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Spatial optimization problems (SOPs) are characterized by spatial relationships governing the decision variables,
objectives, and/or constraint functions. In this article, we focus on a specific type of SOP called spatial
partitioning, which is a combinatorial problem due to the presence of discrete spatial units. Exact optimization
methods do not scale with the size of the problem, especially within practicable time limits. This motivated us
to develop population-based metaheuristics for solving such SOPs. However, the search operators employed by
these population-based methods are mostly designed for real-parameter continuous optimization problems. For
adapting these methods to SOPs, we apply domain knowledge in designing spatially-aware search operators
for efficiently searching through the discrete search space while preserving the spatial constraints. To this
end, we put forward a simple yet effective algorithm called SPATIAL and test it on a spatial partitioning
problem of interest. Detailed experimental investigations are performed on real-world datasets to evaluate the
performance of SPATIAL. Besides, ablation studies are performed to understand the role of the individual
components of SPATIAL. Additionally, we discuss how SPATIAL is helpful in the real-life planning process,
its applicability to different scenarios, and motivate future research directions.
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1 INTRODUCTION
Spatial optimization has been an active research area, especially in disciplines such as economics,
engineering, environmental studies, geography, operational research, and regional science. Church
[17] noted that “spatial optimization involves identifying how land use and other activities should
be arranged and organized spatially in order to optimize efficiency or some other quality measure.”
It includes many districting, layout, location and network problems that involve design, operations,
and planning [14]. Solving a spatial optimization problem (SOP) is equivalent to searching for an
optimal assignment of a set of discrete spatial units representing some geographic areas such that
some well-defined objectives and/or constraints are satisfied. Alternatively, we can also define
this as the use of mathematical or computational techniques for finding solutions to geographic
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decision problems subjected to design constraints [57]. The optimization variables in a SOP relate
to the decision being made with the objective function quantifying the quality of the decision. The
constraints impose a set of necessary design considerations that needs to be satisfied. The functions
and constraints usually encode spatial properties/topological relationships, including adjacency,
contiguity (connectivity), similarity (distance), shape (compactness), and so on [87].
Broadly, SOPs are usually classified as either a selection or a partitioning problem [93]. Spatial

selection problems identify a subgroup of spatial units. Additional spatial constraints need to be
satisfied for certain problems, while others only impose continuations on the selected spatial units.
Spatial partitioning problems, on the other hand, seek to group the spatial units into a number of
districts or territories. For instance, consider the districting problem [46], where the objective is
to partition a geographic area into groups of contiguous districts (regions) such that each district
is balanced with respect to some activity measure, like residing population. Due to the discrete
nature of spatial units, SOPs suffer from combinatorial explosion, i.e., the phenomenon where the
computing time cost to find the optimal solution of a NP-hard problem increases exponentially with
the problem size [31, 62]. Thus, exact optimization techniques like Integer Programming (IP) or
mixed-integer Linear Programming (MILP) cannot solve the problem optimally under practical time
constraints [35]. This is why researchers often resort to using approximation methods like heuristics
and metaheuristics since these methods can find good, but not necessarily optimal, solutions to the
problem in a reasonable time. Thus, computational efficiency is the key to designing these methods
for solving SOPs [94].
Heuristic methods are mainly designed for solving a particular problem. For instance, let us

consider the 𝑝−median problem in location sciences, where the aim is to find facilities or services
on 𝑝 nodes of a network such that the distance from each node to its nearest facility or service node
is minimized [36]. Teitz and Bart [86] proposed a heuristic called the vertex-exchange algorithm to
solve this problem. This heuristic starts with a randomly selected subset of 𝑝 nodes from the network
and keeps flipping these nodes with unselected ones until such exchange can no longer improve
the quality of the solution. In contrast to heuristics, metaheuristics refer to a general problem-
solving framework that is composed of a set of high-level problem-independent instructions or
strategies for developing heuristic optimization algorithms [84]. Some well-known examples of
metaheuristics include evolutionary algorithms [42], simulated annealing [51], tabu search [33],
variable neighborhood search [39], etc. Oftentimes, these methods are inspired by some natural
processes and they can be adapted to solve different kinds of problems. Hence, metaheuristics
have become a popular choice amongst practitioners and researchers for solving medium to large
instances of combinatorial optimization problems [11], specially in location sciences [65].
Motivated by this, we devise a simple, easy-to-use population-based metaheuristic inspired by

