𝑟𝑒𝑣_𝑡 = 0, 0
30 for r in rounds do
31 𝑙𝑟 , 𝑡𝑟 = 𝑔𝑒𝑡_𝑟𝑜𝑢𝑛𝑑_𝑑𝑖 𝑓 𝑓 (𝑝𝑟𝑒𝑣_𝑙 , 𝑝𝑟𝑒𝑣_𝑡 )
32 𝜌𝑟 =𝑓 𝑖𝑛𝑑_𝐸𝑁 (Δ𝑙 , Δ𝑑 )
33 P = P ∪ {𝜌𝑟 } # append 𝜌𝑟 for next round
34 𝐸𝑐𝑙𝑖𝑒𝑛𝑡𝑠 = 𝜌𝑟 * F [:𝑙𝑒𝑛𝑟𝑐] # experienced clients
35 𝑙𝑒𝑛𝑛𝑐 = 𝑙𝑒𝑛𝑟𝑐 - 𝑙𝑒𝑛(𝐸𝑐𝑙𝑖𝑒𝑛𝑡𝑠 )
36 # select novice & new clients randomly
37 𝑁𝑐𝑙𝑖𝑒𝑛𝑡𝑠 = random_permutation(𝐶)[:𝑙𝑒𝑛𝑛𝑐]
38 selected_clients = 𝐸𝑐𝑙𝑖𝑒𝑛𝑡𝑠 + 𝑁𝑐𝑙𝑖𝑒𝑛𝑡𝑠

39 𝑝𝑟𝑒𝑣_𝑙 , 𝑝𝑟𝑒𝑣_𝑡 = 𝑙𝑟 , 𝑡𝑟
40 yield selected_clients

(7-13)). This standardizes the losses to a uniform scale and
makes it amenable to being used with other utilities.
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Client I/O Utility (𝐶𝐼𝑢 ). The I/O utility of a client denotes
the utility that it carries towards decreasing the round du-
ration. To measure the I/O utility, FedCaSe client scheduler
observes the time required to complete a round (𝑑𝑐 ) by a
client. Each client takes different times to complete a round
due to the heterogeneity in computational, communications,
and sample size differences. To understand the I/O impact of
each client on a standardized scale, it uses min-max scaling
to calculate each client’s relative I/O utility (Alg. 1, line 14).
Client Experience. The client experience is a compos-

ite score of the model and the I/O utility for each client.
Since the model utility and I/O utility are normalized to a
standardized scale, the FedCaSe scheduler manages to con-
vert the sensitivity of both metrics to a common scale. For
example, the loss can be minimal (in fractions), while the
time required might be very large. As a result, it becomes
challenging to unify both utilities, as a minor change in one
might drastically impact a client’s overall utility. A relative
scale for both metrics helps FedCaSe capture each metric’s
impact appropriately compared to others. Both I/O utility
and the model utility have associated weight factors 𝛼 and
𝛽 respectively for placing emphasis on the particular utility
required for a job. A sensitivity analysis on the impact of
these weight factors has been provided in §5.3. The scheduler
maintains a sorted dictionary of every client’s experience
and periodically updates (Alg. 1, lines 15-16) the experience
in real-time as soon as each client finishes a new round.
Reverse Optimization (RO) Model. In FL, the global

model gets impacted by heterogeneous datasets of differ-
ent clients. Hence, new or novice clients need to take part
in training to improve the global model accuracy. A major
dilemma ariseswhenwe try to balance the experienced:novice
(EN) ratio, 𝜌𝑟 of clients. To address this challenge, FedCaSe
scheduler uses the RO model to adaptively change 𝜌𝑟 to
reduce the round duration and improve the accuracy.

The improvement in accuracy can be understood through
a stable decrease in the model loss. After every round, Fed-
CaSe proactively checks the decrease in loss of the global
model (𝛿𝑙 ) and the round duration (𝛿𝑑 ) using the current
round clients (𝑐𝑢𝑟𝑟_𝑐𝑙𝑖𝑒𝑛𝑡 ) due to the 𝜌𝑟 of the previous
round (Alg. 1, lines 19-23). It keeps a list, Δ𝑑 for keeping
(𝛿𝑑 )s and another list, Δ𝑙 for keeping (𝛿𝑙 )s of consecutive
rounds. To improve the wall clock time and accuracy, we
need to decrease the 𝛿𝑑 and increase the 𝛿𝑙 between rounds.
Deciding the increase or decrease of EN ratio to get a de-
crease in 𝛿𝑑 and an increase in the 𝛿𝑙 requires solving many
complicated auxiliary problems that are often computation-
ally expensive [19]. Hence, FedCaSe looks at the problem
in reverse and introduces a new technique called reverse
optimization (RO).
Since we aim to reduce 𝛿𝑑 and increase 𝛿𝑙 , assume that

