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ABSTRACT
Remote sensing image semantic segmentation is an important prob-
lem for remote sensing image interpretation. Although remarkable
progress has been achieved, existing deep neural network methods
suffer from the reliance on massive training data. Few-shot remote
sensing semantic segmentation aims at learning to segment target
objects from a query image using only a few annotated support
images of the target class. Most existing few-shot learning methods
stem primarily from their sole focus on extracting information from
support images, thereby failing to effectively address the large vari-
ance in appearance and scales of geographic objects. To tackle these
challenges, we propose a Self-Correlation and Cross-Correlation
Learning Network for the few-shot remote sensing image semantic
segmentation. Our model enhances the generalization by consider-
ing both self-correlation and cross-correlation between support and
query images to make segmentation predictions. To further explore
the self-correlation with the query image, we propose to adopt a
classical spectral method to produce a class-agnostic segmentation
mask based on the basic visual information of the image. Extensive
experiments on two remote sensing image datasets demonstrate
the effectiveness and superiority of our model in few-shot remote
sensing image semantic segmentation. The code is available at
https://github.com/linhanwang/SCCNet.

CCS CONCEPTS
• Computing methodologies → Neural networks.

KEYWORDS
remote sensing image semantic segmentation, few-shot learning

ACM Reference Format:
LinhanWang, Shuo Lei, JianfengHe, ShengkunWang,Min Zhang, andChang-
Tien Lu. 2023. Self-Correlation and Cross-Correlation Learning for Few-Shot

ACM ISBN 979-8-4007-0168-9/23/11.
https://doi.org/10.1145/3589132.3625570

Remote Sensing Image Semantic Segmentation. In The 31st ACM Interna-
tional Conference on Advances in Geographic Information Systems (SIGSPA-
TIAL ’23), November 13–16, 2023, Hamburg, Germany. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3589132.3625570

1 INTRODUCTION
Semantic segmentation in remote sensing images has become an
essential task for various applications, such as land use analysis
[11], urban management [37], environmental monitoring [13], and
other areas of national economic development. Although deep neu-
ral networks for semantic segmentation [2, 4, 20, 45] have achieved
remarkable progress, their reliance on large-scale datasets greatly
restricts their application in low-resource domains. For example,
collecting an adequate amount of remote sensing data is hard, and
the expense associated with hiring domain experts to annotate the
data is too costly to be feasible. To reduce such burden on data an-
notation, few-shot semantic segmentation has been proposed [26],
which aims to learn a model that can perform segmentation on
novel classes with only a few annotated images.

Figure 1: Overview of our proposed model (SCCNet) for few-
shot remote sensing image semantic segmentation. SCCNet
incorporates self-correlation information into the model
and decomposes an image using the eigenvectors of a Lapla-
cian matrix constructed from a visual feature to extract self-
contained knowledge from the query image.

Recently, a group of few-shot segmentation methods adopted
global average pooling [26] over the foreground region of the sup-
port features to generate class prototypes, which are then employed
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to guide the segmentation process of the query image. Building
upon this research direction, some studies [35, 38] strive to design
more representative support prototypes to enhance segmentation
performance. While significant advancements have been made for
natural images, these methods encounter challenges when applied
to remote sensing images, primarily due to the presence of large
intra-class variances. Specifically, geographic objects of the same
class can exhibit substantial variations in appearance and scales
from different angles. Recently, SDM [40] proposes scale-aware
focal loss to focus training on tiny hard-parsed objects and per-
forms detailed matching with multiple prototypes for providing
more accurate parsing guidance. However, SDM only considers the
cross-correlation between support and query images, ignoring the
self-correlation between pixels within the query image. We found
that self-correlations within the query image could provide extra
knowledge to help segment tiny objects, which is very important
for few-shot remote sensing image semantic segmentation, particu-
larly when there is a significant discrepancy between the support
and query images.

To address the aforementioned challenges, we propose a novel
model, named SCCNet, to leverage knowledge from query images
for few-shot remote sensing image semantic segmentation. As illus-
trated in Fig. 1, the proposed model consists of two key components.
First, we incorporate the initial query mask prediction to collect
query features in high-confidence regions and then use the gener-
ated masked query features to perform self-matching with query
features. Since pixels belonging to the same object are expected to
exhibit higher similarity than those belonging to different objects,
Self-Matching Module can provide auxiliary support information
to segment the query image. Second, we propose a novel Spectral
Segmentation Module to extract knowledge from query images
further with classical spectral methods. Specifically, we first con-
struct the affinity matrices using basic visual information (i.e. color
and position information) and semantic information derived from
the middle-layer features of the pretrained backbone. Then we
decompose images using the eigenvectors of Laplacian of affinity
matrices as soft segments and obtain the class-agnostic eigenseg-
ments. Since it operates solely on the query images without relying
on the support annotations, it is naturally resilient to the significant
discrepancies that may exist between the support and query images.
The final prediction mask of the query image is obtained by fusing
the optimized query mask and the eigensegment.

Our key contributions can be summarized as follows:

• We propose a Self-Correlation and Cross-Correlation Learn-
ing Network for the few-shot remote sensing image seman-
tic segmentation. Our model enhances the generalization
by considering both self-correlation within query images
and cross-correlation between support and query images to
make segmentation predictions.

• We proposed a Self-Matching Module to extract more com-
prehensive query information. The correlation between the
initial segment and the query images is introduced to the
model to tackle the large discrepancy between support and
query images.

• We propose a novel Spectral Segmentation Module with
spectral analysis to produce class-agnostic segmentations of
query images without the supervision of any annotations.

• We evaluate the proposed model on two remote sensing
image datasets for few-shot semantic segmentation tasks.
Comprehensive experiments demonstrate that our SCCNet
consistently outperforms all the baselines for both 1-shot
and 5-shot settings.