the emerging field of Swarm Intelligence.1 In particular, our approach builds on top of the Artificial
Bee Colony (ABC) algorithm that is based on the foraging behavior of the swarm of bees [1]. It
maintains multiple trial solutions to the SOP under consideration and combines a local search
technique with a spatially-aware recombination operator resulting in what is commonly known as
a memetic algorithm [67]. Hence the name swarm-based spaatial memetic algorithm (SPATIAL).
The search move of the algorithm is modified to explore the discrete search space while preserving
the spatial relationships/constraints. preliminary version of this work appeared in [8]. In this paper,
we present further additions based on theoretical and experimental investigations of our framework.
The summary of the extensions and contributions are elucidated below.
1Swarm Intelligence is defined as the study and design of computational optimization techniques based on the collective
intelligence emerging from a large population of search agents with simple behavioral patterns for communication and
interaction. These methods instantiate search moves the closely mimic the complex social behavior of animals such as ant
colonies, beehives, bird flocks, and so on [19].
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• An overview of background details is provided in Section 2, specially in context of spatial
partitioning problems like districting in Section 2.1. We then show in Section 2.2 spatial
partitioning problems are accompanied by an underlying graph structure which enables
the problem to be solved as a graph partitioning problem. Section 2.3 briefly reviews graph-
partitioning techniques that motivate our algorithmic approach and the role of domain
knowledge in algorithm design.
• Section 3 defines the optimization problem corresponding to a generalized spatial partitioning
by leveraging the notions from graph partitioning. We also show how the given formulation
can be adapted to problems like school districting in Section 3.1 and provide some pointers
on how to adapt other types of spatial partitioning problems using the given framework.
• A detailed outline of the SPATIAL method is proposed in Section 4. In particular, we focus
on the two improvement steps: local search and spatially-aware recombination. Addition-
ally, the relationship between locals search and the sampling of partitions based on the
theory of Markov Chain is discussed. This is followed by an in-depth discussion on how the
recombination operation efficiently searches for solutions in the discrete search space.
• We used the dataset for the school year 2020-21 here as compared to 2019-20 used in the
previous work [8]. At the onset of the pandemic in 2020, many parents unenrolled their
children from public schools in these two districts thereby creating a serious imbalance
between the student population and the school capacity. This presented more challenging
problem instances to work with.
• We included more sophisticated baseline methods and performed an exhaustive comparison
in Section 5. Additional discussions on how solution initialization affects performance and
how the algorithms can be made more efficient using alternative measures. We also include a
case study showcasing the applicability of SPATIAL in real-life planning.

2 BACKGROUND
This section provides a basic outline of the background details necessary for understanding this
research. Firstly, an introduction to spatial partitioning problems are provided in Section 2.1. This
is followed by Section 2.2 highlighting how graphs can encode relationships between the spatial
units in most of the spatial problems. In fact, the graph-based representation can be used to pose
spatial partitioning as a graph partitioning problem. A brief review of different graph partitioning
approaches is provided in Section 2.3.

2.1 Spatial partitioning problems
The field of spatial optimization is firmly rooted in the classical works on graph theory, where
mathematical formalism and theories about spatial arrangement and movement were made. In
spite of its historic origin, the term spatial optimization first appeared in the literature during the
late 1960s and the early 1970s, when a series of articles made use of the term within the context of
regional science [2, 60, 61]. Interestingly, this research domain has followed the developments in
Computer Science, which is rich in works on graphs and other discrete data structures.
The term “spatial optimization” was initially used by Ghosh and Craig [29] to describe a set

