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Introduction
As use of drones rapidly expands, it is aided by improvements in technology such as high 
speed cameras, sensors, and processors able to analyze the data rapidly and efficiently on 
the drone. Better scalability in processing image, terrain, weather and surface data and using 
it to aid in navigation has also allowed them to become increasingly autonomous during 
flight. Drones have proven very useful in both military battlefield and civilian tasks. Along 
with common civilian tasks in education [30], studying natural phenomena [45], reconnais-
sance [36] and conservation [28] they have been used increasingly in surveying farms [41], 
forests [10] and borders [27]. Drones can either be controlled manually by an operator or 
fly autonomously, but as the use for an operator increases the cost considerably, it is clearly 
preferable for them to operate autonomously. Autonomous flight presents challenges in ter-
rain navigation, however, as a multitude of flight path scenarios such as variations in alti-
tude and the density of objects to be surveyed must be taken into account. Flight planning 
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must also account for drone hardware limitations. Adding complexity to the fight path 
building process also decreases the performance of the algorithms used to pre-build them. 
The speed at which these flights can be planned and re-planned with changes in weather 
and terrain data and updates in drone battery and hardware becomes crucial.

The complexity involved in covering an area with automated flights increases when there 
are multiple types of drones available with different capabilities. There are two main types: 
conventional drones that perform conventional take offs and landings and quadcopters 
with vertical take offs and landings. Along with the challenge encountered in building flight 
paths for drones optimizing the use of these different types of drones to cover the entire 
region, the flight path construction scaling needs to stay efficient with additional constraints 
on types of drones. Each drone type suffers from specific limitations and the cost of operat-
ing the different types of drones can also vary considerably. These limitations and costs also 
change significantly over a period of time with improvements in battery and drone hard-
ware. The optimization problem then becomes multi-pronged: not only is it necessary to 
cover the entire region with multiple flights of a drone type that can navigate varying ter-
rain, but the drones that are cheaper to operate should be used as frequently as possible to 
minimize cost and the entire process should be rapidly repeatable with updates in batteries 
and drone hardware, adding terrain to task and changes in weather conditions. The distrib-
uted processing of larger overall areas is generally split into smaller sections or subregions. 
Doing this interactively with in-memory based distribution reduces the operator time. This 
reasoning motivated us to create DIMPL. Covering very large areas using multiple drones, 
each with its own specific flight path, creates a number of issues, however: Challenge 1: Pro-
cess terrain and network data in memory. Terrain data includes geo-coordinates, elevation, 
humidity and more and needs to be processed on a cluster. Processing them in memory 
and thus minimizing disk accesses is crucial for good performance. Challenge 2: Distributed 
computation of flight paths. Efficient computations of flight plans in a short amount of time 
allows for rapid turn-around times after adjustments have been made. The efficient com-
puting of flight paths also allows them to be fed into each drone manually and adjusted if 
the scope of the work changes. Challenge 3: Optimize for different types of drones. Optimize 
the constraints for different types of drones. Focus on the most efficient use of the drone 
fleet based on operating costs, the limitations of each drone type and other constraints.

DIMPL accounts for terrain factors such as power lines length and elevation to opti-
mally divide an area into subregions and then build a flight plan for each subregion 
almost interactively in memory. A set of Flight Plans are generated for surveying the 
entire power line network for an aviation organization. The goal is to minimize the 
number of drone flights and optimize the distribution of processing terrain and net-
work line data and hence the overall cost. This is achieved by optimizing the coverage 
of each flight across a subregion and assigning the most appropriate type of drone for 
that subregion. Knowledge regarding network lines and elevation of waypoints within 
each subregion are needed to satisfy the rules that govern the autonomy and climb-
ing angle constraints. These constraints determine whether the subregion needs to be 
shrunk or expanded or split between multiple drone types. Our new technique uses 
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a section-wise or subregion based distribution of network line processing, linear ine-
qualities, and spatial indexes to query the elevation around waypoints. This powerful 
approach can automate flight path building utilizing only terrain data and pre-known 
drone hardware limitations. This project designed algorithms to support drone flights 
that will take pictures of vegetation along electricity pole networks and was carried 
out for a drone company under contract from a large utility company in Europe. Image 
analysis during post-processing determines whether the vegetation has overgrown the 
poles and needs trimming. The resulting application can be used to automate flights 
for many such tasks however, including determining the extent of flood damage, defor-
estation, pollution and agricultural activities. As the volume of terrain and network line 
data for large areas increases rapidly, in order to scale to larger terrain and network line 
datasets, DIMPL uses an in-memory distributed paradigm. With increasing amounts of 
data, scaling can be extended indefinitely by simply adding nodes to the cluster where 
data is stored and computations are performed. The contributions of this paper are:

  • Develop a framework to dynamically create and resize subregions for single drone 
flights The proposed techniques dynamically divide a large area into subregions 
that can be covered by a single drone flight and collectively resize and adjust 
them for optimal coverage. Processing terrain data by subregion provides flex-
ibility in deciding which type of drone to assign to a particular subregion.

  • Model different terrain scenarios taking into account multiple drone types and 
their hardware limits This work combines terrain and network data with drone 
flight constraints for multiple drone types, applied as linear inequalities. It maxi-
mally exploits the capability of each drone type based on the subregion size and 
the type of drone needed to cover it.

  • Distributed flight plan creation Flight plan construction is distributed in-mem-
ory or on disk using standard frameworks to avoid any limitations due to the size 
of the spatial index on a single node by applying novel key-value pair based joins. 
It also scales horizontally to larger terrains datasets.