2 RELATEDWORK
2.1 Remote Sensing Image Semantic

Segmentation
Deep learning-based methods have gained significant popularity in
the remote sensing community, showcasing remarkable progress
in segmenting remote sensing images. Specifically, Maggiori et al.
[22] introduced a multilayer perceptron (MLP) into the segmenta-
tion network to produce better segmentation results. Yu et al. [41]
introduced the pyramid pooling module as a means to address se-
mantic segmentation in remote sensing images, while Yue et al. [42]
developed TreeUNet as the first adaptive Convolutional Neural Net-
work (CNN) specifically tailored for semantic segmentation in this
domain. Zhang et al. [44] adopted the multibranch parallel convo-
lution structure in HRNet [31] to generate multiscale feature maps
and designed an adaptive spatial pooling module to aggregate more
local contexts. To tackle the challenge in small-scale object seg-
mentation, Kammpffmeyer et al. [12] assembled patch-based pixel
classification and pixel-to-pixel segmentation, which introduced
uncertain mapping to achieve high performance on small-scale
objects. FactSeg [21] proposed a symmetrical dual-branch decoder
consisting of a foreground activation branch and a semantic re-
finement branch. The two branches performed multiscale feature
fusion through skip connection, thereby improving the accuracy
of small-scale object segmentation. Furthermore, with the emer-
gence of multiple attention mechanisms, Ding et al. [7] designed
an efficient local attention embedding to enhance segmentation
performance.

Although existing methods effectively demonstrate the capabili-
ties of deep learning in remote sensing image semantic segmenta-
tion, they typically require a large number of densely-annotated
images for training and have difficulties in generalizing to unseen
object categories.

2.2 Few-shot Semantic Segmentation
To address the generalization issue and reduce massive training
data annotation, Few-Shot Semantic Segmentation (FSS) task has
been proposed, which aims to learn a model that can perform seg-
mentation on novel classes with only a few pixel-level annotated
images. Shaban et al. [26] first proposed one-shot semantic seg-
mentation networks to address FSS. It uses global average pooling
over the foreground region of the support features to generate class
prototypes, which are then employed to guide the segmentation
process of the query image. Building upon the concept of prototypi-
cal networks [30], utilizing prototype representations to guide mask
prediction in query images has become a popular paradigm in the
field of few-shot segmentation. Specifically, PANet [35] proposed
a prototype alignment regularization between support and query
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images to generate high-quality prototypes. PMMs [38] employ
the Expectation-Maximization algorithm to generate multiple pro-
totypes corresponding to different parts of the objects. Recently,
a group of matching-based methods has been proposed to lever-
age dense correspondences between query images and support
annotations. HSNet [24] utilizes 4D convolutions to extract precise
segmentation masks by compressing the multilevel 4D correlation
tensors. VAT [10] proposes a 4D Convolutional Swin Transformer
to aggregate the correlation map. To fully harness the information
within the support set, Yang et al. [39] employ clustering techniques
to mine latent novel classes in the support set and subsequently
treat them as pseudo labels during the training process.

Despite the remarkable progress achieved in natural images,
Yao et al. [40] found that performance drops dramatically on un-
seen classes in remote sensing images. This limitation arises from
the inability of these methods to effectively handle the significant
variations in object appearance and scales prevalent in remote
sensing images. To address this challenge, SDM [40] proposes a
scaled-aware focal loss, which enhances the focus on tiny objects.
DMML-Net [34] uses an affinity-based fusion mechanism to adap-
tively calibrate the deviation of the prototype induced by intra-class
variation. R2Net [14] leverages global rectification and decoupled
registration to improve the segmentation accuracy. PCNet [15] pro-
poses the progressive parsing module and commonality distillation
module, which complement each other to cope with the problems
of incomplete objects and irrelevant distractors.

It is worth noting that all existing methods primarily focus on
extracting information solely from the support set to make a seg-
mentation. However, we argue that this approach may not be suffi-
cient for remote sensing images, where substantial discrepancies
exist between the support and query images. In this study, we aim
to pioneer a novel direction by extracting the self-contained knowl-
edge in the query images to boost the performance for few-shot
remote sensing image semantic segmentation.

2.3 Spectral Methods for Segmentation
Spectral analysis originally emerged from the exploration of contin-
uous operators on Riemannian manifolds [3]. Subsequent research
efforts extended this line of research to the discrete setting of graphs,
leading to numerous findings that connect global graph properties
to the eigenvalues and eigenvectors of their associated Laplacian
matrices. Lin et al. [19] demonstrate that the eigenvectors of graph
Laplacians yield graph partitions with minimum energy. Building
upon this insight, Shi et al. [28] view image segmentation as a graph
partitioning problem and propose a novel global criterion called
the normalized cut for image segmentation. As presented by Aksoy
et al. [1], soft segmentations are automatically generated by fusing
high-level and low-level image features within a graph structure.
The construction of this graph facilitates the utilization of the corre-
sponding Laplacian matrix and its eigenvectors to reveal semantic
objects and capture soft transitions between them.

3 PROBLEM SETUP
Few-shot semantic segmentation aims to perform segmentation
on the novel classes with only a few annotated images. Suppose
we are provided with images from two non-overlapping class sets:

C𝑏𝑎𝑠𝑒 and C𝑛𝑜𝑣𝑒𝑙 . The training dataset D𝑡𝑟𝑎𝑖𝑛 is constructed from
the class set C𝑏𝑎𝑠𝑒 and the test dataset D𝑡𝑒𝑠𝑡 is constructed from
the class set C𝑛𝑜𝑣𝑒𝑙 .

