
SparkBench – A Spark Performance Testing Suite

Dakshi Agrawal1, Ali Butt2, Kshitij Doshi5, Josep-L. Larriba-Pey3, Min Li1,

Frederick R Reiss1, Francois Raab4, Berni Schiefer1, Toyotaro Suzumura1,

Yinglong Xia1

1IBM Research,{agrawal, minli, frreiss, tsuzumura,

yxia}@us.ibm.com, schiefer@ca.ibm.com,
2Virginia Tech, butta@cs.vt.edu,

3Universitat Politècnica de Catalunya BarcelonaTech,

larri@ac.upc.edu
4InfoSizing, francois@sizing.com

5Intel, kshitij.a.doshi@intel.com

Abstract. Spark has emerged as an easy to use, scalable, robust and fast system

for analytics with a rapidly growing and vibrant community of users and con-

tributors. It is multipurpose—with extensive and modular infrastructure for

machine learning, graph processing, SQL, streaming, statistical processing, and

more. Its rapid adoption therefore calls for a performance assessment suite that

supports agile development, measurement, validation, optimization, configura-

tion, and deployment decisions across a broad range of platform environments

and test cases.

Recognizing the need for such comprehensive and agile testing, this paper pro-

poses going beyond existing performance tests for Spark and creating an ex-

panded Spark performance testing suite. This proposal describes several desira-

ble properties flowing from the larger scale, greater and evolving variety, and

nuanced requirements of different applications of Spark. The paper identifies

the major areas of performance characterization, and the key methodological

aspects that should be factored into the design of the proposed suite. The objec-

tive is to capture insights from industry and academia on how to best character-

ize capabilities of Spark-based analytic platforms and provide cost-effective as-

sessment of optimization opportunities in a timely manner.

1 Introduction

Spark's brisk evolution and rapid adoption outpace the ability of developers and de-

ployers of solutions to make informed tradeoffs between different system designs,

workload compositions, configuration optimizations, software versions, etc. Designers

of its core and layered capabilities cannot easily gauge how wide ranging the potential

impacts can be when planning and prioritizing software changes. While Spark-perf

mailto:yxia%7D@us.ibm.com
mailto:schiefer@ca.ibm.com
mailto:2Virginia%20Tech,%20butta@cs.vt.edu
mailto:francois@sizing.com

 2

[18] can be used to calibrate certain categories of operations, a Spark-specific, com-

prehensive and extensible performance evaluation alternative is essential for ferreting

out inefficiencies and anomalies. This proposal is intended to be a starting point for a

community driven development of such a testing suite. With this proposal we plan to

open discussion and solicit feedback and participation from the community at the very

beginning of designing such a performance testing suite.

1.1 Objective

The objective is to develop a far-reaching performance testing suite that enables per-

formance comparisons between different levels of Spark offerings, including Spark

libraries and Spark core. The suite is intended to facilitate evaluation of technologies

and be relevant to Spark adopters and solutions creators. We anticipate that the im-

plementation and execution of this suite will benefit from efforts of many groups of

professionals – Spark operators, workload developers, Spark core developers, and

vendors of Spark solutions and support services.

The following sections present the use cases, the fundamental requirements of the

performance testing suite, the design of data models and data generators, the chosen

workloads covering the Spark ecosystem, the execution and auditing rules, and the

performance metrics. Finally, we conclude the proposal and indicate some areas for

future work.

1.2 Related Work

Benchmarks and performance testing suites serve many different communities. They

are valuable tools for software engineering teams to assess the performance impact of

design trade-offs, to refine choices in system architectures, to inform implementation

choices and to identify performance bottlenecks. They can be used by researchers to

evaluate new concepts and algorithms. They are excellent vehicles for assessing the

performance impact of new hardware or different hardware topologies. They can be

used by users and system integrators to gain a deeper understanding of the capabilities

offered by competing technologies. No one performance test can ever perfectly serve

the needs of all constituencies, but the TPC and SPEC benchmarks, as well as open

source benchmarks like DOTS[15] have proven track records in providing value to a

broad spectrum of constituencies.

Overall, the focus of benchmarks and testing suites can span a spectrum from low-

level (e.g. SPEC CPU2006 [9]) to high-level (e.g. TPC-E [8], SAP SD, LDBC SNB

[13]) functions. In the big data application domain, existing performance testing suites

and benchmarks can be grouped into three categories: component-level testing, tech-

nology-specific solutions and technology-agnostic solutions.

Component-level tests (sometimes called micro-benchmarks) focus on stressing key

system primitives or specifically targeted components using a highly synthetic work-

load. Examples of big data component-level testing include the suite of Sort Bench-

marks [22], YCSB [30] and AMP Lab Big Data [27].

Technology-specific solutions involve a set of representative applications in the

targeted domains and generally mandate the use of a specific technology to implement

the solution. The goal is to test the efficiency of a selected technology in the context of

a realistic operational scenario. Examples of technology-specific solutions testing for

big data are MRBench [37], PigMix [36], HiBench [23, 24] and SparkBench [31].

Technology-agnostic solutions aim at creating a level playing field for any number

of technologies to compete in providing the most efficient implementation of a realis-

tic application scenario within the targeted application domain. No assumption is

made about which technology choice will best satisfy the real world demands at a

solution level. Benchmarks such as BigDataBench [26], BigBench [29] and TPC-DS

[8] fall into this category.