we have already decreased the 𝛿𝑑 and increased the 𝛿𝑙 . The

current value of 𝛿𝑑 is 𝛿𝑑 - 𝜕𝑡 and the current value of 𝛿𝑙 is
𝛿𝑙 + 𝜕𝑙 . Now, the problem that FedCaSe aims to solve is—
given that it knows the target round duration (𝑇𝛿𝑑 ), i.e., 𝛿𝑑
- 𝜕𝑡 and target round loss (𝑇𝛿𝑙 ), i.e., 𝛿𝑙 + 𝜕𝑙 , what would
be the 𝜌𝑟 ? Hence, the complex problem now gets mapped
to a classical regression analysis problem. This regression
problem is solved using a regression model by the FedCaSe
scheduler. 𝛿𝑑 and 𝛿𝑙 act as the features (i.e., attributes used
to train) of the regression model. In the initial warm-up
rounds (∼10), EN ratios are decided randomly to observe the
relationship between changing (𝜌𝑟 )s with 𝛿𝑑 and 𝛿𝑙 . Since
the features are normalized, it improves the stability of the
regression model and prevents overfitting.
As the goal is to decrease the 𝛿𝑑 and increase the 𝛿𝑙 , Fed-

CaSe sets the desired base value of 𝛿𝑑 and 𝛿𝑙 as the min and
the max of Δ𝑑 and Δ𝑙 respectively. The 𝜕𝑡 and the 𝜕𝑙 are ob-
tained from the standard deviation of the Δ𝑑 and Δ𝑙 (Alg. 1
lines 24-27) to maintain a steady increase in 𝛿𝑙 and decrease
in 𝛿𝑑 . In this way, it continuously learns to select the best EN
ratio. FedCaSe always chooses the most experienced clients
based on this EN ratio, which when determined intelligently,
can be anything between 0-1. In each round, if the EN ratio
is minimum, then less experienced clients and more new
clients are selected, which tackles the overfitting and bias.
Additionally, choosing the same client more times reduces
the model utility, and hence, biased clients are automatically
avoided by RO policy. Once the EN ratio has been predicted,
it selects the most experienced clients from the dictionary, F
〈K:client_id, V:client_experience〉 sorted based on experience
that it keeps (Alg. 1 lines 28-40). The impact of RO in FL has
been evaluated in §5.3. The RO model can be trained online
or offline periodically for taking scheduling decisions with
negligible overhead (∼0.02% of entire round).

Tackling Bias in Client Selection. Client utility is mea-
sured by both model and I/O utility. The I/O utility considers
whether a device is high-end by checking how fast it can com-
plete a round for the client. While high-end devices might
be favored, this occurs only if high-end devices consist of
valuable data samples too. However, this is temporary as
their utility decreases through repetitive training. Moreover,
to prevent bias the RO policy ensures random client selection
according to EN ratio.

3.2.2 Client Data Sampler. The client data sampler works
with each client to perform two main functions: (1) calcu-
lating the experience score of each data sample belonging
to each client; and (2) determining the memory:flash (MF)
device ratio, i.e., how many and which samples would be
received from memory and flash for training in each round.
To calculate the client sample experience, it uses three

techniques. The first technique captures the prospect of a
client sample towards improving a model (model utility,𝑀𝑢 )
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Algorithm 2: FedCaSe Client Data Sampling
1 Input and Initialization:
2 𝑆𝐿 : a set containing loss of each sample of a client
3 𝑆𝐹 : a set containing the frequency of sample usage
4 𝑆𝐸 : a set containing the experience of all samples
5 for s in client_samples do
6 # find model utility,𝑀𝑢 and train utility, 𝑇𝑢
7 𝑀𝑢 = (𝑠𝑙 - min(𝑆𝐿)) / (max(𝑆𝐿) - min(𝑆𝐿))
8 𝑇𝑢 = (𝑠𝑓 - min(𝑆𝐹 ))/ (max(𝑆𝐹 ) - min(𝑆𝐹 ))
9 𝑠𝑒 =𝑀𝑢 + 𝑇𝑢 # client sample experience