To mitigate the risk of overfitting caused by limited training
data, we adopt a commonly used meta-learning technique known
as episodic training [33]. In the 𝐾-shot setting, we employ episodic
sampling to select𝐾+1 annotated image pairs, denoted as {(𝐼𝑠1 , 𝑀

𝑠
1 ),

(𝐼𝑠2 , 𝑀
𝑠
2 ), ..., (𝐼

𝑠
𝐾
, 𝑀𝑠

𝐾
), (𝐼𝑞, 𝑀𝑞)}, with the same targeted class from

the training dataset D𝑡𝑟𝑎𝑖𝑛 . Here, {(𝐼𝑠𝑖 , 𝑀
𝑠
𝑖
)}𝐾
𝑖=1 represents the sup-

port samples, and (𝐼𝑞, 𝑀𝑞) denotes the query pair. During the train-
ing phase, the segmentation model takes both the support samples
{(𝐼𝑠

𝑖
, 𝑀𝑠

𝑖
)}𝐾
𝑖=1 and the query image 𝐼𝑞 as inputs and generates a

predicted mask �̃�𝑞 . This prediction is then supervised by the cor-
responding ground truth mask 𝑀𝑞 . Similarly, during the testing
phase, we employ 𝐾 annotated image pairs from D𝑡𝑒𝑠𝑡 to infer the
semantic objects present in the query images.

4 PROPOSED APPROACH
To solve the few-shot semantic segmentation problem in remote
sensing images, we propose a novel model named SCCNet as shown
in Fig 2. First, we use pre-trained CNNs (VGG [29] or Resnet [9]) as
the feature extractor to generate the corresponding query and sup-
port features. In the cross-matching module, pixel-wise multi-scale
correlation tensors between masked support features and query
features are built and squeezed to generate the initial predicted
query mask �̃�𝑞

𝑖𝑛𝑖𝑡
. To tackle the high intra-class variance problem

in remote sensing images, the Self-Matching Module calculates the
correlations between query features masked by �̃�𝑞

𝑖𝑛𝑖𝑡
and other

query features. These correlations are further squeezed and merged
with squeezed correlations between support and query features to
generate optimized query mask �̃�𝑞

𝑚𝑒𝑟𝑔𝑒 . To further mine knowl-
edge from the query images, in the spectral segmentation module,
the classic spectral analysis method is utilized to exploit the prox-
imity of local regions. Specifically, eigenvectors of the Laplacian of
the affinity matrix are utilized as soft segments and transformed
into eigensegments by Thresholding algorithms afterward. In the
end, the final prediction mask of the query image is obtained by
fusing the optimized query mask and the eigensegment.

4.1 Cross-Matching Module
Different from encoding an annotated support image to a feature
vector to facilitate query image segmentation, we adopt the pixel-
wise correlation between the support and query images to make a
segmentation in our Cross-Matching Module.
Hypercorrelation pyramid construction.We extract features
from query and support images and compute the correlation be-
tween them. Given a pair of query and support images, 𝐼𝑞 and
𝐼𝑠 , we adopt a pretrained backbone to produce a sequence of 𝐿
feature maps, {(𝐹𝑞

𝑙
, 𝐹𝑠
𝑙
)}𝐿
𝑙=1, where 𝐹

𝑞

𝑙
and 𝐹𝑠

𝑙
denote query and

support feature maps at the 𝑙-th level, respectively. A support mask
𝑀𝑞 is used to encode segmentation information and filter out the
background information. We obtain a masked support feature as
𝐹𝑠
𝑙
= 𝐹𝑠

𝑙
⊙ 𝜁𝑙 (𝑀𝑠 ), where ⊙ denotes the Hadamard product and

𝜁𝑙 : R𝐻×𝑊 → R𝐶𝑙×𝐻𝑙×𝑊𝑙 denotes a function that resizes the given
tensor followed by expansion along the channel dimension of the
𝑙-th layer.
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Figure 2: Overall pipeline of our proposed network. The pretrained backbone is utilized as the feature extractor to generate
corresponding support and query features. In the Cross-Matching Module, correlation between masked support features and
query features is built and squeezed to generate the initial query mask. In the Self-Matching Module, correlation between
query image and the initial query mask is further added into the model to generate finer query mask. Finally in the Spectral
Segmentation Module, the query mask is fused with eigensegments obtained by non-learning-based spectral analysis.

Given a pair of feature maps 𝐹𝑞
𝑙
and 𝐹𝑠

𝑙
, we compute a 4D corre-

lation tensor [24] 𝐶𝑙 ∈ R𝐻𝑙×𝑊𝑙×𝐻𝑙×𝑊𝑙 using cosine similarity:

𝐶𝑙 (𝑖, 𝑗) = 𝑅𝑒𝐿𝑈
(
𝐹
𝑞

𝑙
(𝑖) · 𝐹𝑠

𝑙
( 𝑗)

∥𝐹𝑞
𝑙
(𝑖)∥∥𝐹𝑠

𝑙
( 𝑗)∥

)
(1)

where 𝑖 and 𝑗 denote 2D spatial positions of feature maps. We col-
lect correlation tensors computed all the intermediate features of
the same spatial size and stack them to obtain a stacked correlation
map 𝐶𝑝 ∈ R | L𝑝 |×𝐻𝑝×𝑊𝑝×𝐻𝑝×𝑊𝑝 , where (𝐻𝑝 ,𝑊𝑝 ) are the height
and width of the query and support feature maps, andL𝑝 is a subset
of CNN layer indices {1, ..., 𝐿} at pyramid layer 𝑝 , containing corre-
lation maps of identical spatial size. Given 𝑃 pyramidal layers, we
denote the hypercorrelation pyramid as Ĉ = {𝐶𝑝 }𝑃𝑝=1, representing
a collection of feature correlations from multiple visual aspects.