The Spark performance testing suite introduced in this paper is designed to fall into

the category of technology-specific solutions. It aims at providing a Spark specific,

comprehensive and representative set of workloads spanning the broad range of appli-

cation types successfully implemented within the Spark ecosystem. While other

benchmarks such as BigBench [29], BigDataBench [26] and HiBench [23] each cover

a small number of Spark-enabled workloads, they are far from including a comprehen-

sive coverage of the full set of application types supported under Spark. SparkBench

[31] and Spark-perf [18] provide good initial starting points, yet they fall short of

covering the full Spark picture. In particular Spark-perf is a performance testing suite

developed by DataBricks to test the performance of MLlib, with extensions to stream-

ing, SQL, data frame and Spark core currently under development. In contrast the

Spark performance testing suite proposed in this paper incorporates a broader set of

application types including text analytics, Spark R and ETL, with realistic and scala-

ble data generators to enable testing them in a more real-world environment.

2 Targeted Dimensions

A distinctive aspect of the Spark performance testing suite proposed here is that it

will simultaneously target the following three dimensions of performance analysis

within the Spark ecosystem.

 Quantitative Spark Core Engine Evaluation, by enabling comparative analysis

of core Spark system ingredients, such as caching policy, memory management op-

timization, and scheduling policy optimization, between baseline (standard) Spark

release and modified/enhanced variations. It anticipates in-depth performance stud-

ies from multiple perspectives, including scalability, workload characterization, pa-

rameter configurations and their impacts, and fault tolerance of Spark systems.

 Quantitative Spark Library Evaluation, by allowing quantitative comparison of

different library offerings built on top of the Spark core engine. These include the

categories of SQL, streaming, machine learning, graph computation, statistical

analysis, and text analytics. We envision interest in comparisons among different

levels/versions of Spark libraries, as well as alternative libraries from vendors.

 Quantitative Staging Infrastructure Evaluation, by providing insight toward

analysis relative to a fixed software stack, two examples of which are (a) compari-

 4

son across different runtimes and hardware cluster setups in private datacenters or

public clouds, and with use of Spark data services, (b) gaining of configuration and

tuning insights for cluster sizing and resource provisioning, and accelerated identi-

fication of resource contentions and bottlenecks.

In summary, the Spark performance testing suite is intended to serve the needs and

interests of many different parties, and aims to cover the technology evaluation of the

Spark ecosystem by exercising its key components comprehensively.

3 Requirements

Measurement is the key to improvement, in computing as in many other spheres. The

Transaction Processing Performance Council [8] and the SPEC [9] are among the

most prominent performance benchmarking organizations. Supplementing them are

efforts like LDBC, for more specific yet significant areas like graph and RDF technol-

ogies benchmarking [35]. Application level benchmarks from vendors like SAP [16]

and Infor Baan [17] play a key role in influencing solution choice, workload balancing

and configuration tuning. Open source communities have created a rich variety of

performance test suites, DOTS [15] being just one example. From these and other

efforts we recognize an established set of core attributes that any new performance

testing suite should possess.

From Huppler [4] we have the following attributes

─ Relevant

─ Repeatable

─ Understandable

─ Fair

─ Verifiable

─ Economical

In the context of a 21st century Spark performance testing suite we can further re-

fine these timeless attributes as follows:

 Simple, easy-to-use and automated: The suite needs to be simple to understand,

deploy, execute, and analyze in an automated fashion, requiring only modest con-

figuration. Considering the rapidly evolving nature of Spark ecosystem, automation

is essential.

 Comprehensive: The performance testing suite should be comprehensive and

representative of the diversity of applications supported by Spark. Different Spark

operations can put pressure on different resources, in different ratios. Since a

benchmark suite cannot capture all such operations, it is important that the chosen

representatives reflect both the diversity of Spark uses at the application level and

the variant stresses put on the computing resources at the systems level. For exam-

ple, the suite should include workloads that have high resource demands for specif-

ic system resources to test extreme cases for a provisioned system as these work-

loads will be one of several uses of Spark.

 Bottleneck oriented: Frequently a role of performance testing is to spur technolo-

gy advancement. The concept of bottleneck (or choke point) analysis appears with

the LDBC benchmark effort and is a good means to shape workloads, and thereby

provide impetus for innovation by drawing attention to tough, but solvable, chal-

lenges.

 Extensible: Due to the rapid evolution of Spark, the Spark performance testing

suite needs to be able to evolve, which includes allowing users to easily add new or

extend/expand existing capabilities. A successful Spark benchmark will successful-

ly address the many parts of the Spark taxonomy and be flexible to extend to new

capabilities that the community may develop. This is illustrated in Figure 1 Spark

Taxonomy, derived from Databricks [1], starting with the Spark Core Engine as a

base with several workload-focused extensions on top.

 Portable: The benchmark suite should run on a broad range of open systems and

be designed to be readily portable to other operating systems if required.

 Scalable: To allow scaling of tests to large distributed or cloud environments, the

suite should facilitate generation of data that is sufficiently voluminous and varied

that it exercises systems under test in statistically significant ways. The rate at

which new data needs to be generated also needs to create meaningful stresses.

Figure 1 Spark Taxonomy (https://databricks.com/Spark/about)

4 Data Model

Ideally we will want to develop a unified data model that allows integrating the

multiple varieties of data, (relational tables, resilient distributed datasets, semi-

structured data, graphs, arrays, and unstructured data such as text) that arise in Spark

usages. A possible approach could be to start with an existing, largely traditional,

relational data model and then extend it to the emerging domains. This has been popu-

larized by the BigBench benchmark [10] which started with TPC-DS [8] and extended

its data model to the SQL/MR and Mahout machine learning areas. An interesting

possibility is to build on top of the LDBC Social Network Benchmark (SNB) [13]

 6

which already covers a number of the Spark ecosystem domains, and to extend it fur-

ther.