  • Design algorithms for optimized levels of distribution Explore multiple levels of 
distribution by dividing the entire region into subsections or subregions and pro-
cessing them in parallel. Section-wise and subregion-wise distribution each have 
their tradeoffs and require different reconciliation steps.

  • Conduct extensive experiments on real world data and scenarios The proposed 
techniques are validated using experiments on two datasets, one real world and 
other simulated, to test the scaling effectiveness of the distributed techniques. 
The flight plans generated were used to solve an actual real world problem.

The rest of the paper is organized as follows. “Related work” section explores research related 
to this work and “Preliminaries” section presents the preliminary design considerations for 
the flight plan builder. In “Distribution techniques” section, we present an overview of the 
disk based distribution framework utilized in DIFPL implementation and the in-memory 
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implementation DIMPL, followed by a description of the experiments conducted in “Experi-
ments” section. Performance results are discussed in “Results” section and conclusions and 
possible future applications of the algorithms are presented in “Conclusions” section.

Related work
Earlier research in the area can be split into three categories, namely approaches 
designed to automate the flight of drones, routing problems and distributed platforms 
for general spatial data processing that include processing specific to drones.

Automated flights Automated drone flights in natural and man made environments 
are becoming ubiquitous [22]. Automated flights in university environments have been 
explored [7], as has automation of flights in man made environments including those 
utilizing images in indoor contained environments [9] and the combination of image, 
sonar and odometry inputs [39].

Several ways to automate the flight of drones have been proposed, including using sensors 
[42], camera images [9], inputting waypoints as a file [5] or automating the controls [33]. 
Image based autonomous flights have been described [18] and the use of a platform for the 
verification of image based navigation explored [35]. Landmark based visual navigation for 
use in cases of GPS failure has also been investigated [6], along with using network connec-
tions to control fleet of drones [46]. Reactive route selection from a bank of optimal tra-
jectories based on changes in operating environments have been proposed [25], and an A* 
algorithm to plan shortest flight paths for drones adaptive to different flight conditions [37].

Pre-planning the paths of drones has been the focus of a lot of research. Genetic algo-
rithms have been used to trace flight paths [15], and the use of ant colony algorithms for 
3D route planning has also been considered [17]. UAV path planning using Particle Swarm 
Optimization and digital pheromones incorporating vehicle mechanics to generate multiple 
3-d paths for operators have been proposed [24], as have optimization algorithms for multi-
objective drone route planning [32]. Fast graph search algorithms that satisfy constraints 
on flights have been used to determine the optimum path of a drone traveling between two 
given locations [13] and UAV flight path planning in time-space varying wind fields using a 
kinematic tree path planner have been developed [12]. None of these techniques have sought 
to pre-build the flight paths of drones and then allow them to navigate along the path.

Vehicle routing Vehicle routing problem (VRP) has been studied extensively [40]. VRP is NP 
hard and is a variant of traveling salesman problem (TSP). It entails delivering goods from a 
central depot to customers who have ordered them efficiently. Deploying mix fleet to reduce 
energy consumption for distance or time optimizations is explored [29]. Vehicle routing for 
drones for delivery by experimentally validating energy consumption model is proposed [19] 
and by examining worst case scenarios has been explored [44]. The problem of distributed 
vehicles needing to compute their routes in decentralized manner using duality theorem of 
linear programming has been studied [31]. Scenario based parallelization integrating Monte 
Carlo simulation inside a heuristic-randomization process for real time VRP is described [26].

Distributed spatial operations The increased availability of spatial data distributed 
approaches has led to a surge in their popularity. Spatial data processing techniques 
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using MapReduce have been implemented [11], along with accelerated processing with 
MapReduce [43]. Distributed spatial operations with Hadoop and the use of SpatialHa-
doop as a Hadoop extension for spatial operations have both been explored [21] and 
computational geometry algorithms have been distributed using SpatialHadoop [20]. 
Approaches based on distribution of drone data analysis and multiple drone flight coor-
dination tasks has begun to gather momentum [14] and Hadoop based platforms that 
support spatial queries with MapReduce have been developed [1], as well as in-mem-
ory spatial operation framework based on Apache Spark [47]. As yet however, none of 
these techniques are capable of building efficient paths that will enable fleets of drones 
to cover a large area while taking into account multiple terrain and task datasets.

As far as we can determine, previous researchers have not considered ways to combine 
multiple drone types and variations in terrain simultaneously when automating flight paths. 
VRP solutions have proposed optimization of deliveries for a mix fleet, some even in a dis-
tributed paradigm but they are not suited for coordinated survey of an area in a manner that 
is easy to distribute computationally. None of the techniques proposed so far has the capac-
ity to build coordinated flight paths for fleet of drones that will enable them to perform a 
complex survey task in a distributed co-ordinated performant manner. DIMPL, like an ear-
lier prototype DIFPL [38], does not rely on images or video to navigate. Instead flight paths 
are built offline using terrain and network line data and do not need to be adjusted dynami-
cally as all the constraints are applied when the program is run. Our distributed technique 
performs all operations in memory. Unlike DIFPL, which makes 2 passes through the data 
using standard Hadoop constructs and avoids building a large spatial index on a single node 
by splitting the data into sections or subregions that can be processed independently, the 
new model builds all data structures in its memory in a distributed fashion. This eliminates 
disk I/O from one stage to the next, further improving performance.