Figure 3: Simplified illustration of the effect of 4D convolu-
tion kernels that squeeze the support spatial dimensions.

Correlation Squeeze Encoder.Our encoder network takes the hy-
percorrelation pyramid Ĉ = {𝐶𝑝 }𝑃𝑝=1 to effectively squeeze it into a
condensed feature map 𝑍 ∈ R128×𝐻1×𝑊1 . As shown in Figure 3, se-
quences of multi-channel 4D convolution with large strides period-
ically squeeze the last two (support) spatial dimensions of𝐶𝑝 down
to (𝐻𝜖 ,𝑊𝜖 ) while the first two spatial (query) dimensions remain the
same as (𝐻𝑝 ,𝑊𝑝 ). Similar to FPN [18] structure, two outputs from
adjacent pyramidal layers, 𝑝 and 𝑝 + 1, are merged by element-wise
addition after upsampling the (query) spatial dimensions of the
upper layer. After merging, the output tensor of the lowest block is
further compressed by average-pooling its last two (support) spatial
dimensions, which in turn provides a 2-dimensional feature map
𝑍 ∈ R128×𝐻1×𝑊1 that signifies a condensed representation of the
hypercorrelation pyramid Ĉ.
2D-convolutional context decoder. The decoder network con-
sists of a series of 2D convolutions, ReLU, and upsampling layers
followed by sofmax function. The network takes the context rep-
resentation 𝑍 and predicts two-channel map �̂�𝑞

𝑖𝑛𝑖𝑡
∈ [0, 1]2×𝐻×𝑊

where two channel values indicate probabilities of foreground and
background. Thenwe take themaximum channel value at each pixel
of �̂�𝑞

𝑖𝑛𝑖𝑡
to obtain initial query mask prediction �̃�𝑞

𝑖𝑛𝑖𝑡
∈ {0, 1}𝐻×𝑊 .

4.2 Self-Matching Module
While the cross-matching module successfully captures intricate
correlations between support and query images, it faces limitations
when significant disparities exist between the support and query
features. Consequently, the initial query mask �̂�𝑞

𝑖𝑛𝑖𝑡
generated by
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the cross-matching module may lack crucial details, which is a pain
point for the segmentation task. To tackle this issue, Self-Matching
Module (SMM) is proposed to provide auxiliary support information
to segment the query image.

Suppose the query image is 𝐼𝑞 , and the initial query mask is
�̃�
𝑞

𝑖𝑛𝑖𝑡
. In the Self-Matching Module, different from calculating the

correlation tensor between masked support features and query
features, we calculate the correlation tensor between initial masked
query features and query features:

𝐶
𝑠𝑒𝑙 𝑓

𝑙
(𝑖, 𝑗) = 𝑅𝑒𝐿𝑈

(
𝐹
𝑞

𝑙
(𝑖) · 𝐹𝑞

𝑙
( 𝑗)

∥𝐹𝑞
𝑙
(𝑖)∥∥𝐹𝑞

𝑙
( 𝑗)∥

)
, (2)

where 𝐹 𝑙𝑞 = 𝐹 𝑙𝑞 ⊙ 𝜁𝑙 (�̃�
𝑞

𝑖𝑛𝑖𝑡
) (3)

Following the procedure in Cross-Matching Module, we can obtain
�̂�
𝑞

𝑠𝑒𝑙 𝑓
∈ [0, 1]2×𝐻×𝑊 . Then, we concatenate �̂�𝑞

𝑠𝑒𝑙 𝑓
with �̂�𝑞 and

utilize 1x1 conv to reduce the channel dimension to get �̂�𝑞
𝑚𝑒𝑟𝑔𝑒 ∈

[0, 1]2×𝐻×𝑊 .
In Self-Matching Module, the loss function L𝑚 for training the

model can be computed as follows:

L𝑚 = 𝐵𝐶𝐸 (�̂�𝑞
𝑚𝑒𝑟𝑔𝑒 , 𝑀

𝑞) (4)

where 𝐵𝐶𝐸 (·) is the binary cross entropy loss and𝑀𝑞 is the ground
truth mask of the query image.

To further facilitate the Self-Matching procedure, we propose a
query self-matching loss:

L𝑎𝑢𝑥 = 𝐵𝐶𝐸 (�̂�𝑞
𝑎𝑢𝑥 , 𝑀

𝑞) (5)

Here, �̂�𝑞
𝑎𝑢𝑥 is generated following the procedure of �̂�𝑞

𝑠𝑒𝑙 𝑓
, but with

ground truth query mask to calculate the masked query feature
𝐹 𝑙𝑞 = 𝐹 𝑙𝑞 ⊙ 𝜁𝑙 (𝑀𝑞). The motivation is that the quality of the initial
predicted query mask directly influences the auxiliary information
extracted during the self-matching stage. Finally, we train the model
in an end-to-end manner by jointly optimizing L = L𝑚 + 𝜆L𝑎𝑢𝑥 ,
where 𝜆 serves as weight strength, and we set 𝜆 = 1.0 in our
experiments.

4.3 Spectral Segmentation Module
Self-Matching Module incorporates the proximity between the ini-
tial query mask �̃�𝑞

𝑖𝑛𝑖𝑡
and the query image within the model, effec-

tively addressing the challenge of large intra-class variance. How-
ever, the performance of this module is influenced by the quality of
�̃�
𝑞

𝑖𝑛𝑖𝑡
. To overcome this limitation, we employ a spectral analysis

method to extract valuable knowledge from the affinity matrix,
which is constructed solely based on the query image.