We believe it would be effective to use this extension approach for the Spark per-

formance testing suite. As the design and overall implementation of the Spark perfor-

mance testing suite is refined, the choice between TPC-DS, SNB or some other option

can be made. Since any kind of relational model would support SQL, the data model

for that domain is quite straightforward. Streaming can use the relational tables both

as sources and as targets. Work to recast the Mahout-based machine learning with

Spark MLlib [2] is already underway. For graph computation, understanding the link

between the Social Network Benchmark of LDBC and how it could contribute to the

testing suite will be a challenge [33]. Finally, defining a data model across various

specialized Spark features and spanning text analytics, and SparkR for a unified per-

formance testing suite appears feasible in principle, but more investigation is needed.

5 Data Generator

Scalable, efficient, and realistic data generation plays a crucial role in the success of a

data intensive testing suite. The built-in scalable data generator of TPC-H made it very

compelling, as recounted in a retrospective of TPC-H [5]. TPC-DS further refined this

notion and added non-uniform distributions and correlation. Multiple research efforts

(e.g., Myriad [11] from TU Berlin, Parallel Data Generation Framework (PDGF) from

Bankmark [12], and DATAGEN from the LDBC Social Network Benchmark [13])

are addressing these well appreciated needs for scalability and for reflecting real-

world characteristics into synthetic data generation. We recognize similarly that while

it may require significant development effort, rapid generation of representative data

for use in large scale clusters will be critical in the adoption of the proposed Spark

performance testing suite. We expect that the definition, design and validation of a

powerful data generator is a key work item as we proceed with the implementation of

this Spark performance testing suite.

5.1 Properties of Data Generator

A data generator must have multiple key attributes in order to be successful; in partic-

ular, it will need to be:

 Open source and transparent: to allow users to view and modify the code to en-

hance it or alter its behavior

 Scalable: to allow users to use it in a variety of environments, from small single

node servers with only a few GB of data to the largest clusters with hundreds or

even thousands of nodes and Petabytes of data.

 Parallel and distributed: as practical generation of petabytes of data will require

many multi-core servers

 Incremental: to allow data to grow in iterations one must be able to generate data

in “chunks” rather than in one monolithic start to finish method

 Realistic: Although synthetic, data must strive to be realistic; i.e., representative of

real data sets. Following are some of the common properties of real life data:

o Correlation

o Non-uniform distributions representing high levels of skew

o Fields/columns with both low and high cardinality

o Varying numeric fields

o Text fields of varying length

 Able to represent relationships: as capturing connections across multiple ta-

bles/data sets is essential for advanced analytics.

 Random but predictable: The data must be sufficiently random to challenge the

system-under-test with unknown input sets. And yet, the output of data processing

must be sufficiently predictable to permit validation of results and to determine

which sets of input may trigger comparable levels of processing by the workload.

6 Workloads

6.1 Machine Learning

Several subtasks in the Machine Learning (ML) category are desirable for inclusion

in the proposed suite, and are described further below. For each, the Spark perfor-

mance testing suite should contain a reference implementation based on the most re-

cent Spark MLlib capabilities. The suite should include a written specification for

each machine learning subtask. It should be easy to substitute a different ML algo-

rithm or implementation, provided that the replacing algorithm meets the specifica-

tions identically with reference implementation. The specification should therefore be

at a sufficiently high level to permit alternative implementations, and be sufficiently

strict to ensure that variant implementations produce useful outputs leading to quality

results from a data science perspective.

It is important for the data generator for the machine learning tasks to cover a broad

range of data characteristics which affect the behavior of ML algorithms. Input data

should include dense, sparse, and hybrid (some attributes dense, others sparse) inputs.

Algorithms should run against both small and large numbers of features.

In order to be able to draw broadly accepted conclusions and to drive innovation

towards continuously improved machine learning, the generated data should also be

robust and highly representative of real world data. In machine learning, processing

speed is important but certain levels of quality are even more important. In a nutshell,

generated data should not be so well-conditioned as to favor optimization algorithms

that are not usable in practice with real-world data. We believe that substantial work is

required to construct a robust, realistic data generator for the performance testing suite

assessing Spark machine learning implementations.

Based on the above criteria, a Spark performance testing suite could augment the

features tested in Spark-perf [18] and supplement [18] with extensions in the areas of

logistic regression, support vector machine and matrix factorization. These are widely

 8

used regression, classification and recommendation algorithms for machine learning

applications.

ML Subtasks

Logistic Regression

Logistic regression, as a machine learning classifier can be used to predict continu-

ous or categorical data. For example, it is used to predict whether a patient has a given

cancer based on measured characteristics such as various blood test, family disease

history, age, sex, etc. The algorithm uses the stochastic gradient descent to train the

classification model. The input data sets are kept in memory through RDD abstrac-

tions, and the parameter vector is calculated, updated, and broadcast in each iteration.

Support Vector Machine

A support vector machine (SVM) model is trained by constructing a set of hyper-

planes in a high, or even infinite, dimension space for classification. Compared with

linear and logistic classification, SVMs can implicitly map inputs into a high dimen-

sional feature space and efficiently conduct nonlinear classifications.

Matrix Factorization

Matrix factorization, typically used by recommendation systems, is a collaborative

filtering technique that fills in the missing entries of a user-item association matrix.

Matrix factorization in Spark currently supports model based collaborative filtering

and can be configured to use either explicit or implicit feedback from users.

Random Forest Classification

A random forest classifier uses a large set of relatively simple decision trees to per-

form classification tasks. The classifier combines the results of the individual classifi-

ers to produce a consensus result. Random forests have shown to be effective in a

number of machine learning tasks beyond their primary uses in classification. Since

building a random forest involves training many small models in parallel, the task

involves different communication patterns from other types of training tasks. MLlib

exposes a random forest classifier implementation via the

mllib.tree.RandomForest API.

6.2 Graph Computation

Graph is a very widely utilized data model. Consequently, a comprehensive Spark

performance testing suite needs to include graph processing. The graph packages sup-

ported under Spark include GraphX and Dato. Additional projects are underway.