of location-allocation problems, namely the warehouse-location problem [59], the 𝑝−median
problem [73], and the location set-covering problems [88]. Similarly, researchers in resource
management use the term spatial optimization to refer to optimization models for allocating
various land-use areas within a forest [40, 41]. In fact, spatial optimization problems appear in
different disciplines in different context−location sciences [37, 54, 98], regionalization [23, 53],
spatial data mining [38, 63], territory design [45, 78, 99], etc. Most of these developments have
a commonality−optimizing an objective function subjected to a number of constraints (spatial
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or aspatial) that define the feasibility of solutions. These include a large number of simplistic
variations of well-known problems, including the location set covering, 𝑝−median, simple plant
location problems, etc. Such normative location problems have garnered a lot of interest in spatial
optimization, especially from the research community and the industry. In fact, SOPs are too broad
to be addressed all at one time and is outside the scope of this work. In this article, we focus on a
spatial partitioning problem called territory design problem, often popularly known as districting or
zone design in location sciences [54]. Note that the term redistricting is also used to refer to these
problems. However, redistricting actually means rearrangement of existing territories. For the sake
of clarity, we shall use the term “districting” to refer to these problems.

2.1.1 Districting problems. Districting is a sub-field of discrete optimization involving some form of
partitioning decision. In a typical districting problem, a set of smaller geographic areas, called basic
units or spatial units, are group together into larger geographic areas, called districts or territories,
such that they meet a series of planning criteria and requirements as specified from the application
or context [76]. Districting problems arise in different real-life application domains, ranging from
political districting over the design of districts for police patrols, schools, social facilities, waste
collection, or winter services, to sales and service territory design [46].
Based on the application domain, each category of districting problem is unique from the

perspective of modeling, criteria, or constraints. Nonetheless, several common criteria, including
balance, compactness, unique assignment, can be generally applied to most districting problems.
“Balance” means that a total amount of resources need to be fairly allocated among the districts. The
term resources implies a particular attribute or multiple attributes of each spatial unit. Examples
include the number of customers, product demand, population size, workload, etc. “Compactness”
aims to obtain districts composed of basic units with geographical proximity, which can be optimized
by minimizing a dispersion function that measures how tightly the area of a district is packed within
its perimeter. Unique assignment indicates that each spatial unit must be assigned to only one
district, and this requirement assures a complete partitioning of all the spatial units. Additionally,
territory “contiguity” needs to be considered while designing the districts/territories.

Interestingly, there is no single approach to model the aforementioned criteria. Therefore, existing
works have studied various methods to represent these requirements. During the 1960s to 1980s, the
majority of research has focused on sales territory design [99] and political districting problems [75].
In the last three decades, a lot of studies on other applications such as distribution territory design,
service-related districting, and, more recently, districting in health care [97], have emerged. Scant
attention has been paid to the problem of school districting till now.

School districting. In countries like the US, school districts play a vital role in the operation of the
public school systems. A school district is an administrative unit for overseeing the jurisdiction of
public schools and represent a large geographical region that is coterminous with the boundary of
a county, city, or a subdivision. The spatial configuration of a school district is composed of smaller
spatial units called planning zones or student planning areas (SPAs). These SPAs are grouped to
form a larger geographically-contiguous area, called the school attendance zone (SAZ), which defines
the boundary of a school. The schools at every grade-level (elementary, middle, and high) have
a well-defined boundary often arranged in a hierarchical manner. In a school district, the rule of
thumb is that students attend the school assigned to their residing SPA. Figure 1 illustrates a map
of a school district along the school locations, school boundaries and constituent SPAs. Note that in
districting problems, a large geographical area, like a county, is partitioned in multiple “districts” or
territories. However, in school districting, the term “school district” refers to the entire geographic
area, like county or city. To avoid this confusion, one can imagine a school district being composed
of contiguous districts or territories, each of which represent a school boundary.
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Fig. 1. ArcGIS visualization of the school district of Loudoun county, VA, USA. The smaller polygons (with
blue-colored border) represent the SPAs, while the larger polygons (with brown-colored border) represent the
SAZs of elementary schools. The dark blue dots represent the locations of all the public schools.