10 𝑆𝐸 = 𝑆𝐸∪ 𝑠𝑒 # add updated sample experience
11 phase1_samples = prob_dist(𝑆𝐸 )
12 # find current samples in memory and flash cache
13 𝑀𝑆 , 𝐹𝑆 = find_experienced_cache(phase1_samples)
14 # 𝑅𝑆 : required samples for training
15 r = 𝛼 * (𝑅𝑆 / len(𝑀𝑆 )) # 𝛼 = 0.5 by default
16 rep_samples = r *𝑀𝑆 # repeat samples in memory
17 𝑙𝑒𝑛𝑓 𝑙𝑎𝑠ℎ = 𝑅𝑆 - len(rep_samples) # quantity from flash
18 phase2_samples = rep_samples + 𝐹𝑆 [:𝑙𝑒𝑛𝑓 𝑙𝑎𝑠ℎ]
19 return phase2_samples

through relative loss. The second technique captures a sam-
ple’s potential and usefulness towards future participation
in training (train utility, 𝑇𝑢 ) through relative frequency. The
third technique calculates a composite sample experience
score using the model and train utility that takes into account
the impact of both utilities.

FedCaSe client data sampler then uses the sample experi-
ence as a metric to determine the number and the identity of
the samples that will be used for training from the memory
cache and the flash storage in a particular round. Algorithm 2
shows the steps for data sampling inside each client.

Sample Model Utility (𝑀𝑢 ). The sample model utility de-
notes the ability of a sample to contribute towards improving
the training model accuracy. It is calculated using training
loss like the client model utility. However, to quantify the
impact of each sample, FedCaSe uses loss of individual data
samples of a client rather than the combined batch-based
training loss used in the client model utility.

Sample Train Utility (𝑇𝑢 ). The train utility is calculated
through the number of times a sample has been trained,
i.e., the access frequency of the samples. It captures a sam-
ple’s potential and usefulness towards future participation
in training. Each client keeps a set of the access frequency
of each sample and updates that set as training moves on.
Sample Experience. Once the sample model and train

utility has been calculated and their relative impact deter-
mined, the sample experience, 𝑠𝑒 , is obtained from the sum-
mation of both utilities (Alg. 2, line 7-9). Considering both

model and train utility while determining experience allows
FedCaSe to adapt dynamically and helps prevent conver-
gence on a data subset.

In contrast to importance-sampling-based techniques [18,
22, 24] that focus on loss only, this experience-based ap-
proach takes into account the impact of both utilities when
performing sampling from a probability distribution. As a re-
sult, it manages to prioritize samples that have been trained
on more and are likely to be in the cache during training,
therefore decreasing the wall clock time of the client.
At the same time, when similar samples are selected too

often, their model utility decreases. Hence, experience scores
give them less priority while choosing for the next round,
thus avoiding sample bias. In this way, FedCaSe prioritizes
important frequently used samples, but excludes them once
their utility decreases. Such a bias-tackling mechanism, com-
bined with insights from important sampling techniques,
enables FedCaSe to perform repetitions in sample selection
without making the model biased and sacrificing accuracy.

Sampling Procedure. FedCaSe performs sampling in two
phases. In the first phase, the sampler collects a list of repeti-
tive samples with the most experience out of all the samples
belonging to the client. A probability distribution determines
how the experienced and novice samples would be merged
for training that will likely produce the best accuracy and
round duration improvement (Alg. 2, line 11).

In the second phase, FedCaSe checks the cache for experi-
enced samples,𝑀𝑠 already in the memory cache (Alg. 2, line
13). Then, according to the number of samples required for
training (𝑅𝑠 ) and the number of samples inside the client’s
memory cache (𝑀𝑠 ), we find a repetition factor (𝑟 ) that de-
notes the number of times the experienced samples would
be trained more (Alg. 2, line 15). 𝑟 is reduced by a deprecia-
tion factor, 𝛼 , to maintain a good balance of variation in the
samples used to be used for training. Experienced samples
undergo further repetitions, ensuring a higher read hit ratio
(RHR) for the client’s memory cache (Alg. 2, lines 16-19).