Graph computations to be included in the testing suite need to be representative of

common types of graphs and graph analytics operations, and graph properties should

reflect those in practical applications. Therefore, the data generator should be able to

generate graphs of different types, such as the social graphs and man-made graphs

(e.g. road-network) where a sensitive metric (say, vertex degree distribution) can be

varied to obtain a wide range of analytics impact. Where practical, we want to be able

to link graph data with other data generated for other components of the Spark per-

formance testing suite. We propose to draw considerably from the LDBC Social Net-

work Benchmark [33, 34] and need to examine how best to adapt their benchmarks to

the Spark ecosystem and the Spark performance testing suite infrastructure. Different

types of work, such as static structure-based traversal, graph structure morph-

ing/property updates, and the processing of property-rich graphs, are highly desirable

to include in the graph analytics operations of the testing suite.

The following subtasks are proposed according to the above criteria.

Graph Generator Subtask

The Linked Data Benchmark Council (LDBC [35]) has created two benchmarks.

One of them is the LDBC Social Network Benchmark [33, 34] (SNB) whose correlat-

ed graph generation, graph querying tests, complex graph dependencies and scalable

benchmark drivers reflect landmark innovation in graph benchmarking. Its data gener-

ator (ldbc_snb_datagen) uses experimentally extracted metrics and correlations to

produce scalable datasets mimicking real world social networks. LDBC introduced a

new choke-point driven methodology for developing benchmark workloads, which

combines user input with that from expert systems architects.

The SNB analytics workload [34] includes General Statistics, Community Detec-

tion, Breath First Search, Connected Components and Graph Evolution; a list that will

grow in the near future with the addition of new algorithms. We propose to select

workloads from this benchmark for the Spark performance testing suite and develop

additional workloads to cover various aspects of graph computing as detailed in the

next subsection.

Graph500 [14] is a graph benchmark focusing on data-intensive workloads and par-

ticularly on large graphs. It is based on a breadth first search in a synthetically gener-

ated large undirected graph with power-law property based on the Kronecker model

with average degree of 16. It measures performance in TEPS (for Traversed Edges Per

Second) and its problem size can be changed by varying a SCALE parameter that de-

termines the total number of vertices as 2SCALE. Thus its generated graphs can be of

various sizes, suitable for benchmarking software or platforms at different scales. It

consists of three phases: construction, computation, and validation.

A dataset generator for Belief Propagation should be included as it would make

rich property graph analytics possible, and it should produce directed acyclic graphs

(DAG) with (conditional) probability distributions of various scales.

Graph Analytics Subtask

Primitive operations for graph analytics, such as creating/reading/updating/deleting

(CRUD) vertices, edges, and properties, are nearly universal. Tests calibrating these

graph analytics building blocks are therefore essential to include in the suite. The met-

rics would cover throughput (e.g., number of edges traversed per second), latency, and

scalability.

 10

Graph construction for large scale property graph is another key subtask to cover.

The metrics would be running time, and scalability, akin to a subset of Graph500 [14].

Graph query is of interest as it involves both structural information and property in-

formation [13].

Pagerank exercises graph structure traversal with fixed active working set; Trian-

gle counting stresses similarly. In such graph computations, each vertex iterates

through tasks of gathering information (say, rank score) from its (partial) neighbors

(say, predecessors), updating local information, and propagating it to the other neigh-

bors (say, successors); and the iterations continue until convergence or certain termi-

nation conditions are reached.

Breadth-first Search (BFS) represents another type of graph traversal where only

the vertices on the traversal frontier are affected, and the workload can vary from one

iteration to another.

Single Source Shortest Path (SSSP) with a maximum traversal depth represents a

type of graph traversal similar to BFS (e.g., Bellman Ford algorithm), but it only

touches a local subgraph, instead of engaging the entire graph. This workload can

evaluate if a graph processing framework on Spark can efficiently address local or

subgraph computations.

Belief Propagation on a Bayesian network represents property-rich graph pro-

cessing, and is a type of graph analytics operation that occurs in many cognitive com-

puting applications. For example, Loopy Belief Propagation on a Bayesian network

traverses graph iteratively, but when vertex or edge properties are updated, it can be-

come a multi-pattern and computationally intensive graph structure operation.

Graph Triangulation (a.k.a. Chordization) represents a type of graph processing

workload where the structure is dynamically changed. It is used to find graph cliques

(dense subgraphs) and/or the hyper graph representation. It is an iterative graph pro-

cessing algorithm that modifies topology in each iteration. It can be used to determine

whether graph dynamics can be efficiently captured by the system.

Collaborative Filtering finds a lot of application, especially in recommendation

systems. It involves a number of local graph searches on a bipartite graph, possibly in

parallel, and is suitable for evaluating the concurrent local traversal capacity of a

graph analytic system.

Graph Matching and motif searching are similarly used extensively. When the tar-

get graph lacks an index, these operations are challenging and possibly involve signif-

icantly high local traversals.

Various Graph Centrality metrics, such as the betweenness, degrees, closeness,

clustering coefficient should also be considered due to their wide use in many real

graph processing solutions.

6.3 SQL Queries

SQL continues to be an enduring query language due to its ubiquity, the broad eco-

system of tools that supports it, and its ability to evolve and support new underlying

infrastructure and new requirements, such as advanced analytics and data sampling.

One area where a different approach might be warranted is in the construction of

the queries. Historically, different vendors have proposed queries that combined a

variety of SQL processing constructs, such as the TPC-D/H/DS benchmarks. In such

case, the coverage was often not obvious initially. There has been some good analysis

of the TPC-H query set [8].

We propose that we introduce a set of elemental or atomic queries that assess basic

scan, aggregation, and join properties, then a set of intermediate queries that add chal-

lenges both to the query optimizer and to a runtime engine, and finally some complex

and very challenging queries, representing ROLAP concepts and advanced analytic

processing.