School districting is the process by which the boundaries of public schools (within a school
district) are adjusted/redrawn in response to projected growth/decline of student enrollment, change
in school capacities, opening/closure of a school, etc. This is an annual/biannual event that involves
the school boundary planners, board members, parents, and other stakeholders, and takes up a
significant amount of time in reaching a consensus about the final districting plan to implement.
Multiple factors (geographic, economic, social) are considered in deciding the school boundaries,
thereby making school districting a technically and socially challenging to solve. The complexity
of the process piqued the curiosity of the research community, specially in Operations Research.

Sutcliffe et al. [85] summarized the work in this direction till the early 1980s. Since then not many
works have been reported in this direction [26, 55, 80]. Among the few, Schoepfle and Church [80]
introduced the term Generic School Districting Problem, which refers to a class of school boundary
problems involving allocation of students to schools while minimizing a cost/distance function,
subject to a set of balancing/activity constraints. Most of the approaches to school redistricting
usually solves a continuous LP or a derived transportation problem in order to get an optimal
or a near-optimal solution (which requires split-resolution) [5, 56]. However, the computational
bottleneck does not allow these methods to scale. Caro et al. [15] proposed an IP approach to the
school districting problem by minimizing the total distance travelled by the students. Their model
was inspired by the sales territory alignment model of [99] and was perhaps the first approach to
account for all the problem-specific constraints, including connectivity. Their model was applied to
only 2 (out of 22) clusters that the school district of the City of Philadelphia is divided into.

2.2 Graph-based representation in spatial optimization
A geographical area composed of smaller-sized spatial units can be represented as nodes of a graph
G =

(
V, E

)
, whereV = {𝑣1, 𝑣2, . . . , 𝑣𝑁 } is the set of nodes representing the 𝑁 smaller-sized spatial

units and E is the set of edges connecting adjacent nodes. G is commonly called the contiguity
graph or the dual graph. It is a planar connected graph with the nodes encoding the spatial entities
and the edges capturing the spatial adjacency relationship between the entities. An edge connects

5



two nodes if their corresponding spatial units share a common boundary (more than a single point).
Figure 2 illustrates a toy example depicting the graph-based encoding of a geographical area.

Center nodes

Source nodes

Zone 1

Zone 2

Zone 3

Zone 4

Fig. 2. A large geographical area composed of smaller
spatial units can be represented by a planar connected
graph. The color coding represents an instance of spa-
tial partitioning, where the each color correspond a
territory/zone obtained by partitioning the graph into
connected subgraphs.

A node 𝑣 may also be represented by
its index, i.e., 𝑣 ∈ {1, 2, . . . , 𝑁 }. These
nodes may have features, i.e., F (G) =

{𝐹1, 𝐹2, . . . , 𝐹𝑁 }, where 𝐹 𝑣 is the set of fea-
tures corresponding to node 𝑣 . Let 𝐹 𝑣 be rep-
resented by a tuple

(
𝐿𝑣, 𝐴𝑣

)
, where 𝐿𝑣 =

[(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑡 , 𝑦𝑡 ), (𝑥1, 𝑦1)] is the list
of geographic coordinates (latitude-longitude)
that define the boundary polygon of the 𝑣 th
spatial unit and 𝐴𝑣 is the vector of feature
values. Usually, a similarity matrix W (G) =(
𝑊 𝑢𝑣

)
𝑢=1,...,𝑁 𝑣=1,...,𝑁 captures the relationship

between any pair of nodes. Popular choices for
the similarity metric include the distance func-
tion or the binary adjacency matrix. Similarity
can also be defined for edges connecting adja-
cent nodes.
Solving a SOP involves the search for a fea-

sible solution G′ =
(
V ′, E ′

)
, such that the spatial configurations ofV ′ ⊆ V and E ′ ⊆ E satisfy

predefined problem criteria/constraints while minimizing certain objective(s). In spatial partitioning
problems like districting, we seek a 𝐾−partition of the graph G, i.e., E ′ ⊂ E and V ′ = V such
that the nodes inV ′ are grouped into 𝐾 connected subgraphs. Figure 2 shows an instance where a
geographic area, encoded by a graph containing 𝑁 = 33 nodes, is partitioned into 𝐾 = 4 territories,
each of which is represented by a connected subgraph. Thus, the spatial partitioning problem is
equivalent to the graph partitioning problem (GPP) [13] described next.
Given a positive integer 𝐾 ∈ N>1 and an undirected graph G =