Preliminaries
In this section we describe the fundamental principles of the new DIMPL algorithms. “Data” 
section describes the input and output data; “Constraints” section explores the constraints 
governing the hardware, subregions and waypoint construction. “Problem formulation” sec-
tion formulates the problem after which “Flight path builder” section details the base flight 
plan builder that serves as the basis for both the DIMPL and DIFPL distribution techniques.

Data

DIMPL utilizes (x, y) geo-coordinate positions of the network line endpoints provided by the 
commissioning aviation organization and elevation data (x, y, elevation) provided by a geo-
graphic agency. The elevation points are spaced evenly 25 m apart. The output of the program 
consists of a set of flight plans, each composed of a set of waypoints (x, y, altitude) and one 
landing point in KML format, which are fed directly into the drone. An output file contain-
ing the flight plan is written for each subregion. The provided 7800 km2 power line network 
is shown in Fig. 1. The elevation point data provided for the entire European country and is 
filtered for the region for which network lines data is available as part of the pre-processing.



Page 6 of 29Shukla et al. J Big Data  (2018) 5:24 

Constraints

The drone can be one of several types. The characteristics for each type of drone are features 
such as its speed, autonomy, turning radius, max slope, and flight height. To allow handling 
of multiple drone types, these characteristics are kept configurable and the drone company 
can adjust them easily through the configuration files. Every pole in the network must be 
photographed at least 4 times. The drone performs 2 passes from each side of the lines, with 
the first pass in one direction and the return pass in the other. Each drone is equipped with 
a NEX7 24 Mega pixel camera with a 50 mm optical lens. The camera takes one image every 
second. The images of each pole from each side and multiple angles are used to perform a 
3D image reconstruction of each pole in order to determine whether vegetation has over-
grown that pole. Every attempt is made to maximize the use of conventional drones as they 
are both cheaper and more plentiful. The primary limitations of the drone hardware are:

  • Number of waypoints The hardware in conventional drones can be programmed with 
up to 200 waypoints while a quadcopter can only be programmed with 50 waypoints.

  •  Climbing angle The maximum slope of ascent for conventional drone is 12°; for descent 
this is − 16°. For a quadcopter the maximum slope for ascent is 90° and for descent is 
− 90°.

  • Autonomy The maximum distance a conventional drone can fly in a single flight is 
30 km and for a quadcopter it is 3 km.

These constraints on the flight path of the different drone types are modeled as inequali-
ties. The inequalities are applied to each subregion for the various types of drones and 
defined as follows.

Fig. 1 Entire line network in the study area
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For climbing angle:

where cp is the angle the drone has to climb to fly from one waypoint to the next along 
the network line and is calculated based on the recommended drone flying altitude and 
the elevation at the waypoints. The recommended altitude for conventional drones is 
100 m and for quadcopters is 50 m. The maximum weight of the drone can be 2200 g. 
For the waypoints along the sides of the network lines, the elevation is calculated by que-
rying the k nearest neighbor elevation points with a kNN spatial index query and tak-
ing their average, thus ensuring it satisfies the climbing angle constraint. The k in KNN 
query was set to 4 and the option was provided to take the maximum elevation of kNN 
results instead of average for irregular terrains.

For autonomy:

where d is the distance along each network line, t is the takeoff distance to reach the 
required elevation over the first network pole for the climbing angle of each drone 
type, n is the landing distance for the descent angle for that drone type, i is the distance 
between two network lines, r is the turn distance for the drone type for l lines and ǫtype 
is the distance added to buffer against unforeseen conditions encountered by the drone. 
The turning radius of a conventional drone is 150 m, while that of a quadcopter is 0 m. 
The distance i is calculated by ordering network lines in the subregion based on their 
xstart and then calculating the distance between one line and the next. Since there are 
3 turns needed for a drone to cover a line segment twice, after which it proceeds to the 
next line segment, 3 turning circumferences have to be added to this equation. Every 
network line must be covered by one of the available drone types. The requirement to 
photograph each pole 4 times is satisfied by setting the camera to take an image every 
second. The number of waypoints in the output is determined by collecting waypoints 
along the network lines at 200 m intervals for conventional drones and 100 m intervals 
for quadcopters; these spacings can be increased if the number of waypoints exceeds the 
maximum allowed by the drone. The drone can be placed anywhere in the area they are 
required to survey, hence operators were recommended to keep them close to the first 
waypoint, giving conventional drone enough distance to climb to the elevation of the 
first waypoint. The drones are programmed to land after the last waypoint and the drone 
operator is expected to pick them up.

Problem formulation

We now formulate the problem the system is solving with in-memory distribution. We 
begin by formulating the problem that fleet of drones is solving and then proceed to the 
distribution problem.

Max(cp) ≤ Ctype

∑

l

(2 ∗ dl + il)+ 3 ∗ l ∗ 2 ∗ π ∗ r + t + n+ ǫtype ≤ Atype
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(A) Drone survey problem

 Cover a regionR containing P electric poles with dronesQ ⊕ C ∈ D

 whereQ is the set of quadcopters and C is the set of conventional drones such that:
(i) ∀ Pi ∈P photographwith photos Hi ∈ H fromall desired angles

(ii) ∀ Di ∈ D follow autonomy and the number of waypoints constraint

(iii) ∀ Di ∈ D the drone type satisfies the climbing angle constraint

(iv) Minimize ||Q||

(v) Cover entire regionR byD

(B) Distribution problem

 Distribute processing of parts of region R with drones D such that:
(i) Reconcile all Ri with no overlaps or uncovered spaces

(ii) Minimize ||R||

(iii) Meet requirements for overall region R in (A)

Flight path builder

The algorithms utilized in DIFPL for subregion-wise and section-wise distributions 
are implemented in DIMPL for the in-memory paradigm. They include a base flight 
plans builder algorithm that performs queries and applies constraints on the results 
within a section or subregion. Two levels of distribution are built, one based on the 
flight path algorithm and another parallelized on subregions.