3.2.3 Client Data Sample Cache. The client data cacheworks
inside each client and performs two main functions: (1) track-
ing the experience of each sample in the memory cache
and flash cache while dynamically updating the experience
scores; and (2) making caching and eviction decisions from
the memory cache during training.
Since our goal is to train more on experienced samples

from a client’s limited memory cache to reduce I/O time, we
must always keep the memory cache occupied with the most
experienced samples so that repetitions of those samples
during sampling (Alg. 2) can be beneficial for training. For
tracking the experience of each sample belonging to a client,
FedCaSe maintains two sorted metadata queues - the current
queue (CPQ) and the ghost cache (GPQ) based on the loss,
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Algorithm 3: FedCaSe Client Data Sample Caching
1 Input and Initialization:
2 # Initialize priority queue of (loss, frequency) of

samples in memory and trained samples,
respectively

3 CPQ: {}, GPQ: {}
4 for s in client_samples do
5 if s in memory_cache then
6 fetch_from_memory(s)
7 𝑙𝑠 = get_loss_from_training() , 𝑓𝑠 = CPQ[s][1]
8 CPQ[s] = (𝑙𝑠 , 𝑓𝑠+1)
9 else if s in GPQ then
10 𝑙𝑠 , 𝑓𝑠 = GPQ[s]
11 # Calculate using Alg. 2 (line 6-9)
12 𝑒𝑠 = get_sample_experience(𝑙𝑠 , 𝑓𝑠 )
13 𝑠𝑚𝑖𝑛, (𝑙𝑚𝑖𝑛, 𝑓𝑚𝑖𝑛) = argmin(𝐶𝑃𝑄),min(𝐶𝑃𝑄)
14 𝑒𝑚𝑖𝑛 = get_sample_experience(𝑙𝑚𝑖𝑛, 𝑓𝑚𝑖𝑛)
15 if 𝑒𝑠 > 𝑒𝑚𝑖𝑛 then
16 evict(s𝑚𝑖𝑛) &𝐶𝑃𝑄.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑠𝑚𝑖𝑛)
17 𝑙𝑠 = get_loss_from_training()
18 cache(s) & CPQ.insert(s, (𝑙𝑠 , 𝑓𝑠 + 1))
19 else
20 fetch_from_flash(s)

21 else
22 fetch_from_flash(s)
23 𝑙𝑠 = get_loss_from_training(), 𝑓𝑠 = GPQ[s][1]
24 GPQ[s] = (𝑙𝑠 , 𝑓𝑠 + 1)

𝑙𝑠 , and the number of times a sample has been trained, 𝑓𝑠 .
These queues store 𝑙𝑠 and 𝑓𝑠 as a metadata tuple 〈𝑙𝑠 , 𝑓𝑠〉. The
sample experience, 𝑒𝑠 , is calculated from these queues during
taking caching and eviction decisions (Alg. 3, lines 10-14).
The CPQ tracks the experience associated with every client
sample inside the cache, and the GPQ tracks every client
sample that has already participated in the training. During
the training process, if a certain sample’s experience is more
than the sample having the lowest experience inside the
current memory cache, then the sample having the lowest
experience is evicted from the cache, and the new sample
having the higher experience score is cached (Alg. 3, lines 15-
22). This way, the FedCaSe client cache dynamically updates
the memory cache.
Memory Overhead. Each client maintains two priority

queues having 〈float, float〉 tuples. Assuming that each client
has enough space to store 100B samples (each 1MB), the total
space available to the client would be 97.7∗106GB. Assuming
storing each tuple will need 8 bytes, the memory overhead

for maintaining the queues is very negligible (∼ 0.001% of
the entire space required to keep the samples).

4 Implementation
FedCaSe is implemented as three separate Python libraries
for client scheduling, client data sampling, and client data
caching built to work with a popular FL engine, FedScale [27].
The client scheduler determines the EN ratio by using the
RandomForestRegressor model from scikit-learn [36]. The
client data sampling library and the caching library work
with the clients of an FL engine. FedCaSe uses PyTorch [35]
multinomial and numpy [15] library to build the logic be-
hind client data sampling. Each client builds its dataset by
inheriting PyTorch’s Dataset class. FedCaSe includes APIs for
communicating with the memory cache to conduct caching
and eviction decisions inside the Dataset class.