The derivation of the affinity matrix is the key to spectral de-
composition. Inspired by Melas-Kyriazi et al. [23], we leverage the
features 𝑓 from the middle layer of the pretrained backbone to
construct an affinity matrix. Additionally, since the features are ex-
tracted for aggregating similar features rather than anti-correlated
features, we set the affinity thresholding as 0 :

𝑍𝑠𝑒𝑚 (𝑖, 𝑗) = 𝑓𝑖 𝑓 𝑇𝑗 ⊙ (𝑓𝑖 𝑓 𝑇𝑗 > 0) (6)

While the affinities derived from embedding features are rich in
semantic information, it lacks low-level proximity including color

Figure 4: Visualization examples of first four Eigenvectors of
our feature affinity matrix on iSAID-5𝑖 dataset. The eigenvec-
tors correspond to semantic regions, with the first eigenvec-
tor usually identifying the most salient object in the image.

similarity and spatial distance. To solve this problem, we adopted im-
age matting [5, 16] to consider the basic visual information in Spec-
tral Segmentation Module. Specifically, we first transform the input
image into the HSV color space: 𝑋 (𝑖) = (𝑐𝑜𝑠 (ℎ), 𝑠𝑖𝑛(ℎ), 𝑠, 𝑣, 𝑥,𝑦)𝑖 ,
where ℎ, 𝑠, 𝑣 are the respective HSV coordinates and (𝑥,𝑦) denotes
the spatial coordinates of pixel 𝑖 . Here𝑋 contians color information
and position information which can be seen as the 0-th layer feature
of the network. Then, we construct a sparse affinity matrix from
pixel-wise nearest neighbors based on 𝑋 :

𝑍𝑘𝑛𝑛 (𝑖, 𝑗) =
{
1 − ∥𝑋 (𝑖) − 𝑋 ( 𝑗)∥, if 𝑖 ∈ 𝐾𝑁𝑁𝑋 ( 𝑗)
0 otherwise

(7)

where | | · | | denotes 2-norm and 𝑖 ∈ KNN𝑋 ( 𝑗) are the k-nearest
neighbors of j under the distance defined by 𝑋 . The overall affinity
matrix is defined as the weighted sum of the two:

𝑍 (𝑖, 𝑗) = 𝑍𝑠𝑒𝑚 (𝑖, 𝑗) + 𝛼𝑍𝑘𝑛𝑛 (𝑖, 𝑗) (8)

The residual ratio 𝛼 is the hyper-parameter weighing the impor-
tance of the visual and semantic information. Empirically, we set
𝛼 = 5 in our experiments.

With the affinity matrix 𝑍 , we can compute the top 𝑁 eigen-
vetors {𝐸𝑖 }𝑁−1

𝑖=0 of the Laplacian 𝐿. As shown in Figure 4, after
being resized to 𝐻 ×𝑊 , the eigenvectors are soft segments with
continuous values. To convert the soft sements to the hard mask
predictions, we propose to introduce two thresholding algorithms
into Spectral Segmentation Module. The pipeline of this combi-
nation process is illustrated in Fig. 5. Specifically, we first utilize
Multi-Ostu algorithm [17] to find salient objects and adopt Adap-
tive Thresholding [8] algorithm to extract the sharp boundaries in
the eignvectors. Then we combine them together with Hadamard
product to generate the final eigensegments 𝐸𝑖 ∈ {0, 1}𝐻×𝑊 :

𝐸𝑖 = 𝑀𝑢𝑙𝑡𝑖𝑂𝑠𝑡𝑢 (𝐸𝑖 ) ⊙ 𝐴𝑑𝑎𝑝 (𝐸𝑖 ), 𝑖 ∈ {1, .., 𝑁 − 1} (9)



SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany Wang, et al.

Figure 5: Pipeline of generating eigensegment from an image.

where we exclude the zero-th constant eigenvector.

4.4 Inference
Given a pair of annotated images (𝐼𝑠 , 𝑀𝑠 ), (𝐼𝑞, 𝑀𝑞), we first gen-
erate the predicted query mask �̃�𝑞

𝑚𝑒𝑟𝑔𝑒 through Cross-Matching
and Self-Matching Modules. Meanwhile, we calculate the top 𝑁 − 1
spectral eigensegments {𝐸𝑖 }𝑁−1

𝑖=1 of each query image. Since the
eigensegments are class-agnostic, we fuse the merged mask �̃�𝑞

𝑚𝑒𝑟𝑔𝑒

with the first eigenvector 𝐸1, which has the highest confidence, to
obtain the final prediction. In addition, to explore the full potential
of spectral segmentation, we also present the result of selecting the
best 𝐸𝑏𝑒𝑠𝑡 from {𝐸𝑖 }𝑁−1

𝑖=1 ranked by IoU with ground truth query
mask. The final prediction of query mask is a union of 𝐸𝑏𝑒𝑠𝑡 and
�̃�
𝑞
𝑚𝑒𝑟𝑔𝑒 :

�̃�𝑞 = Φ(�̃�𝑞
𝑚𝑒𝑟𝑔𝑒 , 𝐸𝑏𝑒𝑠𝑡 ) (10)

where Φ(·) is pixel-wise logical or function.
Our model can be easily extended to 𝐾-shot setting: Given 𝐾

support image-mask pairs S = {(𝐼𝑠 , 𝑀𝑠
𝑘
)}𝐾
𝑘=1 and a query image 𝐼𝑞 ,

the model performs 𝐾 forward passes to provide a set of 𝐾 mask
predictions {�̃�𝑞

𝑘
}𝐾
𝑘=1. We perform voting at every pixel location by

summing all the 𝐾 predictions and dividing each output score by
the maximum voting score. We assign foreground labels to pixels if
their values are larger than some threshold 𝜏 whereas the others
are classified as background. We set 𝜏 = 0.4 in our experiments.