6.4 Streaming Applications

Streaming applications can be characterized along three dimensions: latency,

throughput, and state size. Ideally, the Spark performance testing suite would exercise

each of these dimensions at three representative values - high, medium, and low -

giving a total of twenty-seven use cases. However, guided by applicability in the real

world scenarios, the number of use cases can be pruned down to a more manageable

count initially, and grow as more diverse workloads migrate to Spark over time.

Streaming subtasks

The following are some of the use cases covering a subset of the twenty seven

combinations posed above.

Real-time model scoring

The emphasis in this use case is on small and medium latency ranges. Low latency

is defined as response time in seconds and sub-second values1. An example is sending

an SMS alert to a prepaid mobile customer notifying them of their leftover account

balance and potentially inserting a marketing message in the SMS alert after a model

evaluation. In this use case, a latency in the range of 20 ms to a few seconds is desired

with lower latencies offering a larger payoff – for example, a 50 ms delay does not

force the customer to take a second look at the phone screen to get the marketing mes-

sage while a delay exceeding 10 seconds may lead to customer pocketing the phone

without getting the marketing message. Other examples in this area are cybersecurity,

fraud detection for online transactions, and insertion of ads in webpages, where laten-

cy requirements are considerably more stringent (possibly 100 ms or less).

In all use cases of real-time model scoring, state management is an independent di-

mension. The state could be as simple as a single quantity (e.g., in the example above,

minutes of calls left) which gets updated based only on the current record, with the

model scored on this simple state. Or, the state could be a very complex assemblage of

hundreds of attributes across millions of entities, updated by incoming records; with

1 Current Spark Streaming is not recommended for sub-second response time, however, we

discuss this here in the anticipation of future improvements.

 12

the model evaluation proceeding over a selection of such entities (e.g., a fraud detec-

tion application which maintains a profile with hundreds of attributes for each custom-

er, updates it based on incoming records and scores a model on the profile.)

Near real-time aggregations

Near real-time aggregates are required for a number of scenarios in which a physi-

cally distributed system is monitored for its health using the key performance indica-

tors of its elements. Examples include monitoring of traffic congestion on roads,

monitoring of communication networks and energy grids.

In these usages either sliding or tumbling window aggregates are computed from

streaming records. Incoming records may be enriched by joining them with reference

information. The aggregation window size could be from one minute up to an hour. In

a typical case, records arrive out of order and are delayed, and contain a timestamp

which should be used for aggregate computation.

For near real-time aggregations, throughput is an independent dimension. The vol-

umes could range from a few hundred GB a day (enriched Twitter data) and range up

to 500 TB a day (e.g., telecommunication call data records).

Another independent dimension is the number of aggregation buckets - which

themselves can vary from 100's of millions (one bucket for each mobile user) to sever-

al thousands (monitoring of different metropolitan cities within US).

The two subtasks listed above could be used to produce four use cases that could be-

come part of the Spark performance testing suite.

6.5 SparkR

R is a widely used language for statistical analysis, and the SparkR project will al-

low practitioners to use familiar R syntax in order to run jobs on Spark. In the short

term we propose following SparkR subtasks for inclusion in the performance testing

suite, with future additions as SparkR capabilities evolve.

SparkR subtasks

Data Manipulation

This covers SparkR DataFrame functions, and operations that can be performed in

a purely distributed fashion and includes all "record-at-a-time" transformations such as

log(), sin(), etc.

Segmented or subpopulation modeling

This is a technique in which the data is broken down into subpopulations, such as

by age and gender, and a separate model is built for each segment of the data. Assum-

ing each segment is of a "reasonable" size, R's existing ML libraries can be used to

build the models.

Ensemble modeling

This is a technique in which the data is broken down into randomly selected sub-

samples, each of which is a "reasonable" size. R's existing ML libraries can be used to

build the component models of the ensemble; however, the code that constructs the

ensembles has to be written. This code could be in Scala or maybe in R.

Scoring R models

This is applying an existing model. In essence, it is a "record-at-a-time" transfor-

mation.

6.6 Spark Text Analytics

Text analytics is an extremely broad topic, encompassing all types of analysis for

which natural language text is one of the primary inputs. To give the benchmark broad

coverage of this domain, we propose including a wide variety of text-related subtasks

described in the section that follows. For each subtask, the benchmark should include

a reference implementation based on an open-source NLP software stack (e.g., Stan-

ford NLP toolkit) consistent with the open-source license under which the perfor-

mance test suite is released.

Different commercial vendors have proprietary implementations of these subtasks

and will want to substitute their own implementations for the reference implementa-

tion. Each subtask should include a specification that is sufficiently detailed to permit

vendors to perform such substitutions. For example, it should be possible to perform

the "rule-based information extraction" subtask using IBM's System T engine. In gen-

eral, proprietary implementations should be required to produce the same answer as

the reference implementations. For tasks with an element of randomization, the result

of a proprietary implementation should be of equal utility compared with the reference

result. For example, in the "deep parsing" subtask, any deep parser that produces sub-

stantially the same parse trees as the reference implementation (say, 90% or greater

overlap) would be acceptable.

Data for the subtasks should consist of English-language documents that a human

being could read and understand. The data generator should work either by taking a

random sample from an extremely large "canned" collection of documents, or by mix-

ing together snippets of English text drawn from a suitably large database. A range of

document sizes from 100 bytes up to 1 MB should be supported.