5 Evaluation
5.1 Experimental Setup
FedCaSe has been designed to work in extensive deploy-
ments with millions of edge devices. Nevertheless, such de-
ployment is both cost-prohibitive and challenging to guar-
antee the reproducibility of experiments. Hence, we resort
to training with 2800 emulated clients with the selection of
up to 100 clients per round using NVIDIA P100 GPUs on
Chameleon Cloud testbed [23]. We simulate real-world FL
training using two representative computer vision datasets—
FEMNIST [7] and CIFAR-10 [25] and two models, ResNet-
18 [16] and MobileNetV2 [39] that are widely used in FL
evaluations. Train and test datasets are partitioned following
LEAF [7] benchmark.

Clients in our study have sample sizes ranging from 1 MB
to 100 MB and capture the inherent data sample size hetero-
geneity in cross-device FL. Figure 7 shows the CDF of the
average sample sizes of the different clients used for running
our experiments. Moreover, the clients vary in the amount of
available memory cache, i.e., different clients can cache differ-
ent numbers of samples. Figure 8 shows the heterogeneity in
memory cache space across the clients normalized based on
amount of samples that can be fit in memory, i.e., data sample
quantity heterogeneity. The heterogeneity related to com-
puting and communication is simulated using data provided
by FedScale [27] which uses data from AI Benchmark [17]
and MobiPerf [4] to replicate real-world FL deployments.
To show the effectiveness of the FedCaSe’s caching pol-

icy, we need to allow clients to use a particular portion of
their memory for caching samples. Although memory cache
for samples can be fixed at any percentage as necessary by
the client, to ensure consistency and reproducibility, in our
evaluations, we allow each client to cache 10% of its WSS in
its memory cache. Note that since each client has a different
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Figure 7: Sample sizes of clients differ greatly. Sample
sizes normalized with respect to their sizes across x-
axis.

number of samples as their WSS, the cache sizes become het-
erogeneous for the clients. Assume three clients have WSS
sizes 〈50,100,150〉; then caching 10% of WSS would mean
the number of samples they can cache would be 5, 10, and
15, respectively. We report the simulated wall clock time
and rounds in our evaluations based on the capabilities of
the devices. While the operation time for individual devices
is estimated, the actual training is performed on real data
samples using real GPUs to enhance model accuracy.

Our evaluation aims to address the following questions:
• How much can FedCaSe increase the global and local
RHR in large-scale heterogeneous FL? What is the
impact of each of its component on RHR? (§5.2)

• How can the improved RHR translate into improved
model accuracy during FL training through exploiting
client and sample experience? How much adaptive is
the Reverse Optimization (RO) policy throughout the
training process? (§5.3)

• How much can FedCaSe decrease the round duration
in FL? How much does each of its utility functions
contribute to reducing the number of rounds? (§5.4)

5.2 Impact on Read Hit Ratio (RHR)
In this section, we evaluate FedCaSe’s client data sample
caching policy against other state-of-the-art caching poli-
cies used in traditional homogeneous settings. We evaluate
the RHR of FedCaSe against three state-of-the-art policies—
SHADE [24], Quiver [26], and MinIO [32] along with tradi-
tional policies like LRU and LFU (least frequently used) to
show how much FedCaSe can improve the global and local
RHR of thousands of clients having heterogeneous memory
cache. We also perform an ablation study on FedCaSe’s dif-
ferent policies (C: Caching, S: Sampling, Sched: Scheduling)
to understand how much each policy impacts the RHR.
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Figure 8: Memory cache space of the clients differ
greatly. X-axis denotes the Client IDs.
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Figure 9: Global read hit ratio (RHR) of different
caching policies in a heterogenous FL setup of 2800
clients. Ablation study on three components of Fed-
CaSe (C: Caching, S: Sampling, and Sched: Scheduling).

SHADE clients (i.e., clients using SHADE) use a sample
priority-aware caching technique for caching samples in
their memory. Quiver clients use a substitutability technique
that prioritizes samples already in the client’s cache for
training. MinIO clients do not evict samples once they are
cached in memory. FedCaSe differs from these policies in two
aspects—it samples based on clients’ heterogeneous memory
cache space and caches based on sample experience, which
improves its RHR and accuracy. The clients are scheduled
using both the default scheduling technique (i.e., random)
and a state-of-the-art scheduling technique, Oort [28].
Ablation Study. Figure 9 shows that FedCaSe (C) per-

forms similarly to Quiver. However, when we consider mem-
ory heterogeneity in the sampling procedure and adjust the
experienced samples based on each client’s limited memory
cache size, FedCaSe (C+S) improves performance by 3.59×. In-
cluding experience-based scheduling, FedCaSe (C+S+Sched)
further enhances the performance, ensuring a 1.75×, 3.62×,
5.29×, 7.73×, and 81.72× higher RHR compared to SHADE,
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Figure 10: FedCaSe outperforms other state-of-the-art
policies in local RHR at the scale of thousands of het-
erogeneous clients.

