
 

Abstract — Real time traffic incident detection is critical for 
increasing safety and mobility on freeways. There have been 
incident detection approaches based on traffic behavior or 
mathematical models proposed for this task. However, earlier 
incident detection methods are limited in distinguishing 
recurrent and non-recurrent congestions. The complexity of 
current approaches makes them insufficient to handle the real 
time task. In this paper, a new approach for detecting 
incidents is proposed. Different from traditional traffic 
incident detection methods, both spatial and temporal 
information are considered to find the potential incidents. 
Meanwhile, adaptive learning ability and short detection 
response time are achieved in the new method. To analyze 
the high dimensional traffic data, Mahalanobis distance is 
applied to discover potential incidents according to the traffic 
pattern. Lifeline style detection and visualization is utilized to 
provide intuitive user interface. Methodology analysis and 
preliminary evaluation have been performed to validate the 
detection effectiveness on the integrated traffic visualization 
system. 
 
Keywords — incident detection, spatial-temporal data 
mining, visualization  

1 Introduction 
Studies on transportation congestions have shown that, 

freeway incidents cause approximately 60 percent of all 
urban freeway delays in the United States [1]. As such, 
accurate and fast traffic incident detection is critical for 
minimizing traffic delays and increasing safety. There are 
two major usages of automatic incident detection in a traffic 
management system. The first is to signal the dispatch of 
emergency crews for medical support, obstruction removal, 
and general safety maintenance; the second is to provide 
useful information to the routing control system to maintain 
and optimize system-wide performance. As traffic data 
streams arrive in varies of speed with large amount, quick 
and reliable automatic detection of traffic incidents becomes 
a key issue in managing freeway systems.  

The traffic incident detection problem can be viewed as 
recognizing incident patterns from observed data series 
obtained from loop detectors. A number of incident detection 
algorithms have been developed over the past three decades 
[4, 6, 11, 12]. The major disadvantages of earlier algorithms 
are their unreliability in differentiating between recurrent and 
non-recurrent congestion events resulting in a high false 
alarm rate. In recent years, computational intelligence 
approaches including neural-computing, evolutionary 
computing, wavelet analysis, and fuzzy logic have been 
employed to solve the complex and mathematically 
intractable incident detection problems [2, 3, 5, 8, 13]. 

However, most of them are based on single station pattern, 
i.e., geospatial neighborhood relationships between stations 
do not involve in these pattern detection methods.  

Data received from detectors on the freeway are not only 
temporal related but also have spatial features in nature. For 
example, detectors on a highway (shown in Figure 1) can be 
treated as points on a straight line. To handle these data, a 
new incident detecting method is proposed in this paper to 
provide a real-time spatial-temporal pattern mining approach, 
specifically for the traffic data. Mahalanobis distance is 
applied to consider covariance of the detector stations along 
the freeway, and along the time line. In addition, a graphic 
interface is designed to display the real-time incident alarm 
level and collect feedbacks for adaptive revision of the 
system. An incrementally learning method is proposed as 
well to keep the historical traffic model up-to-date. Proposed 
incident detection is implemented based on the existing 
AITVS (Advanced Interactive Traffic Visualization 
System)[9] to perform real-time incident detection on 
Interstate 66 (I-66 shown in Figure 1). The major 
contributions of this incident detection approach are listed as 
below: 1) Consider both spatial and temporal information in 
detection, 2) Correlations of traffic data between stations and 
between time slots are counted, 3) Real-time lifeline style 
visualization is provided for effective navigation, and 4) The 
approach has been validated using traffic data on I-66. 

 
Figure 1. Locations of all detectors/stations on I-66. 

The rest of this paper is organized as follows. The related 
work is discussed in Section 2; the proposed method is 
explicated in Section 3; important parameters and detection 
effectiveness are discussed in Section 4; implementation and 
demonstrations are illustrated in Section 5; finally, we 
conclude our work and present future work in Section 6. 