Flight path building within a section Algorithm 1 shows the process utilized to build 
the flight paths. The sections are illustrated in Figs. 2 and 3. The flight path builder 

Fig. 2 Overall region divided into 4 subsections
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algorithm accepts as input network and elevation line data from disk files in its first 
step. It then checks for existence of a spatial index on disk. If not present, it pro-
ceeds to create and insert the network lines and elevation data into the index Si else 
simply loads the index from disk into memory. It then proceeds to query the spatial 
index for network lines and elevation data by subregion starting from the bottom left 
of the minimum bounding rectangular area containing the region. The default con-
ventional drone sized rectangles are denoted as Dc and the range queries against the 
spatial index for Dc sized subregions are qi . The spatial index Si is an R* tree. The 
flight path algorithm then computes the waypoints along the network lines returned 
in qi response with elevation along the waypoints computed by averaging elevation of 
neighboring points obtained with kNN query against spatial index.

If the network lines satisfy the climbing angle constraint Cc and autonomy con-
straint Ac , waypoints are built along network lines for conventional drone in second 
step. If it fails the autonomy constraint the region is shrunk or expanded by γ sized 
slices until the autonomy constraint is satisfied. The default for γ is 10% of Dc . If the 
network lines and waypoints fail the constraint Cc , then the spatial index is queried 
for the network lines and elevation points in quadcopter sized subregions Dq with 
queries qqi from left to right in the conventional drone subregion. Each consecutive 
quadcopter size subregion that satisfies the climbing angle constraint is merged with 
the previous one. Those that that do not satisfy Cc are deemed to require the quad-
copter. The default queries go left to right and top to bottom until they reach the top 
right of the overall rectangular region. The output of each finalized subregion Oi is 
written to disk as flight paths consisting of waypoints and landing point.

Fig. 3 Overall region divided into 16 subsections
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Distribution techniques
This section provides details of the DIMPL algorithms and architecture. “Distributed 
system DIFPL” section describes the algorithms that are first implemented in DIFPL 
using on-disk distribution that are now implemented in the in-memory paradigm in 
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DIMPL. “In-memory distribution in DIMPL” section goes on to provide a description of 
the in-memory distribution framework used and “DIMPL algorithms” section details the 
section-wise and subregion-wise in-memory distribution algorithms.

Distributed system DIFPL

This section describes the distributed system DIFPL that builds flight plans based on a 
distributed paradigm. It provides an overview of the architecture of the system in “Archi-
tecture” section, the algorithms used in “DIFPL algorithms” section and the optimized 
distribution for maximum parallelization in “DIFPL algorithms” section.

Architecture

The architecture for DIFPL is based on a distributed paradigm. The distribution approach 
in DIFPL was implemented using the Apache Hadoop MapReduce framework [16]. 
MapReduce programming model allows users to develop scalable, fault tolerant appli-
cations. It provides a key-value pair based paradigm that applications can utilize to run 
in a parallelized manner on a cluster in a shared nothing environment. A master node 
in the cluster orchestrates data storage and computation distribution over slave nodes. 
Each MapReduce job consists of three phases, Map, Shuffle and Reduce. The input data is 
stored in a distributed file system HDFS. The three phases then transform as follows:

1. Map This stage reads the input as key-value pairs < k1, v1 > and transforms them 
into another set of key-value pairs < k2, v2 > that are handed to the shuffle on each 
node.

2. Shuffle The key-value pairs < k2, v2 > are taken from the map phase and distributed 
across all machines. This stage guarantees sorting on keys and all values for a key 
combined together before it hands them over to the reduce stage.

3. Reduce It receives each key and all its values grouped together as 
< k2,< v2, v

′
2, v

′′
2 , . . . >> from all the mappers across machines and allows user to 

emit another set of key-value pairs < k3, v3 > to be processed in the next job.

The user can implement application specific operations in the map and reduce stages.

Fig. 4 Distributed disk based system architecture
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The inability of limited memory on a single node to index increasing elevation and net-
work lines datasets as survey area increases necessitates distribution of flight path builder. 
Several options for the distribution of the flight plan builder process are available. The iden-
tification of quadcopter subregions in one part of survey area and the shrinking and expan-
sion of quadcopter and conventional drone subregions in other parts can be performed in 
parallel. An overview of the distributed system architecture is shown in Fig. 4. The network 
lines and elevation data is read in from a distributed file system and a series of MapReduce 
jobs are run on it. The first set of jobs assign elevation and network line data by section id to 
the same reducer in Mappers. The reducer combines all data by section id and builds sub-
regions within the section and emits flight plants for complete and incomplete subregions. 
The next job resolves subregions at the edge of sections by merging whenever possible and 
emits updated flight plans for those subregions while emitting the rest unchanged. Final set 
of flight plans are written back to the distributed file system. A jobs driver orchestrates the 
execution of MapReduce in sequence. The distributed application runs as a cluster on Ama-
zon Web Services (AWS). MapReduce jobs are run on AWS Elastic MapReduce (EMR) and 
data is read from and written to S3 buckets similar to HDFS.

DIFPL algorithms

These algorithms utilize the flight path algorithm and implement the distribution algo-
rithms utilizing it in MapReduce framework.