Quiver, MinIO, LFU, and LRU cache policies respectively
when trained for 150 rounds. LRU and LFU policies perform
the worst in RHR as these policies cannot exploit random
data sampling patterns of thousands of clients in the limited
heterogeneous cache. Since SHADE uses loss-based sampling
to enhance RHR, it performs better than the other policies.
However, like other policies discussed in §2, SHADE cannot
adjust the sampling and scheduling to match the hetero-
geneity of the client devices. FedCaSe’s experience-based
scheduling policy prioritizes the usage of warmed-up clients
in the future, thus outperforming SHADE in global RHR.
Next, we examine the individual contributions of each

client, i.e., local RHR, compared to the collective gain in
global RHR across the entire set of 2800 clients. Figure 10
illustrates that in FedCaSe, 92.39% clients have a RHR greater
than 0.2, which is 318.58×, 48.37×, 3.65×, and 3.24× more
compared to LRU, MinIO, Quiver, and SHADE respectively.
Lack of a sample retention policy like FedCaSe means new
samples displace existing ones in the cache, resulting in a
high eviction rate. Since FedCaSe learns from previous pat-
terns in training through sample experience, it can properly
guide the sampling procedure of clients with limited hetero-
geneous memory to increase the local RHR.

5.3 Impact on Accuracy Improvement
To investigate whether the gains in RHR shown in the pre-
vious section translate well into accuracy improvement, in
this section, we evaluate the accuracy improvement of Fed-
CaSe against random and advanced sampling and scheduling
techniques. We use top-1 accuracy for evaluation, which de-
notes the percentage of predictions where the model’s top
prediction matches the true label of the input data. We train
up to the point when the accuracy curve starts to plateau,
indicating convergence.

In the first set of experiments, we evaluate FedCaSe against
three baselines based on random client scheduling, data sam-
pling, and traditional caching policies:
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Figure 11: Accuracy improvement of FedCaSe vs.
vanilla configurations using ResNet-18 on FEMNIST.
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Figure 12: Accuracy improvement rate of FedCaSe vs.
Oort. Training ResNet-18 on FEMNIST for 150 rounds.

(1) vanilla lfu, which performs client scheduling and
client data sampling randomly. However, clients can
put 10% WSS in the cache and evict the data samples
based on the LFU policy when updating the cache.

(2) vanilla lru, which performs client scheduling and
client data sampling randomly. However, clients can
put 10% WSS in the cache and evict the data samples
based on the LRU policy when updating the cache.

(3) loss_sampling, which uses a loss-based advanced sam-
pling policy like SHADE [24] and Mercury [43], and it
is equipped with a caching policy that caches samples
based on loss importance and evicts samples randomly
when looking to cache important samples.

We observe the accuracy improvement rate of FedCaSe
and the baselines during training. Figure 11 shows that Fed-
Case, caching 10% WSS, is up to 1.85× faster than vanilla

and loss_sampling. These baselines are unable to choose
samples and adapt the sampling conveniently to improve
accuracy when clients have a limited heterogeneous mem-
ory cache. Although loss_sampling chooses samples based
on importance, it cannot fully exploit the opportunities that
important samples present at client granularity. While Fed-
CaSe decides the experience based on model utility and train
utility of a sample, loss_sampling decides the samples for
the next round based only on loss and disregards a crucial
metric, i.e., train utility to filter samples. As train utility is not
considered, loss_sampling cannot reward experienced sam-
ples based on I/O benefits and hence suffers from increased
round durations.

63



FedCaSe: Enhancing Federated Learning with Heterogeneity-aware Caching and Scheduling SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Table 2: The improvement of FedCaSe in number of
rounds clients get scheduled in different ranges over
vanilla and Oort. ≥ X means a single client gets called
≥ X times throughout training.