2 Related Work 
A number of incident detection algorithms have been 

developed over the past three decades [4, 6, 11, 12] and some 
of them have been deployed in urban freeway systems in 
selected areas. One of the earliest and most popular 
algorithms is the California Algorithm [11]. This algorithm is 
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based on the logical assumption that a traffic incident 
increases the traffic occupancy upstream of the incident and 
decreases the traffic occupancy downstream of the incident 
significantly. However, these earlier algorithms are not 
reliable in differentiating between recurrent and non-
recurrent congestion events. Persaud et al. [12] propose a 
single station algorithm known as McMaster algorithm, 
where congestion is detected using traffic volume, occupancy 
and speed data from a single station and the parameters are 
related using catastrophe theory. The Minnesota Algorithm [4] 
attempts to minimize false alarms and missed incidents, by 
filtering out the effects of high frequency random fluctuations 
in traffic flow using averaging occupancy measurements over 
contiguous short-term intervals. In order to provide more 
accurate detection, computational intelligence approaches 
have been employed in recent years. To reduce the dimension 
of the input space without any significant loss of information, 
a wavelet-based feature extraction approach has been 
proposed [2, 13], which is computationally efficient and 
provides greater resolution control over Fourier analysis. The 
fuzzy-wavelet radial basis function neural network (RBFNN) 
freeway incident detection model [3], is proposed as a single 
station pattern-based algorithm. Recently, Karim and Adeli [8] 
present a two-stage single-station freeway incident detection 
model based on advanced wavelet analysis and pattern 
recognition techniques. An energy representation of the 
traffic pattern in the wavelet domain is found to best 
characterize incident and non-incident traffic conditions. 
However, as all of them, except California Algorithm, are 
based on single station pattern, the spatial relationships 
between stations have not been taken into account for pattern 
detection. 

Since data collected from freeway detectors have an 
inherently temporal and spatial context, the time and space 
components must be taken into consideration in the mining 
process in order to accurately interpret the collected data. 
Recently, spatial-temporal pattern mining has attracted many 
research efforts [7, 10]. We propose a new incident detection 
method in this paper based on spatial-temporal data mining 
techniques. Comparisons between the proposed approach and 
previous methods have been summarized according to three 
measures: considering multiple stations, distinguishing 
recurrent and non-recurrent events, and incremental learning, 
as shown in Table 1. 

Table 1. Comparison between Incident Detection Methods. 

Incident 
Detection Method

Multiple 
Stations

Distinguish Recurrent 
& Non-recurrent Events

Increment
- learning 

California √   
McMaster  √  
Minnesota  √  
Wavelet-neural  √  
RBFNN  √  
Proposed Method √ √ √ 

3 Proposed Approach 
The proposed approach includes spatial-temporal data 

mining and visualization components. To detect incidents, the 
system will generate spatial-temporal traffic models for each 
day-of-week based on speed, volume, or occupancy, and then 
identify the outliers based on comparing real time traffic data 
with the historical models. The traffic model is defined as the 
typical day-of-week traffic data with incremental learning 
ability. The outlier will be visualized to illustrate the alarm 
level, position, and time. The detection process is illustrated 
in Figure 2. This figure shows how the traffic incident on 
Wednesday is detected. In each chart, the Y-axis represents 
the mileposts, X-axis denotes time intervals, and colors 
represent occupancy values, where each row represents the 
occupancy over a whole day at one particular station. At first, 
all the traffic data (occupancy in this example) of historical 
Wednesdays are collected from the traffic archive. For each 
station, a vector of daily occupancy that describes average 
value of each time slot is calculated from the historical 
Wednesdays’ occupancy. Thus the occupancy model of 
Wednesday is generated for all stations. Then at each time the 
occupancy values are received from the stations for a certain 
time slot, say, five minutes, a comparison is made between 
the vector of current occupancy from all stations and the 
occupancy vector of all stations from the model at the same 
time slot. If the current vector varies greater than a 
predetermined threshold to the vector from Wednesday 
occupancy model, an alarm will be triggered for reporting 
potential incident at that time slot. 