5 EXPERIMENT
To demonstrate the effectiveness of the proposed method, the ex-
periments are organized as follows. We first describe the adopted
dataset iSAID-5𝑖 and DLRSD-5𝑖 . Next, the evaluation metrics and
implementation details are introduced. Then, the segmentation
results and comparison with the state-of-the-art few-shot segmen-
tation methods are presented. We finally conducted a series of
ablation studies to analyze the impact of each component in our
proposed method.

5.1 Datasets
iSAID-5𝑖 The iSAID dataset [36] contains 655,451 object instances
for 15 categories across 2,806 high-resolution images, which exactly
match the requirement of the few-shot segmentation task. Based
on this, Yao et al. [40] create the iSAID-5𝑖 dataset following the
setting in PASCAL-5𝑖 [26], and the class details are show in Table
1. Particularly, for the 15 object categories in the iSAID-5𝑖 dataset,

the cross-validation method is leveraged to evaluate the proposed
model by using five classes in one fold as test categories D𝑡𝑒𝑠𝑡 and
leveraging the ten classes in the left two folds as the categories of
the training set D𝑡𝑟𝑎𝑖𝑛 . The details of the class splits are shown in
Table 3, where 𝑖 is the fold number. For every fold, we use the same
model with the same hyperparameter setup following standard
cross-validation protocol. The iSAID-5𝑖 dataset contains 18,076
images for training, 6,363 images for validation and the resolution
of all the images is fixed to be 256 × 256. Furthermore, this dataset
provides sufficient size diversity for the few-shot remote sensing
images’ semantic segmentation task.
DLRSD-5𝑖 The Dense Labeling Remote Sensing Dataset (DLRSD)
[27] is a publicly available dataset for evaluating multi-label remote
sensing image retrieval and semantic segmentation algorithms.
DLRSD contains 2,100 RGB images in total, 17 object classes and
the image sizes are fixed as 256 × 256 pixel. To balance the number
in each fold, we use 15 categories of DLRSD to build DLRSD-5𝑖 .
The details of the class splits are shown in Table 4.

5.2 Evaluations metrics
We adopt mean intersection over union (mIoU) as our evalua-
tion metrics. For each category, the IoU is calculated by IoU =

𝑇𝑃
𝑇𝑃+𝐹𝑁+𝐹𝑃 , where 𝑇𝑃, 𝐹𝑁, 𝐹𝑃 respectively denote the number of
true positive, false negative and false positive pixels of the predicted
mask. The mIoU metric averages over IoU values of all classes in a
fold: mIoU = 1

𝐶

∑𝐶
𝑐=1 IoU𝑐 where 𝐶 is the number of classes in the

target fold and IoU𝑐 is the intersection over union of class 𝑐 .

5.3 Implementation details
For the backbone network, we employ VGG [29] and ResNet [9]
families pre-trained on ImageNet [6], e.g., VGG16, ResNet50, and
ResNet101. For VGG16 backone, we extract features after every conv
layer in the last two building blocks: from conv4_x to conv5_x, and
after the last maxpooling layer. For ResNet backbones, we extract
features at the end of each bottleneck before ReLU activation: from
conv3_x to conv5_x. This feature extracting scheme results in 3
pyramidal layers (𝑃 = 3) for each backbones. In spectral segmenta-
tion module, we peek the layer with size 64 × 64 as 𝑓 to construct
affinity matrix 𝑍𝑠𝑒𝑚 , which contains rich semantic information and
high resolution. The image size in both iSAID-5𝑖 and DLRSD-5𝑖 is
256×256, i.e.,𝐻,𝑊 = 256. This network is implemented in PyTorch
[25] and optimized with SGD optimizer where the learning rate
is 9e-4, the weight decay is 5e-4, and the momentum is 0.9. The
learning rate is scheduled with polynomial strategy. The backbone
is trained together with 10 times smaller learning rate.

5.4 Compared with SOTA
To assess the efficacy of our model, we extensively compare it with
state-of-the-art (SOTA) methods [24, 32, 35, 38, 40, 43] on the iSAID-
5𝑖 and DLRSD-5𝑖 dataset, employing different backbone networks
and few-shot settings.
iSAID-5𝑖 Table 5 presents a summary of the results on iSAID-
5𝑖 . When using 𝐸1, our method outperforms other state-of-the-
art methods in almost all the experiment settings. Notable, with
Resnet50 as backbone, our method achieves 4.57% and 2.33% im-
provement in mIoU over the state-of-the-art in the 1-shot setting



Self-Correlation and Cross-Correlation Learning for Few-Shot Remote Sensing Image Semantic Segmentation SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany

Table 1: Classes in iSAID-5𝑖 Dataset

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

ship storage
tank

baseball
diamond

tennis
court

basketball
court

ground
track
field

bridge large
vehicle

small
vehicle helicopter swimming

pool roundabout
soccer
ball
field

plane harbor

Table 2: Classes in DLRSD-5𝑖 Dataset

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

airplane bare soil buildings cars chaparral court dock field grass mobile
home pavement sand sea ship tanks

Table 3: Testing Classes for Threefold Cross Validation Test

Dataset Test classes

iSAID-50 ship, storage tank, baseball diamond,
tennis court, basketball court

iSAID-51 ground track field, bridge, large vehicle,
small vehicle, helicopter

iSAID-52 swimming pool, roundabout, soccer ball
field, plane, harbor

Table 4: Testing Classes for Threefold Cross Validation Test

Dataset Test classes
DLRSD-50 airplane, bare soil, buildings, cars, chaparral
DLRSD-51 court, dock, field, grass, mobile home
DLRSD-52 pavement, sand, sea, ship, tanks

and 5-shot setting respectively. When 𝐸𝑏𝑒𝑠𝑡 is used, the improve-
ment is further enlarged and comes to 8.35% and 3.39%.
DLRSD-5𝑖 Table 6 presents a summary of the results on DLRSD-5𝑖 .
Resnet50 is used as the backbone. When 𝐸1 is used, our method
achieves 2.73% and 1.26% improvement in 1-shot setting and 5-shot
setting respectively. When 𝐸𝑏𝑒𝑠𝑡 rather than 𝐸1 is used, out method
achieves 4.68% improvement over the state-of-the-art in the 1-shot
setting.