Client Calls Improvement
(vanilla)

Improvement (Oort)

≥ 10 1.51× 3.01×
≥ 15 3.28× 6.66×
≥ 20 19.61× 29.1×

Next, we compare FedCaSe’s client scheduling technique
against four additional baselines using Oort [28], a state-of-
the-art client scheduling technique. Oort uses loss generated
by clients to detect client importance, thereby using that
as a driving metric for selecting clients in the next rounds.
Oort penalizes clients which become stragglers but does not
reward clients which complete rounds faster, like FedCaSe.
Hence, Oort does not fully capture a client’s ability to reduce
round duration. Additionally, Oort prioritizes exploringmore
clients rather than training more on already experienced
clients like FedCaSe. This approach makes Oort leave out on
gaining the most benefits from a single client due to lack of
training as previously discussed in §2.3.
For evaluation, we equip Oort with four caching policies

to show the impact FedCaSe’s experienced clients have on
accuracy improvement against advanced policies:
(1) Oort + MinIO, which uses a caching policy similar to

MinIO [32] where cached samples are never evicted.
(2) Oort + SHADE, which leverages SHADE [24], a policy

using importance of samples to take eviction decisions.
(3) Oort + LFU, which evicts the data samples based on

the LFU policy when updating the cache.
(4) Oort + LRU, which evicts the data samples based on

the LRU policy when updating the cache.

Figure 12 shows that FedCaSe takes 2.02×, 2×, 2.04×, and
2.06× less time than Oort + MinIO, Oort + SHADE, Oort + LFU,
and Oort + LRU respectively to reach accuracy convergence.
To understand why accuracy improved faster, we fur-

ther analyze client participation compared to vanilla and
Oort configurations across different ranges. Table 2 shows
that FedCaSe can call experienced clients over 20 times (i.e.,
the same client takes part in entire training for over 20
rounds) throughout training 19.6× and 29.1×more compared
to vanilla and Oort respectively. As Oort prioritizes clients
with a higher impact on accuracy improvement, it explores
more clients which are inexperienced. In contrast, FedCaSe
uses RO policy to find experienced clients across rounds.
Figure 13 shows that the RO policy adapts itself (40% to 90%
of total client selection can be experienced) to minimize the
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Figure 13: Adaptivity of RO policy in scheduling expe-
rienced clients.
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Figure 15: Sensitivity analysis on the impact (Top-1
accuracy and training time) of placing weight, 𝛼 on I/O
utility when determining client experience.

training time and maximize the accuracy improvement while
exploiting the limited memory cache of clients.

Figure 14 shows that the same clients are scheduled more
frequently (some over 100 times) in FedCaSe compared to
Oort. As Oort places less emphasis on the I/O utility of clients
and more on exploration, it ends up with a suboptimal list of
clients for decreasing the I/O time in each round. On the other
hand, as FedCaSe’s policy is to train more on experienced
clients which already have experienced samples stored in
the cache, it ensures faster accuracy improvement.
Sensitivity Analysis. Two parameters that affect the

client experience, and thus the client scheduling, are the
tunable weight parameters 𝛼 and 𝛽 of the client’s I/O utility
and model utility, respectively. We change the values of 𝛼
between [0,1], where 𝛽 = 1 - 𝛼 , and train for 150 rounds on
the FEMNIST dataset using ResNet-18. Figure 15 shows that
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the training time and top-1 accuracy decrease as 𝛼 increases,
thus prioritizing clients that reduce the training time.

5.4 Impact on Rounds
In this section, we will evaluate how FedCaSe’s policies im-
pact the number and duration of rounds in FL. Given that
Oort prioritizes exploring clients, which can increase accu-
racy, it is expected to reach accuracy convergence in fewer
rounds. However, each round takes significantly longer as
I/O utility is only partially considered in client scheduling.
When training ResNet-18 on FEMNIST shown in Fig-

ure 12, we observe that although FedCaSe requires 1.25×

more rounds to reach Oort’s accuracy, FedCaSe’s round du-
ration is 2.04× less. Figure 16 shows that although FedCaSe
takes 1.16×more rounds than Oort when training ResNet-18
on CIFAR-10, its round duration is 2.4× less as it strikes a
good balance between model and I/O utility of clients. Hence,
FedCaSe can quickly increase its accuracy improvement rate
(1.6×) compared to Oort based on wall clock time.

We perform another round of experiments after equipping
Oort with three cache policies: LRU, LFU, and SHADE, to
visualize the average round time taken by these baselines
using MobileNetV2 model on FEMNIST. Figure 17 shows that
FedCaSe round time is 2.06×, 1.96×, and 1.87× less compared
to Oort + LFU, Oort + LRU, and Oort + SHADE respectively.
As discussed in §5.2, FedCaSe’s ability to increase the global
RHR significantly reduces the round duration.