Considering the correlation of the detector stations along 
the freeway and the correlation along the time line in mining 
process, Mahalanobis distance is used to measure the 
difference among traffic data. Mahalanobis distance is 
superior to Euclidean distance because it accounts for ranges 
of acceptability and compensates for dependencies between 
variables. Mahalanobis distance D between sample data H 

Figure 2. Incident Detection Process 
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and data model µ is defined as (H-µ)TΣ-1(H-µ), where Σ is the 
variance-covariance matrix of H and µ. For instance, when 
current traffic is compared with traffic model (the right part 
in Figure 2), H is the vector of occupancy of all stations on 
current time interval, and µ is the corresponding column in 
model with same time interval. An important character of 
Mahalabobis distance is that when H follows multivariate 
normal distribution, D will follow Chi2 distribution. This 
character helps to identify the probability of occurrence of a 
data point, which will be used to determine the outlierness. 

Users are allowed to provide feedbacks to validate the 
correctness of outlier (incident) detection. The feedback helps 
to refine the model and improve the accuracy of detection. 

The incident detection process can be divided into four 
steps as listed below. The implementation details will be 
provided in Section 4. 

Step 1: Data Clean & Preparation 
In this task, the raw data retrieved from traffic detectors 

will be cleaned and organized for the mining stage. As the 
data received from loop detectors contains noise and missing 
values caused by malfunction of the detector or transmission 
problems, a data cleaning must be performed to identify and 
remove these data to assure the data quality. On the other 
hand, the expected traffic daily models are different from 
weekdays to weekends. Public holidays also have unique 
traffic patterns. Therefore, a categorization is needed to 
separate the traffic data into different weekdays and 
weekends. To summarize this task, three subtasks are listed 
as follows: 
1. Scan the database and identify the abnormal records from 

malfunction detectors. 
2. Label the records of public holidays. 
3. Categorize data of different weekdays and weekends by 

building separate data views. 

Step 2: Traffic Model Generation 
In the model generation task, traffic data on different 

weekdays will be analyzed to construct traffic models 
respectively. While generating the model, some non-recursive 
incidents in the cleaned data sets, which appear to be outliers, 
must be removed to refine the traffic models. Temporary 
models will be calculated as the average of historical traffic 
data. For example, average speed value at 12 PM on 
historical Wednesdays of station x will be used as the speed 
at 12 PM on Wednesday of station x in the model. Having the 
temporary model, Mahalanobis distance will be calculated 
between the station-daily values in model and in historical 
data samples. When the distance is greater than a 
predetermined threshold d1, the corresponding historical 
station-daily sample will be removed from the model. After 
eliminating all the outliers, the final traffic models will be 
generated as the average of the remaining historical data. 
Three steps are listed to summarize this process. 
1. Calculate the mean value for each daily-station traffic data 

view for different weekdays and weekends. 
2. Determine the incidents in historical data using 

Mahalanobis distance to. 
3. Compute the mean value after removing the outliers for 

each daily-station traffic data view as the final models. 

Step 3: Detecting Incidents 
This task will be executed in real-time to discover potential 

incidents based on the traffic model. The traffic data, which is 
updated every five minutes, is collected from the loop 
detectors and cleaned in runtime. Detection will be performed 
by calculating the Mahalanobis distance between real-time 
data and the corresponding time slot in the traffic model. If 
the distance calculated is greater than threshold d2, a possible 
incident will be identified and a certain level of alarm will be 
reported to the traffic operator. In case that the possible 
incidents have been detected in consecutive time slots, which 
indicates the high potentiality of real incident, the alarm level 
will increase to a certain value AL(t), which is a function of 
number of consecutive time slots t. When no possible 
incidents are detected, the alarm level will decrease until it 
reaches the safe level. The following steps summarize the 
incident detection task. 
1. Calculate the Mahalanobis distance with the 

corresponding vector in model, using the traffic data for all 
stations on one time interval as a vector. 

2. If the distance is larger than d2, which can be determined 
by the assumed distribution of Mahalanobis distance, there 
could be a possible incident occurs at that time point. 

3. If consecutive possible incident occurs in t time slots, the 
alarm level increases to AL(t). 

Step 4: Incremental Learning Model 
The system requires the ability to dynamically learn from 

incoming traffic data to be adaptable to environment change, 
such as road construction and region development. The 
continuously coming traffic data without true incidents will 
be used to refine the model. After detecting the incident, 
user’s feedbacks on detection accuracy will be collected. If 
the possible incident is verified as a true incident, the traffic 
data collected during the incident period will not be used in 
the model. By merging the new traffic data into the original 
model, the traffic model will be updated. The formula to 
calculate each new daily-station traffic pattern new_DS is 
defined as new_DS = (1-f)*old_DS + f*new_data, where 
fading factor f is in (0, 1). The value of f determines the 
learning rate of the traffic model. 