To conduct a more thorough analysis of the performance across
diverse classes in the few-shot setting, we have gathered detailed
results for the one-shot scenario, utilizing the ResNet50 [9] back-
bone. The specific outcomes are presented in Table 7 and 8 on
iSAID-5𝑖 and DLRSD-5𝑖 . On both datasets, our model demonstrates
the highest performance when compared to other state-of-the-art
(SOTA) methods in 10 out of 15 categories, while in the remain-
ing classes, our model achieves the second-best performance. This
substantiates the effectiveness and versatility of our approach.

Notably, we observe an intriguing trend where the improvement
in the 1-shot setting is more significant than that in the 5-shot
setting across all three backbones. This observation aligns with
our design choice, suggesting that our method effectively mitigates
intra-class variation. Conversely, in the 5-shot setting, it is more
likely that some support images closely resemble the query image.

Considering the extensive analysis conducted, we can confi-
dently conclude that our proposed method effectively tackles the

few-shot semantic segmentation task for remote sensing images.
Qualitative results are shown in Fig 6.

5.5 Ablation study
Ablation study on designed modules. To further demonstrate
the effectiveness of our designed modules, we conduct ablation
experiments on iSAID-5𝑖 using the 1-shot setting and ResNet50
backbone. Table 9 presents the results obtained. The baseline model
solely comprises the Cross-Matching Module, which is based on
HSNet [24]. By introducing the Self-MatchingModule, we observe a
notable improvement of 3.95% in mIoU. This outcome highlights the
significant benefit derived from the Self-Matching Module, which
introduce proximity information between initial query mask and
query image into the model.
Ablation study on fusion strategy of eigensegments.As shown
in Table 9, when we fuse 𝐸1 with �̃�𝑞

𝑖𝑛𝑖𝑡
generated by the Cross-

Matching Module, we achieve a notable improvement of 1.27% in
mIoU, which proves the efficacy of the Spectral Segmentation Mod-
ule. When we fuse 𝐸1 with �̃�𝑞

𝑚𝑒𝑟𝑔𝑒 generated by Self-Matching
Module, the total improvement comes to 4.57%, which is a large
margin. In addition, our investigation reveals that the target ob-
ject is not always contained within the first eigensegment, as it
may not be the most salient foreground object. For instance, in the
first image of Figure 4, the buses are the most salient objects and
they are present in the first eigenvector, while the small vehicle is
present in the second eigenvector. To fully explore the capabilities
of spectral segmentations, as discussed in Section 4.4, we fuse 𝐸𝑏𝑒𝑠𝑡
with �̃�𝑞

𝑚𝑒𝑟𝑔𝑒 . This operation yields a significant increase in im-
provement, with a difference of 8.13% from the baseline. This result
demonstrates that the Spectral Segmentation Module, which solely
mine knowledge from the query image, successfully tackles the
large discrepancies between the support and query image observed
in remote sensing images.
Ablation study on design of Self-Matching Module. In our
model architecture, we employ a two-branch network, where the
Cross-Matching Module and Self-Matching Module have separate
weights. This choice doubles the number of learnable parameters
in our model. To investigate the possibility of reducing memory
consumption, we conduct an ablation study on a single-branch
structure, where the Cross-Matching Module and Self-Matching
Module share the same weights. However, as shown in Table 10,
the performance of the single-branch structure is even inferior
to that of HSNet [24], not to mention the two-branch network.
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Table 5: Performance on iSAID-5𝑖 in mIoU. Some results are reported in [40]. Numbers in bold indicate the best performance
and underlined ones are the second best. Superscript † denotes 𝐸𝑏𝑒𝑠𝑡 is used instead of 𝐸1.

Backbone
network

Methods 1-shot 5-shot learnable
paramsfold0 fold1 fold2 mean fold0 fold1 fold2 mean

PANet [35] 17.43 11.43 15.95 14.94 17.7 14.58 20.7 17.66 14.7M
CANet [43] 19.73 17.98 30.93 22.88 23.45 20.53 30.12 24.70 26.4M
PMMs [38] 20.87 16.07 24.65 20.53 23.31 16.61 27.43 22.45 25.8M

VGG16 PFENet [32] 16.68 15.3 27.87 19.95 18.46 18.39 28.81 21.89 10.4M
SDM [40] 29.24 20.80 34.73 28.26 36.33 27.98 42.39 35.57 25.8M
HSNet [24] 22.74 23.05 25.76 23.84 27.20 28.86 28.82 28.29 2.6M

Ours 30.00 27.41 32.43 29.94 36.52 31.40 37.53 35.15 5.2M
Ours† 35.71 30.33 36.68 34.24 40.40 32.56 39.31 37.42 5.2M

PANet [35] 12.36 9.11 12.05 11.17 13.82 12.4 19.12 15.11 23.5M
CANet [43] 18.8 15.62 25.79 20.07 23.86 18.54 32 24.8 20.2M
PMMs [38] 19.02 18.51 28.42 21.98 20.89 20.87 31.23 24.33 19.6M