Text Subtasks

Rule-based Information Extraction

Information extraction, or IE, is the process of identifying structured information

inside unstructured natural language text. IE is an important component of any system

that analyzes text. In some cases, IE is used to identify useful features for other NLP

tasks. In other cases, it is the primary NLP component of a processing pipeline. Rule-

based IE systems use a collection of fixed rules to define the entities and relationships

 14

to extract from the text. These systems are widely used in practice, particularly in

feature extraction applications, because they deliver high throughput and predictable

results. The rule-based IE task will stress Spark by producing large amounts of struc-

tured information from each input document.

Information Extraction via Conditional Random Fields

A number of supervised statistical techniques are used in NLP as an alternative to

using manually curated rules. Conditional Random Fields (CRF) is currently the most

popular of these techniques. A CRF is a graphical model, similar to a hidden Markov

model, but with greater expressive power. CRF-based information extraction involves

transforming each input document into a graph with missing labels; then a collection

of labeled training data is used to compute the maximum likelihood estimate for each

missing label. The CRF-based extraction task will stress Spark due to its very high

memory requirements.

Deep Parsing

Deep parsing involves computing the parse trees of natural language sentences ac-

cording to a natural language grammar. Deep parsing is an important component of

advanced feature extraction tasks such as sentiment determination. The deep parsing

task will stress Spark due to its high CPU requirements and large output sizes.

Online document classification

Automatically classifying a stream of incoming documents into two or more cate-

gories is a very common NLP task, arising in applications such as publish-subscribe

systems and spam filtering.

Batch topic clustering

Topic clustering is a family of supervised learning techniques for identifying im-

portant topics within a corpus of text, while simultaneously classifying documents

according to the topics. The resulting topics and clusters can be used to understand the

corpus at a high level, or serve as features for other machine learning tasks.

6.7 Resilient Distributed Dataset (RDD) Primitives

Since the main programming abstraction in Spark is RDDs, offering RDD primitive

facilitates end users to gain micro-level understanding of how RDD performs within

Spark framework. The reference test suite implementation of RDD primitives should

be based on the latest version of Spark core and make it easy to substitute a different

RDD implementation, add new RDD operations and remove obsolete RDD opera-

tions.

While RDDs supports a wide variety of transformations and actions, the testing

suite should cover the key operations broadly. In particular, the RDD primitives

should include IO related, shuffle, set and compute RDD operations. We choose not to

include set operations with RDD.subtract and RDD.intersection because

their characteristics are a combination of compute and shuffle RDD operations.

The testing suite should provide a data generator which produces synthetic data sets

to exercise the various RDD primitives. Considering that data skew is known to com-

monly exist in data analytics workloads, the data generator needs to be able to gener-

ate data sets with different types of statistical distribution representing different levels

of data skew. Note that whereas this type of workloads is aimed at micro-level RDD

performance, the data generator needs not to generate realistic data sets.

RDD Primitives Subtasks

IO related RDD operations

This set of operations identify how fast Spark reads and writes data from/to local or

distributed file system and creates/removes RDDs for the targeted data set with vari-

ous size. Examples of RDD actions include SparkContext.textFile,

RDD.unpersist.

Shuffle RDD operations

This set of operations focus on stressing the shuffle behavior of RDD operations.

They quantify how fast shuffle RDD operations can perform given different data set

sizes. Examples of RDD transformations include RDD.union,

RDD.zipPartition, RDD.reduceByKey, RDD.groupByKey, and

RDD.treeAggregate.

Compute RDD operations

This set of operations exercise how fast the compute RDD operations can perform.

Examples of RDD transformations include RDD.map, RDD.flatMap. We choose

to specify trivial map function such as sleep within compute RDD operations so that

we can isolate the evaluation of the overhead of Spark framework.

Check-pointing RDD operations

This set of operations assesses how fast the check pointing RDD operations can

perform. This is a key factor which helps encourage the adoption of Spark framework

seeing that failure is a common phenomenon in large scale data centers and check-

pointing and lineage are the fundamental failure recovery mechanisms within Spark.

The key evaluation metrics for RDD primitives are as follows: 1) throughput: how

many RDD transformations and actions can Spark conducts within a given time win-

dow; 2) scalability: how does the execution time change when the RDD data set size

increases; 3) efficiency of failure recovery: how fast can Spark recover from a RDD

data partition lost.

 16

7 Execution and Auditing Rules

In this section we discuss the outline of the proposed execution and auditing rules of

the testing suite. These rules typically govern the preparation of the testing environ-

ment, the execution of the testing suite, and the evaluation, validation and reporting of

the test results.

During test environment preparation, a user first identifies the targeted workload(s)

and accordingly chooses a benchmarking profile. To reduce the performance testing

overhead, the testing suite provides a set of benchmarking profiles. Each profile in-

cludes a subset of workloads from the entire testing suite, along with corresponding

data generation configurations and sequence(s) of workload execution. For example,

the testing suite has one benchmark profile for each workload described in Section 6.

If the testing focuses on machine learning, the machine learning benchmarking profile

can be used, eliminating the overhead of running the other workloads.

The execution rules also require both single user and multi-user execution scenari-

os. A single user scenario executes the workloads included in the benchmarking pro-

file one after another with a focus on evaluating and collecting per-workloads metrics.

A multi-user scenario runs multiple benchmarking profiles concurrently with profile

launching time following a certain statistical distribution. The multi-user scenario also

could support running the profiles against different data sets instead of reusing the

same data sets. This gives the users a better understanding of the performance implica-

tion of the targeted system under a multi-user scenario.

Having selected a benchmarking profile, the testing environment can be set up.

This includes provisioning a set of connected machines and installing the software

stack needed for running the testing suite’s profile.

Once the testing environment is ready, the testing suite’s data generator is used to

generate needed datasets and loading them into the storage component of the tested

system. The user is then ready to proceed with running the benchmark with a work-

load execution sequence defined by the chosen benchmarking profile. To check

whether a benchmark run is valid, all the workload execution should report successful

return status and pass the validation phase.