To perform detection in real-time, the variance-covariance 
matrices for each time slot should be calculated beforehand, 
because it is the most time-consuming process and would 
delay the response of detection if being calculated on demand. 
Therefore, when generating the updated traffic model, the 
variance-covariance matrices should be calculated as well. 
Both the matrices and traffic model will be stored for further 
incident detection. These steps are summarized as follows. 
1. Calculate the mean value of the existed model and the new 

data with a fading factor f (0<f<1) as the new model.  
2. Compute the matrices for each time point in order to 

calculate the Mahalonobis distance in next week. 
3. Store the model and matrixes. 

4 Methodology Analysis 
In the proposed incident detection approach, the value of 

the parameters will greatly impact the effectiveness of 
detection. Specifically, these parameters are, distance 



 

thresholds d1 and d2, alarm level function AL(t), and fading 
factor f. Their values as well as their impacts for incident 
detection will be discussed in this section. 

There are two distance thresholds defined in the detection 
process. Distance threshold d1 is used to identify the outliers 
when initially generating the traffic model; d2 is used to 
determine the possible incidents in real-time detection. As 
described in Section 3, Mahalanobis distance follows Chi2 
distribution, d1 and d2 can be assigned using the probability 
of incident occurrence. Assuming there would be 5% of the 
days in which incidents would occur in certain station, d1 can 
be assigned with the value which has the density of 95% Chi2 
distributed variable with the degree of freedom 288 (number 
of time slots). For distance threshold d2, in case that there 
will be 2% of the time slot in a certain weekday or weekend 
in which incidents would occur, d2 can be defined as the 
value for range of 98% Chi2 distributed variable with 
freedom degree as number of stations on the direction. 

Alarm level function AL(t) generates a lifeline style 
representation to the belief degree of incident. When the first 
time a possible incident is detected, a low initial alarm level 
AL(1) will be assigned. Once the incident is detected in t 
consecutive time slots, the alarm level will increase to AL(t), 
until it reaches a limitation (AL is ranged from 0 to 100). In 
the contrary, when no more possible incident is detected, the 
alarm level should decrease, until it reaches a limitation, 
which is a safe level. To summarize the discussion, definition 
of AL(t) is given as:  

 AL(t) = Min(AL(t-1) + k, 100), when incident detected 
in time slot t;  

 AL(t) = Max(AL(t-1) – k, 0), when no incident detected 
in time slot t.  

Therefore, AL(t) will vary from 0 to 100, and higher value 
indicates more potentiality to be an incident. Constant k can 
control the increasing and decreasing rate of AL(t). 

Fading factor f is used to determine the learning rate of the 
traffic model. The value of f should be consistent to the 
traffic environment. If the traffic environment is changing 
rapidly due to road constructions, routing policies, and 
weather conditions, f should be assigned a relatively high 
value to reflect on a short term impact. Otherwise, f can be 
small to make the model relatively stable for a long term 
model. Using fading factor f, learning rate can be 
conveniently configured. For example, if we are going to 
mainly consider the traffic data of the most recent 10 weeks, 
we can define f to make the data of 11th recent week 
contribute less than a certain small portion in the traffic 
model. 