Resnet50 PFENet [32] 18.75 17.24 22.09 19.36 19.57 18.43 26.14 21.38 10.8M
SDM [40] 34.29 22.25 35.62 30.72 39.88 30.59 45.70 38.72 19.6M
HSNet [24] 30.76 24.35 38.20 31.10 38.08 30.56 45.28 37.79 2.6M

Ours 36.21 27.42 43.37 35.67 42.58 30.30 50.26 41.05 5.2M
Ours† 40.74 31.25 46.40 39.45 44.27 31.62 50.45 42.11 5.2M

HSNet [24] 34.91 26.51 40.84 34.09 41.71 31.08 48.54 40.44 2.6M
Resnet101 Ours 37.65 29.19 42.99 36.13 41.87 32.12 49.63 41.20 5.2M

Ours† 40.82 31.38 45.32 39.17 42.52 32.72 49.18 41.47 5.2M

Table 6: Performance on DLRD-5𝑖 in mIoU. Resnet50 is used as the backbone

Methods 1-shot 5-shot
fold0 fold1 fold2 mean fold0 fold1 fold2 mean

SDM [40] 20.11 30.84 27.87 26.27 26.03 41.74 33.55 33.77
HSNet [24] 22.00 47.20 34.73 34.64 27.46 52.32 46.23 42.00

Ours 25.34 48.97 39.73 37.37 30.22 52.40 47.15 43.26
Ours† 26.48 49.59 41.89 39.32 30.26 51.08 47.60 42.92

Table 7: Performance comparisons of diverse classes on the iSAID-5𝑖 dataset with 1-shot setting

Methods C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
SDM [40] 37.66 34.37 34.45 39.81 25.14 16.77 34.53 30.50 12.42 17.02 20.69 56.83 42.80 40.52 17.26
HSNet [24] 18.93 30.01 37.60 45.33 21.95 25.11 37.17 27.43 11.03 21.01 32.22 50.07 54.27 37.98 16.46

Ours 26.76 43.42 40.27 46.74 22.10 27.37 36.75 32.94 14.53 23.89 46.85 55.06 45.77 48.02 23.30

Table 8: Performance comparisons of diverse classes on the DLRSD-5𝑖 dataset with 1-shot setting

Methods C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
SDM [40] 5.51 22.74 29.00 3.83 39.49 5.30 19.97 84.13 8.94 35.90 11.96 31.99 49.03 38.79 7.57
HSNet [24] 23.63 18.39 21.41 8.55 38.02 63.45 24.56 96.49 18.33 33.20 20.88 24.66 57.13 35.00 35.94

Ours 23.58 25.32 26.99 10.45 40.37 53.27 25.49 96.29 29.10 40.68 30.09 24.80 60.07 46.72 37.00

This observation suggests that the Cross-Matching Module and
Self-Matching Module have subtle differences, and sharing weights
actually harms the performance of the Cross-Matching Module
instead of enhancing it. Nevertheless, due to the sparse design of
center-pivot 4D convolution [24] we adopt, our model still has a
relatively small number of learnable parameters compared to other
methods [32, 35, 38, 40, 43].

Ablation study on 𝛼 of spectral segmentation module. In the
spectral segmentation module, 𝛼 is a key hyperparameter to bal-
ance the semantic affinity matrix 𝑍𝑠𝑒𝑚 and 𝑍𝑘𝑛𝑛 which contains
raw image information. To select the best value of 𝛼 , we construct
some ablation studies on iSAID-5𝑖 with 1-shot setting and Resnet50
backbone. As shown in Table 11, 𝛼 = 5 achieves the best perfor-
mance.
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Figure 6: Qualitative results of 1-shot settings on iSAID-5𝑖 dataset.

Table 9: Ablation study on the designed components of the
proposed algorithm

Self-Matching 𝐸1 𝐸𝑏𝑒𝑠𝑡 fold0 fold1 fold2 mIoU
× × × 30.76 24.35 38.20 31.10
× ✓ × 32.65 25.34 39.12 32.37↑1.27
✓ × × 34.64 26.85 43.36 35.05↑3.95
✓ ✓ × 36.21 27.42 43.37 35.67↑4.57
✓ × ✓ 39.80 29.70 48.19 39.23↑8.13

Table 10: Ablation study on design of Self-Matching Module.
In single-branch design, we use same 4D conv kernels in both
Cross-Matching and Self-Matching Module.

Experiments fold0 fold1 fold2 mIoU
HSNet [24] 30.76 24.35 38.20 31.10

single-branch 26.12 25.77 38.82 30.24
two-branch 34.64 26.85 43.36 35.05

6 CONCLUSION
In this work, we propose a novel SCCNet for the few-shot re-
mote sensing image semantic segmentation task. Specifically, Self-
Matching Module is designed to incorporate the initial query mask

Table 11: Ablation study on the hyperparameter 𝛼 in the
Spectral Segmentation Module.

𝛼 fold0 fold1 fold2 mIoU
1 36.62 27.50 42.63 35.58↑0.63
5 36.21 27.42 43.37 35.67↑0.72
10 35.91 27.41 43.41 35.58↑0.63
20 35.86 27.10 43.80 35.58↑0.63
50 35.65 26.96 43.42 35.34↑0.39

prediction to collect query features in high-confidence regions and
then use the generated query prototype to perform self-matching
with query features. In addition, we propose the Spectral Segmen-
tation Module with spectral analysis methods to produce class-
agnostic segmentations of query images without the supervision
of any annotations. The proposed model is evaluated on two com-
monly adopted benmarks for few-shot remote sensing image seman-
tic segmentation.Without any extra knowledge or data information,
our SCCNet outperforms previous work by a large margin.
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