Sectionwise distribution The first task in this distribution is to split the entire area 
into sections and query for subregions in a spatial index containing elevation and net-
work lines for each section. This allows for indexing smaller sections in the spatial index 
instead of the entire area.

The distribution is broken down into 2 phases, each phase making a pass over the data. 
Each pass incrementally identifies subregions for a quadcopter or conventional drone, 
with the second and final pass resolving boundary issues and outputting the final flight 
paths for each subregion.

Assign and process sections The first pass labels network and elevation data with the sec-
tion they belong to. The details are described in Algorithm  2. The data is processed by 
two mappers. The first mapper reads network lines data { networki } as text and calculates 
the section id based on the coordinates of the network lines. The key value pairs emit-
ted from the mapper are < sectionIDj , networklinel > . The second mapper similarly 
reads elevation data { elevationj } and calculates the section id and emits key-value pairs 
< sectionIDj , elevationi > . The reducer reads the data and aggregates all elevation and 
network line observations for the section id and applies the flight plans builder algorithm 
for the section. It first builds a spatial index for all the elevation points for the subregion 
based on the network and elevation data in memory. It then identifies subregions as quad-
copter and conventional subregions based on the elevation and autonomy constraints, 
shrinking, expanding and merging subregions as needed. The final key-value pairs emit-
ted in the reducer consist of the details of each subregion within a section, namely the 
subregion id subregionj , the subregion extent xsrj,ysrj,xerj,yerj which represents the diago-
nal coordinates of the subregion starting from bottom left edge xsrj , ysrj to top right edge 
xerj , yerj . It also includes a flag indicating if it is a quadcopter or conventional drone sub-
region, the network lines and elevation points and waypoints waypointk , . . . ,waypointl for 
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a quadcopter or conventional drone to follow along the network lines in the subregion. If 
there are no network lines in the subsection emitted by mapper the reducer simply exits.

Resolve edge effects The second pass resolves edge effects between sections, as 
described in Algorithm 3. The input to the mapper consists of the subregions subregionj 
with their extent, the drone type needed, network lines and elevation points in the sub-
region and the waypoints. For the subregions located along the vertical edge of the sec-
tions associated with their section id, reducer pairs the corresponding left and right 
subregions. The subregions can thus be merged if they are covered by the same drone 
type. The output from the reducer consists of the entire set of subregions, including the 
merged subregions. All non boundary subregions are emitted as is.

Optimized distribution A more scalable approach that avoids the need to build spatial 
indexes in each reducer in order to build waypoints in a subregion is now discussed. 
Network lines are input in their raw form and elevations inserted in the spatial index.

Assign and process subregions This algorithm receives as input the network and 
elevation data as { elevationi }, { networklinei } and the mapper emits them with the 
key subregionj . The resulting mapper emitted pairs subregionj , networklinej and 



Page 14 of 29Shukla et al. J Big Data  (2018) 5:24 

subregionj , elevationj ensure that network lines and elevation points land together in the 
reducer. In the reducer the waypoints are built along the network lines and the climbing 
angle constraint Cc is checked by querying the elevation points from subregions near 
each waypoint from the spatial index using a kNN query. All subregions with waypoints 
are then emitted, along with a flag indicating whether they are complete or incomplete. 
The details are shown in Algorithm 4. If the autonomy constraint is not satisfied because 
the network lines are too long or less than the threshold β % of the drone type autonomy, 
the subregions are marked as incomplete when they are emitted from the reducer. At 
this point an attempt is made to merge the adjacent incomplete subregions.

Reconcile adjacent subregions Subregions in a sparse area that needs to be expanded, or 
those generated after shrinking a dense subregion are emitted as incomplete. All subregions 
that are split result in a set of quadcopter and conventional drone subregions. Those that are 
unable to satisfy the autonomy β % constraint are also emitted by the reducer as incomplete 
so that they can be merged with adjacent incomplete subregions. The details of this process 
are shown in Algorithm 5. The algorithm accepts all subregions and the mapper emits those 
that are incomplete. The reducer then aligns those that are adjacent and checks whether the 
adjacent subregions can be merged together. Every time a merged subregion satisfies the β % 
threshold and autonomy constraint, reducer emits it as subregioni → { xsri, ysri, xeri, yeri
,{waypointi},quadcopter|conventional} and then proceeds to the next subregion.
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In‑memory distribution in DIMPL

This section describes the algorithms used to perform flight path generation using in-mem-
ory techniques in DIMPL. The in-memory distribution implementation, unlike the DIFPL 
implementation, does not need to write the intermediate output to disk, it performs all 
operations in-memory. Apache Spark is an in-memory based framework that allows com-
putations to be distributed in-memory over a large number of nodes in a cluster [48]. The 
programming constructs available in Spark transform the data on a disk into RDDs (resil-
ient distributed datasets) and then apply appropriate actions to the RDDs on subsets of data 
in processes called executors on cluster nodes to generate values that can be returned to the 
application. RDDs provide fault tolerance in case one or more nodes of the cluster fail. The 
algorithms typically utilized by Spark are ML and statistical functions that are highly itera-
tive in nature. Performing highly distributed operation in a disk based distribution frame-
work such as MapReduce would be expensive computationally due to the need to write data 
to the disk during each iteration. There are several other distributed in memory frameworks 
with Apache Flink [3], Message Passing Interface (MPI) [23] and Apache Storm [4] being 
the popular ones. Spark allows for highly efficient iterative operations in batch on large 
datasets in memory, has an easy programming interface and is readily available on popular 
cloud services such as AWS and hence was chosen as the framework.