The testing suite includes an output quality evaluation and validation phase to eval-

uate the correctness of the execution. While this varies by workloads, a user can get an

initial result indicating the validity and performance level of a test run from the result

log generated by the testing suite.

Another important aspect of the execution and auditing rules is the requirement to

provide sufficient reporting about the testing to allow others to reproduce the results.

The system details needed in the disclosure report includes the hardware configura-

tions such as CPU, memory, network, disk speed, network controller, switches; and

software information such as the OS name and version, other software names and

versions relevant to the testing suite, and the parameters used to generate input da-

tasets. The full set of result logs generated by the testing suite should also be provided

online and in a format that is easy to reproduce.

8 Metrics

Whenever a set of somewhat independent measurements are performed, a question

always arises -- how should the results be aggregated into a single metric, a simple and

comparable measure of composite “goodness”? Historically, geometric mean has been

chosen for some benchmarks [8, 9], while it has been argued later that a geometric

mean is inappropriate [6]. Several other options, viz. an arithmetic mean, a weighted

arithmetic mean, a harmonic mean, a weighted harmonic mean, etc. may also be appli-

cable candidates for devising a figure of merit.

Different components of the proposed suite have widely diverse origins, and are

likely to be accorded dissimilar measures of importance by different people. Thus

arriving at a consensus single metric is particularly challenging in this case. For the

purpose of this paper we therefore defer any specific recommendations. We under-

stand and accept that a simple single figure of merit for any set of measurements is

highly desirable.

Overall, we believe that most tests are best characterized by multi-user throughput.

However, as the community-based approach to evolve and finalize the ideas presented

in this paper gets underway, we expect considerable open discussion before a final

metric is settled upon.

9 Preliminary Work

Preliminary work [31] has been done in the design of a benchmarking suite focusing

on targeted dimensions of quantitative Spark Core and the staging of infrastructure

evaluation. In this work ten diverse and representative workloads were chosen, cover-

ing four types of applications supported by Spark -- machine learning, graph computa-

tion, SQL and streaming workloads. The ten chosen workloads were characterized

using synthetic data sets and demonstrating distinct patterns with regards to resource

consumption, data flow and communication features affecting performance. The work

also demonstrated how the benchmarking suite can be used to explore the perfor-

mance implications of key system configuration parameters such as task parallelism.

10 Conclusion, Ongoing, and Future Work

As Spark is increasingly embraced by industries and academia, there is a growing

need for a comprehensive set of Spark performance tools. Such tools should enable

developers, integrators and end users within the Spark and big data community to

identify performance bottlenecks, explore design trade-offs, assess optimization op-

tions and guide hardware and software choices with a focus on key workload charac-

teristics. While early work has been done in this area, the Spark ecosystem, being a

relatively new data analytics platform, lacks a far reaching set of performance tools.

This paper introduces a framework for the creation of a comprehensive Spark perfor-

mance testing suite to address this need. It identifies several key factors such a per-

 18

formance testing suite should consider, a set of Spark workloads consistent with those

factors, and the requirements for their reference implementations and corresponding

data generators.

Currently we are focusing on machine learning and graph processing workloads.

More specifically, we are identifying real world data sets as seeds for data generator.

They exemplify the data characteristics that need to be preserved in order to generate

realistic data sets at selected scale factors. We are also looking into meaningful met-

rics for each workload with a focus on setting apart high performing algorithms and

implementations from less efficient ones. In the future, we plan to add additional

workloads to the identified set. For instance, as a necessary step between the data

generation process and the analytics workflow, we identify extract-transform-load

(ETL) as another key workload within the Spark ecosystem. We also plan to explore

the possibility of supporting a Python interface within the performance testing suite.

Moreover, we recognize the need for a formal definition of the testing suite’s detailed

execution and auditing rules, along with the selection of representative metrics that

create an environment where true apples-to-apples comparisons can be made and al-

ternative choices can be fairly evaluated.

Acknowledgements

The authors would like to acknowledge all those who contributed with suggestions,

ideas and provided valuable feedback during earlier drafts of this document. In par-

ticular we would like to thank Alan Bivens, Michael Hind, David Grove, Steve Rees,

Shankar Venkataraman, Randy Swanberg, Ching-Yung Lin, and John Poelman.

References

1. DataBricks. https://databricks.com/

2. Mahout. https:// http://mahout.apache.org/

3. Bowman, M., Debray, S. K., and Peterson, L. L. 1993. Reasoning about naming systems.

ACM Trans. Program. Lang. Syst. 15, 5 (Nov. 1993), 795-825

4. Reference: K. Huppler, The Art of Building a Good Benchmark, Performance Evaluation

and Benchmarking, LNCS vol. 5895, Springer 2009

5. P. A. Boncz, T. Neumann, and O Erling. TPC-H Analyzed: Hidden Messages And Lessons

Learned From An Influential Benchmark. Proceedings of the TPC Technology Conference

on Performance Evaluation; Benchmarking TPCTC, 2013

6. Jacob, Bruce, and Trevor N. Mudge. Notes on calculating computer performance. Univer-

sity of Michigan, Computer Science and Engineering Division, Department of Electrical

Engineering and Computer Science, 1995.

7. Blackburn, S. M., Garner, R., Hoffman, C., Khan, A. M., McKinley, K. S., Bentzur, R.,

Diwan, A., Feinberg, D., Frampton, D., Guyer, S. Z., Hirzel, M., Hosking, A., Jump, M.,

Lee, H., Moss, J. E. B., Phansalkar, A., Stefanovic, D., VanDrunen, T., von Dincklage, D.,

and Wiedermann, B. The DaCapo Benchmarks: Java Benchmarking Development and

Analysis, OOPSLA '06: Proceedings of the 21st annual ACM SIGPLAN conference on

https://databricks.com/

Object-Oriented Programing, Systems, Languages, and Applications, (Portland, OR, USA,

October 22-26, 2006)

8. Transaction Processing Performance Council. http://www.tpc.org/

9. Standard Performance Evaluation Corporation. https://www.spec.org/

10. Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain Crolotte,

and Hans-Arno Jacobsen. BigBench: towards an industry standard benchmark for big data

analytics. In Proceedings of the 2013 ACM SIGMOD International Conference on Man-

agement of Data (SIGMOD '13). ACM, New York, NY, USA, 1197-1208.