Ablation Study. By default, FedCaSe prioritizes both the
model and I/O utility during data sampling and client sched-
uling. Hence, although it can take a fewmore rounds to reach
accuracy convergence compared to Oort, the wall clock time
taken decreases significantly. However, users can also em-
pirically prioritize the model utility during data sampling
and client selection if accuracy convergence needs to be
achieved in fewer rounds. Moreover, if users do not want
to use a cache, or does not have a sufficient one, they can
prioritize model utility to get the maximum performance.
We try to understand the impact of model and I/O utility in
decreasing the number of rounds during training through
an ablation study where FedCaSe uses both model and I/O
utility and FedCaSe (model utility) uses only model utility.

Figure 18 shows that prioritizing model utility can enable
FedCaSe to reach accuracy convergence up to 1.4× faster
compared to Oort with respect to rounds. This result also
shows that even without a cache (i.e., 0% WSS in cache),
FedCaSe’s client utility measuring mechanisms can boost
the performance of training. While Oort prioritizes select-
ing clients with a higher potential to increase accuracy, it
performs random data sampling within clients. Instead of
random sampling, FedCaSe emphasizes model utility during
both data sampling and client scheduling, which results in
faster convergence with respect to rounds.

6 Assumptions and Limitations
In this section we discuss the assumptions and limitations
that may influence the scope and applicability of our findings
to provide a comprehensive understanding of our approach.

Client Incentivization. Client incentivization is a sepa-
rate branch of FL research that is orthogonal to our work, as
we assume voluntary client participation, similar to related
studies [8, 9, 28]. In future work, we plan to extend FedCaSe
with incentive mechanisms to encourage client contributions
based on observed utilities.
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Broader Applicability of the Proposed Solution. Our
approach is applicable to NLP tasks, as NLP models can use
loss during training and large text documents can cause
I/O bottlenecks. However, for NLP workloads, we need to
make trade-offs between the importance of tokens, sentences,
or sequences during calculating model utility. In tasks like
translation, summarization, or question-answering, sentence
pairs may influence caching decisions. We plan to explore
these challenges in future work.

7 Related Work
Client Scheduling. A line of research [8, 10, 11, 28, 34,
41, 42] is aimed towards optimizing client scheduling in FL.
Nonetheless, all of the works try to improve client scheduling
based on the communication or computing abilities of the
clients and do not fully consider the I/O utility of heteroge-
neous clients. Hence, these policies are prone to sub-optimal
performancewhen running I/O intensive workloads in FL. As
FedCaSe intelligently drives the client scheduling based on
model and I/O utility, it performs significantly better when
memory and data heterogeneity exists across clients in FL.
Client Data Sampling. Recent research works [24, 38, 43]
use some form of importance metric for sampling data of
clients. However, these sampling techniques do not address
the system and memory heterogeneity that occurs in FL.
Since FedCaSe performs data sampling based on the samples’
experience focused on improving I/O time and accuracy, it
performs better in FL settings with heterogeneous system
and memory specifications.
Client Data Caching. Several works [24, 26, 32] have pro-
posed policies for caching data samples. Nevertheless, these
policies excel in homogeneous settings commonly encoun-
tered in traditional clusters, overlooking the heterogeneity
arising from data samples and memory cache management
of millions of devices in FL. FedCaSe’s caching policy is adap-
tive according to millions of clients’ heterogeneous limited
memory capacity, and it performs eviction based on the im-
portance of their associated data samples, thereby keeping
the most important samples for each client at any moment
during the training for faster retrieval.

8 Conclusion
System resource heterogeneity across the network, mem-
ory, computing power, etc., poses a significant challenge in
improving performance across millions of FL client devices.
Furthermore, heterogeneity in data sample size and quantity
exacerbates the issue. While several policies address specific
aspects of heterogeneity, none address how to navigate a
crucial heterogeneous resource—memory across millions of
clients. FedCaSe is the first to realize a unified intelligent
client scheduling, data sampling, and caching solution for

millions of client devices having heterogeneous limited mem-
ory sizes. FedCaSe leverages client experience and sample
experience, calculated based on the ability to increase model
accuracy and decrease round time to intelligently and adap-
tively drive the client scheduling, data sampling, and caching
decisions. Thus, it improves the accuracy improvement rate
by up to 2.06× and increases the read-hit ratio by up to 81.72×
globally compared to state-of-the-art client scheduling and
caching policies.
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