The architecture of DIMPL is shown in Fig.  5. The in-memory distributed applica-
tion runs as a cluster on AWS. Spark jobs are run on AWS EMR and data is read from 
and written to S3 buckets which is similar to HDFS. As the figure shows, the various 
in-memory RDD transforms that are performed allow the construction of flight plans 
by subregion with section-wise and subregion-wise distributions. A Spark jobs driver 
orchestrates the sequence of RDD transformations and actions.
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DIMPL algorithms

We now describe the algorithms that perform the key-value pair based RDD transforms. 
The < Key,Value > based RDDs are modeled as PairRDD.

Algorithm 6 provides the in-memory section by section flight path implementation in Spark 
using RDDs. Since all operations are performed in-memory, the algorithm simply transforms 
the input data into RDD elements that represent all elevation data in step 1 and the network 
line data in step 2 within each section. The flatMapToPair function flattens the data elements 
for a key into a single value in the transformed RDD. Step 3 joins the two RDDs with their sec-
tion id and then applies the flight plans builder to the data points in each section. The opera-
tion in step 4 allows flight plans to be created by subregion in parallel for each subsection in 
memory, and finally step 5 resolves the subregions based on the section boundary.

Fig. 5 In‑memory distributed system architecture
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Algorithm 7 gives the in-memory subregion by subregion waypoints construction for 
each flight path in Spark using RDDs. The algorithm transforms the input data into RDD 
elements that represent all the elevation and network lines data within a subregion and 
then applies the flight plans builder to the data points in each subregion and to enable 
flight plans for each subregion to be created in parallel in the drone’s memory, with step 
5 resolving the incomplete subregions that are adjacent to each other.

Experiments
This section explores a set of scenarios designed to identify appropriate subregions and 
the type of drone flights needed to cover each. The scenarios are divided into 3 catego-
ries, namely within a section, including the entire area on a single node, or distributed by 
subregion; “Scenarios within a single section” section looks at single section scenarios, 
“Distributed scenarios” section considers results for distributed scenarios and “Opti-
mized distributed scenarios” section for optimized distributed scenarios.

Scenarios within a single section

These scenarios are how the new model functions when applying queries and con-
straints within a single section, which can either be the whole area or an individual sec-
tion within it.

Use of conventional drone A typical flight path built by flight plans builder is shown in 
Fig. 6. The waypoints for the subregion are highlighted, along with the electric pole net-
work lines they must cover, which are shown in red. The distance δ of the waypoints path 
along the network line is constant and configurable. The turning radius of the drone, 
along with its flight from one network line to another, is taken into account in the auton-
omy constraint. It is not shown in the figure or entered as a waypoint as the drone auto-
matically determines how it will navigate from one point to the next. The value of ǫtype 
is set to 0 for the experiments but operator is given the option to change it if necessary. 
The circles represent the turns a conventional drone has to make to fly along both sides 
of a network line.
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Expanding a subregion for a conventional drone or quadcopter Figure 7 shows a sub-
region which has fewer network lines than β % conventional drone autonomy threshold. 
The size of the subregion is incrementally expanded by length γ until autonomy reaches 
β % or higher. This parameter is configurable and defaults to 80%. The dotted lines in the 
figure represent the incremental expansion of the subregion.

Splitting a subregion between conventional drone and quadcopter flights If a subregion 
fails to satisfy the climbing angle constraint for a conventional drone, it is split to sepa-
rate out the segments where the constraint fails and these portions assigned to a quad-
copter. Figure 8 shows the flight path waypoints for a subregion that cannot be covered 
by a conventional drone and thus require a quadcopter. A larger subregion with this split 
is shown in Fig. 9. Quadcopter default size subregions are incrementally applied to deter-
mine where the conventional drone climbing angle constraint fails. If that subregion lies 
in the middle of the original subregion, it is covered with a quadcopter and all the other 
subregions before it in the sequence are assigned to a minimal number of conventional 

Fig. 6 Waypoints along network lines. δ represents the distance from the line for a subregion covered by a 
conventional drone

Fig. 7 Expanded view of subregion with network line lengths below the threshold of conventional drone 
autonomy
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drone flights. Subregions following the final quadcopter segment are merged with sub-
sequent conventional drone subregions, as indicated by dotted line. Only one subregion 
that required quadcopter coverage was found in the example shown here, so after that 
subregion the algorithm resumes the query process by once again applying the default 
conventional drone subregion size.

The quadcopter default sized subregions before the quadcopter assigned subregion are 
merged together to create a single conventional drone subregion.

Shrinking subregions for conventional drones or quadcopter Subregions containing net-
work lines that are too long for a conventional drone or quadcopter to cover in a sin-
gle flight necessitate shrinking that subregion. Figure 10 shows the process involved in 
incrementally shrinking a subregion by horizontal length γ until a size that satisfies the 
autonomy constraint for a conventional drone is reached. This reduces the length of the 
network lines until they can be covered by a conventional drone. The query process then 
resumes from the end of the new, smaller subregion. The dotted lines represent incre-
mental changes in the subregions.