5 Implementation & Case Study 
We implemented the spatial-temporal incident detection 

component in AITVS [9]. Based on this system, a spatial-
temporal data mining component, user feedback function and 
the corresponding visualization are implemented for incident 
detection task. Data fusing and preparing is performed in this 
service to clean and fuse the data before store them into 
traffic database. A data processing module, which contains 
spatial data modeling and spatial-temporal mining functions, 
is used to organize the traffic data, and to discover inherent 

patterns from traffic archive.  
The historical data is collected from Virginia Department 

of Transportation (VDOT) every five minutes. In the 
implementation, speed is used for incident detection, because 
it is an appropriate measurement to indicate the congestion. 
The daily traffic models for Thursday on West Bound and 
Sunday on East Bound are illustrated as examples in Figure 3, 
where X-axis represents the time, and Y-axis represents the 
milepost of stations. The data shown in these two traffic 
models look smooth, except several malfunctioned stations, 
as the outliers have been eliminated. These malfunctioned 
stations are still reflected in the traffic model because they 
have never functioned according to the historical data. In 
addition, the speed patterns reflect the traffic situation 
properly. As we can find from the Figure 3, there are 
recurrent congestion from 3pm to 7pm on Thursday’s west 
bound, which is mainly reflected as a red triangular region at 
the bottom of the chart, while the traffic on Sunday looks just 
smooth all the day. 

 
(a) Thursday-West Bound      (b) Sunday-East Bound 

Figure 3. Daily Traffic Speed Models 

Known historical incidents are used to validate the 
effectiveness of the proposed incident detection approach. In 
the implementation we assume outliers are 5% of all data 
samples. In Figure 4 and Figure 5, incident detection results 
on a normal Thursday and a Sunday which contains incident 
(5/1/2005) are illustrated. In each figure, the Alarm Level 
(AL) is visualized as the top horizontal color bar. Legend for 
the alarm level is shown on the right side of the figure. 
Tolerance: In a series of tests, the system reports low alarm 
levels on some noise, i.e., light and non-recurrent congestions, 
and passes the recurrent congestions. Comparing Figure 3 (a) 
and Figure 4, the sample traffic data on Thursday are quite 
similar to the model on west bound. The alarm levels in 
Figure 4 are usually low, even zero in most time, although 
there are recurrent congestions, missing data (blank vertical 
strips) and malfunctioned stations (blank horizontal strips). 
The results in this figure show that the incident detection can 
properly handle missing data and noise, as well as to 
distinguish non-recurrent congestions from recurrent 
congestions. Effectiveness: The system reports top alarm 
levels (100%) to all the seven known real incidents. In 
situations other than incidents in our experimental cases, the 
alarm level never exceeds 80%, while is kept from 0% to 
30% in most of the time. In Figure 5, there is a noticeable red 
bar in the top horizontal line, indicating a high alarm level 
lasting for a long time. The position of the red bar in the 
figure is right after the congestion occurs at one station, and 
before it expands to multiple adjacent stations. This result 



 

shows the detection approach can effectively identify the 
incident using the daily traffic model. Quick response: In the 
experiments, no additional response time for detection and 
visualization is required, except the time to load a static web 
page in browser, i.e., usually less than 3 seconds (depends on 
the network). The major reason is that there is a background 
program doing the real-time detection and drawing the charts 
all the time. When the detection results are requested from 
the web, a corresponding HTML page will display the 
recently completed charts. Therefore, the response time only 
depends on the network connection. Furthermore, the 
detecting program usually finishes detecting for one time slot 
and draws the charts in approximately one second. 
Performing the tests on known incidents and normal 
weekdays, our approach shows its effectiveness, efficiency, 
and the ability to handle real time and noise data in real 
traffic management system. 

 
Figure 4. Sample Thursday West Bound (no incident) 

6 Conclusion & Future Work 
In this paper, we propose a new method to identify 

incident in real time. It is based on spatial-temporal data view 
and applies Mahalanobis distance to consider the correlation 
of traffic data from neighboring stations and consecutive time 
slots. A lifeline-style alarm level for incidents is implemented 
to support effective data navigation. Our approach utilizes 
user feedback to support learning ability. Moreover, fast 
response time is achieved by using active detection strategy. 
A set of tests have been conducted in real system to validate 
the effectiveness and efficiency of this approach. Future 
efforts will be needed to refine the parameters in this 
approach. For incremental learning, re-calculating variance-
covariance matrices costs extensive system resources. 
Incrementally update or approximate computing techniques 
can be applied to improve the computational efficiency of the 
proposed method. This approach can also be applied to other 
applications which consider both temporal and spatial 

features, such as disease control and weather monitoring. 

 
Figure 5. Sunday 5/1/2005 East Bound (traffic incident) 
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