11. Alexander Alexandrov, Kostas Tzoumas, and Volker Markl. Myriad: scalable and expres-

sive data generation. Proc. VLDB Endow. 5, 12 (August 2012), 1890-1893

12. Rabl, Tilmann, Michael Frank, Hatem Mousselly Sergieh, and Harald Kosch. A data gen-

erator for cloud-scale benchmarking. In Performance Evaluation, Measurement and Char-

acterization of Complex Systems, pp. 41-56. Springer Berlin Heidelberg, 2011.

13. Linked Data Benchmark Council Social Network Benchmark (LDBC-SNB) Generator,

https://github.com/ldbc/ldbc_snb_datagen

14. Graph500 generator, http://www.graph500.org/specifications

15. DOTS: Database Opensource Test Suite. http://ltp.sourceforge.net/documentation/how-

to/dots.php

16. SAP. http://www.sap.com

17. Infor LN Baan. www.infor.com/product_summary/erp/ln/

18. Spark-perf. https://github.com/databricks/spark-perf

19. T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan Linkbench: A database

benchmark based on the facebook social graph In Proceedings of the 2013 ACM

SIGMOD, pages 1185–1196, 2013.

20. Apache GridMix. http://hadoop.apache.org/docs/r1.2.1/gridmix.html.

21. Apache PigMix. https://cwiki.apache.org/confluence/display/PIG/PigMix.

22. Sort Benchmark. http://sortbenchmark.org/.

23. S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The HiBench benchmark suite: Charac-

terization of the MapReduce-based data analysis. In 26th IEEE ICDEW, pages 41–51,

March 2010

24. Performance portal for Apache Spark. http://01org.github.io/sparkscore/plaf1.html.

25. A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and M. Stonebraker.

A comparison of approaches to large-scale data analysis. In Proceedings of the 2009 ACM

SIGMOD, pages 165–178, 2009.

26. L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia,Y. Shi, S. Zhang, C.

Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu. Bigdatabench: A big data benchmark suite from

internet services. In IEEE 20th HPCA, pages 488–499, Feb 2014.

27. AMPLab Big Data Benchmark. https://amplab.cs.berkeley.edu/benchmark/

28. M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak, A.

D. Popescu, A. Ailamaki, and B. Falsafi. Clearing the clouds: A study of emerging scale-

out workloads on modern hardware. In Proceedings of the 17th ACM ASPLOS, pages 37–

48, 2012

29. A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A. Jacobsen. Bigbench:

Towards an industry standard benchmark for big data analytics. In Proceedings of the 2013

ACM SIGMOD, pages 1197–1208, 2013

30. B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking cloud

serving systems with ycsb. In Proceedings of the 1st ACM SOCC, pages 143–154, 2010.

31. Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina Salapura. SparkBench: a com-

prehensive benchmarking suite for in memory data analytic platform Spark. In Proceedings

http://www.tpc.org/
https://www.spec.org/
https://github.com/ldbc/ldbc_snb_datagen
http://www.graph500.org/specifications
http://ltp.sourceforge.net/documentation/how-to/dots.php
http://ltp.sourceforge.net/documentation/how-to/dots.php
http://www.sap.com/
http://www.infor.com/product_summary/erp/ln/
https://github.com/databricks/spark-perf
http://hadoop.apache.org/docs/r1.2.1/gridmix.html
https://cwiki.apache.org/confluence/display/PIG/PigMix
https://amplab.cs.berkeley.edu/benchmark/

 20

of the 12th ACM International Conference on Computing Frontiers (CF '15). ACM, New

York, NY, USA, , Article 53

32. P. A. Boncz, T. Neumann, and O. Erling. TPC-H Analyzed: Hidden Messages And Les-

sons Learned From An Influential Benchmark. Proceedings of the TPC Technology Con-

ference on Performance Evaluation and Benchmarking TPCTC, 2013.

33. O. Erling, A. Averbuch, J. L. Larriba Pey, Hassan Chafi, Andrey Gubichev, Arnau Prat,

Minh-Duc Pham, Peter Boncz. The LDBC Social Network Benchmark: Interactive Work-

load. Proceedings of SIGMOD 2015, Melbourne.

34. Mihai Capotă, Tim Hegeman, Alexandru Iosup, Arnau Prat, Orri Erling, Peter Boncz.

Graphalytics: A Big Data Benchmark for Graph-Processing Platforms, Proceedings of

GRADES2015, co-located with ACM SIGMOD/PODS 2015,

35. R. Angles, P. A. Boncz, J.-L. Larriba-Pey, I. Fundulaki, T. Neumann, O. Erling, P.

Neubauer, N. Martínez-Bazan, V. Kotsev, I. Toma (2014): The linked data benchmark

council: a graph and RDF industry benchmarking effort, SIGMOD Record 43(1): 27-31

36. PigMix. https://cwiki.apache.org/confluence/display/PIG/PigMix

37. Kim, Kiyoung, Kyungho Jeon, Hyuck Han, Shin-gyu Kim, Hyungsoo Jung, and Heon Y.

Yeom. "MRBench: A benchmark for MapReduce framework." In IEEE ICPADS, 2008.

https://cwiki.apache.org/confluence/display/PIG/PigMix