After experimenting with several default subregion sizes for both types of drones, intial 
default subregion sizes of 3.7 km × 2.9 km for conventional drones and 3.7 km × 0.29 km 

Fig. 9 Subregions that fail to satisfy the climbing angle constraint and are thus split between conventional 
drones (in blue) and a quadcopter (in red)

Fig. 8 Waypoints along network lines. δ represents the distance from a line for subregions covered by a 
quadcopter
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for quadcopters were found to be good default sizes. These default values are an optimal 
size that simultaneously maximizes the autonomy of the conventional drones and quad-
copter and minimizes the processing time. Figure 11 shows the subregions in the study 
area with some subregions covered by conventional drones and the others by quadcop-
ters. Some subregions have been shrunk for the conventional drones and the others split 
for quadcopters and the remaining segments merged into an adjoining subregion. The 
subregions in the figure provide a good match for the network lines and their density, 
as shown in Fig. 1. Areas with dense network lines have more default sized and smaller 
conventional drone subregions. Areas with more quadcopter subregions indicate hilly 
areas with substantial altitude variations, while areas with sparse coverage of network 
lines contain a greater number of expanded conventional drone subregions.

The optimizations process significantly reduces the number of drone subregions over-
all and minimizes the number of quadcopter flights, which is important as conventional 
drones are both cheaper and more plentiful. The impact of incremental optimizations 
is shown in Fig. 12. The incremental savings gained due to expansions and splitting of 

Fig. 10 Subregion containing network lines that exceed conventional drone autonomy and must be shrunk

Fig. 11 All the subregions in the study area, conventional drone areas shown in blue and quadcopter areas 
in red
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conventional default sized subregions into a minimal number of quadcopter and con-
ventional drone subregions is very effective in minimizing the number of subregions, 
particularly those requiring quadcopter subregions. The bulk of the efficiency savings 
come from expanding subregions and thus reducing the number of conventional drone 
subregions from 1553 to 809. Splitting a conventional drone subregion into pinpoint 
quadcopter areas and efficiently merging conventional drone subregions minimizes the 
number of quadcopter subregions required.

Distributed scenarios

In a distributed paradigm, the scenarios change as subregions on the edges of sections 
are unable to expand and thus must be resolved in an additional step. 

Shrink, expand, merge or split subregions The subregions are shrunk and expanded 
based on the same threshold β % for autonomy as that used in the sequential algorithm 
for each section. This invariably means several subregions on the extreme edge of each 
section fail to meet the threshold as they lack room to expand. This issue is mitigated to 
some extent by the edge effect task.

Merge section edge subregions Edge subregions for each section can be merged together 
if feasible. The result after merging for a 4-section distribution are shown in Fig. 13. If 
the subregions are being covered by the same drone type on either side of an edge and 
they have not been expanded, they are likely to be merged together. Experiments identi-
fied 4 such subregions in the study area.

Optimized distributed scenarios

Optimized distribution focuses on processing each subregion in parallel. The subregions 
are then reconciled by merging them with adjacent subregions where necessary.

Splitting or shrinking subregion Since a subregion by itself cannot be expanded, the 
length of its network lines can only be shrunk if its network lines exceeds the autonomy 
of a conventional drone or quadcopter. Subregions that do not satisfy the β % network 
line length constraint after splitting or shrinking are marked as incomplete. Subregions 
that satisfy the length constraint are emitted as complete.

Merging subregions All incomplete subregions are then ordered and those adjacent 
to each other that can be merged are emitted as new subregions. Figure 14 shows the 

Fig. 12 All the subregions for both conventional drones and quadcopters broken down by analysis type



Page 22 of 29Shukla et al. J Big Data  (2018) 5:24 

subregions created by this subregion parallelization process. The entire set of subre-
gions that can be processed together are merged if possible in a single pass. This is 
optimal for when large number of processor nodes are available in distributed cluster 
and the jobs can complete deterministic calculation of subregions and flight paths of 
each while taking full advantage of parallelization possible. Running the scenarios in 
the distributed paradigm produces similar number of subregions for both quadcopter 
and conventional drone types to those obtained with sequential processing. Merging 
reduces the quadcopter subregions by 627 and conventional subregions by 385.

Comparisons of single node sequential results with distributed and optimized dis-
tributed results are shown in Fig. 15. The figure clearly shows how merging reduces 
the count of quadcopter and conventional drone subregions in an optimized distri-
bution. After merging, there are 1239 conventional drone subregions and 1839 quad-
copter subregions, which compares well with the 809 conventional drone subregions 
and 2181 quadcopter subregions obtained using a single node execution process.

Fig. 13 The subregions in overall area with conventional drone areas shown in blue, and quadcopter areas in 
red after merging subregions across the vertical section boundaries

Fig. 14 The subregions in the study area, with conventional drone areas shown in blue and quadcopter 
areas in red after subregion‑wise distributed processing and merging
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Results
This section presents results on user provided and synthetic datasets. Performance 
results for a user provided dataset are presented in “Performance on the user provided 
dataset” section and those for an extended synthetic dataset in “Performance on larger 
synthetic dataset” section. The results are analyzed in “Discussion” section. The Spark 
and MapReduce experiments were run on AWS using Elastic MapReduce clusters. Clus-
ter nodes are of type m3.2 × large with 8 vCPU processors and 30GB of RAM.

Performance on the user provided dataset

A comparison of the performance of sequential execution against distributed execution 
in DIFPL and DIMPL across the 7800  km2 study area for section wise distribution in 
clusters of various sizes for an overall area divided into 4 and 16 sections is shown in 
Fig.  16. Hadoop 2.5.1, MapReduce2 and Spark1.5.1 were utilized and experiments are 
performed on 3, 5 and 9 node Hadoop clusters with 1 master and 2, 4 and 8 slave nodes.

The results show that although with increasing cluster size, although due to the rela-
tively small data size in this example the performance improvement from 4 to 16 sections 
is not significant. The results of subregion based distribution in MapReduce for DIFPL 
and Spark for DIMPL are shown in Fig.  17. Here again the section-wise distribution 

Fig. 15 All the subregions for conventional drones and for quadcopters broken down by analysis type

Fig. 16 Performance of section‑wise distribution in MapReduce and Spark for various sized clusters
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performance improves with increasing cluster size. With less disk I/O, the performance 
of DIMPL is significantly better due to all the operations being performed in memory.

Performance on larger synthetic dataset

In order to test the performance of the algorithms on a much larger data set, we cre-
ated a synthetic dataset 100 times the size of the user provided dataset. The larger data-
set has the same distribution and density of elevation points and network lines as the 
original dataset. It was created by tiling the original dataset 100 times in a 10 × 10 grid. 
This made sure we did not alter the data in any way but performed experiments that did 
not assume anything about the network or elevation points and algorithms operated on 
a much larger region. Experiments on the larger dataset confirm the scalability of the 
algorithms.

A comparison of the performance of sequential execution and that of distributed 
execution in DIFPL MapReduce and DIMPL in Spark for section-wise distribution in 
clusters of various sizes for the overall area divided into 4 and 16 sections is shown in 
Fig. 18. These results clearly show the improvement in performance as the number of 
subsections increases from 4 to 16. A comparison of the results of subregion based dis-
tribution in MapReduce and Spark is shown in Fig. 19. Here again the performance of 

Fig. 17 Performance of subregion‑wise distribution in MapReduce and Spark for various sized clusters

Fig. 18 Performance of section wide distribution in MapReduce and Spark for various sized clusters and a 
larger dataset
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DIMPL is much better than that achieved by DIFPL due to all operations being per-
formed in memory on clusters with multiple processors and a large amount of memory. 
These results clearly show the performance improvement achieved by using in-memory 
distribution in Spark in DIMPL compared to the disk based distribution in MapReduce 
in DIFPL. These results confirm that the performance on larger datasets mirrors the per-
formance on the full original dataset provided by the aviation agency. This proves our 
technique is scalable to larger sized datasets.

Discussion

The performance results show that the algorithms are scalable in both DIFPL and 
DIMPL. The experimental results verified following observations: (1) Improvements in 
distributed and optimized distributed scenarios Distribution and optimized distribution 
scenarios reduce the number of subregions overall and minimize the number of quad-
copter regions. The results from distribution and optimized distribution are determin-
istic and do not fluctuate from one run to the next. Optimized distribution is able to 
leverage large number of nodes in a MapReduce or Spark cluster if available to run the 
analysis speedily and in case of DIMPL in near real time to allow operator tremendous 
flexibility in building flight paths. (2) Scaling efficiency The algorithms scale well with 
larger datasets. The scaling with both DIFPL and DIMPL is efficient and we further vali-
date that with strong and weak scaling [34] results as shown in Fig. 20 for DIFPL algo-
rithm and Fig. 21 for DIMPL. In strong scaling the problem size stays the same while we 
measure run time by gradually increasing the number of nodes. In weak scaling we keep 
the workload on each processor the same while gradually increasing the size of problem 
along with number of processors. The scaling charts show that with increasing number 
of processors the performance keeps improving, and stays stable for same amount of 
data per node for increasing data sizes. The scaling charts demonstrate that the algo-
rithms can be scaled indefinitely with increasing survey area in a horizontal manner 
by simply adding nodes to the cluster. During the running of DIFPL MapReduce and 
DIMPL Spark distribution jobs the memory of the nodes increases rapidly as more map-
pers and reducers in case of MapReduce and executors in case of Spark are started. It 
stabilizes after a while and processes proceed to release it upon completion. (3) kNN 

Fig. 19 Performance of subregion wise distribution in MapReduce and Spark for various sized clusters and a 
larger dataset
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query impact The invocation of kNN queries over elevation points with maximum eleva-
tion instead of average in results used to determine elevation of waypoint increased the 
number of quadcopter regions by 54 from 2181 to 2235 while number of conventional 
drone regions decreased by 1 from 809 to 808 for the standard size data set in sequential 
execution. The increase in quadcopter regions was due to several conventional drone 
subregions split into quadcopter subregions with some of the smaller split subregions in 
between assigned to conventional drones. This proves the usefulness of providing this 
option to the drone operator to build flight plans suitable to the terrain.

Conclusions
This study used a novel approach to flexibly divide a large area into subregions and 
dynamically adjust them to optimally cover each with a single drone flight. The algo-
rithms combine spatial data and drone limitations or constraints, which are modeled as 
linear inequalities, to automate the flight paths of the drones. The distributed implemen-
tation provides an excellent way to handle large datasets that cannot be processed on 
a single node. Utilizing in-memory distribution significantly speeds up the flight paths 
building process compared to disk based distribution and this subregion level distri-
bution allows horizontal scalability. The flight plans produced by the new distributed 

Fig. 20 DIFPL strong and weak scaling

Fig. 21 DIMPL strong and weak scaling
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model are similar in numbers to those obtained by single node implementations but are 
generated more efficiently. Their construction can also be adjusted for dynamic evasion 
of unforeseen obstruction. The technique applied here is not only useful for the assigned 
task of surveying power lines but can easily be extended to a host of other drone applica-
tions such as surveying coastlines for hurricane damage, forest surveys for logging, farm 
surveys for fertilization, insecticide spraying and watering, and many others.
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