(
V, E

)
with non-negative

edge weights, 𝜔 : E → R>0, the solution to a GPP seeks a partition Π of G with blocks of nodes
Π =

(
𝑉 1, . . . ,𝑉𝐾

)
such that 𝑉 1 ∪ . . . ∪ 𝑉𝐾 = V and 𝑉 𝑖 ∩ 𝑉 𝑗 = 𝜙 ∀𝑖, 𝑗 ∈ {1, 2, . . . , 𝐾} , 𝑖 ≠ 𝑗 .

Alternatively, the output of a GPP can be represented by a plan on G described by an assignment
function 𝜉 : V → {1, 2, . . . , 𝐾}, where 𝜉

(
𝑣
)
= 𝑖 implies that node 𝑣 is assigned to block 𝑖 . A node 𝑣

is a neighbor of node 𝑢 if there is an edge
(
𝑢, 𝑣

)
∈ E. If a node 𝑣 ∈ 𝑉 𝑖 has a neighbor𝑤 ∈ 𝑉 𝑗 , 𝑖 ≠ 𝑗 ,

then 𝑣 is called boundary node. Correspondingly, an edge that connects two boundary nodes is
called cut edge and E𝑖 𝑗 =

{
(𝑢, 𝑣) ∈ E : 𝑢 ∈ 𝑉 𝑖 , 𝑣 ∈ 𝑉 𝑗

}
is the set of cut edges between two blocks,

namely 𝑉 𝑖 and 𝑉 𝑗 . An extra balance constraint may exist and enforces that all blocks have roughly
equal weights, i.e., it requires that ∀𝑖 ∈ {1, . . . , 𝐾} :

��𝑉 𝑖 �� ≤ (
1 + 𝜏

)
|V| /𝐾 for some threshold

parameter 𝜏 ∈ R≥0. Sometimes we also use weighted nodes with node weights. Weight functions
on nodes and edges are extended to sets of such objects by summing their weights. Note that a
clustering is also a partition of the nodes. However, 𝐾 is usually not given in advance, and the
balance constraint is removed. Note that a partition is also a clustering of a graph. In both cases,
the goal is to minimize a particular objective called the dispersion function. This is also identical to
the connected 𝐾−partition problem, which partitions a graph into 𝐾 connected sub-graphs where
𝐾 ≥ 3, is a well-known NP-hard problem [24].
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2.3 Approaches
In computer science, graphs constitute a preferred abstraction when modeling an application
problem. Even if the application involves a different problem, partitioning a graph into smaller
subgraph is often an important fundamental operation that helps to reduce problem complexity.
Next, we briefly survey the different class of GP techniques broadly, an important end-application
relevant to the spatial partitioning problems, and discuss the role of domain knowledge in designing
spatial search techniques.

(1) Global algorithms seeks a partition by directly working on the entire graph. Well-known
global methods include exact algorithms [4, 12, 20, 27, 47, 58, 81] that rely on the branch-
and-bound techniques [52], spectral partitioning techniques based on eigendecomposition
of the Laplacian matrix, graph growing approach based primarily on breadth-first search,
flow-based methods that make use of the max-flow min-cut theorem, and lastly the geometric
partitioning techniques that utilize the coordinates of graph nodes in space [30, 83, 91]. The
global algorithms are more suited to smaller graphs owing to high computation time, specially
the exact methods. Also, these methods are mostly confined to bipartitioning but can be
generalized to 𝑘−partitioning when 𝑘 is small.

(2) Iterative heuristics start with an initial solution and tries to improve it through a variety
of search operations. Local search is the most widely used approach that updates a given
solution by selecting a new one from the neighborhood. Different ways of defining the
neighborhood and the selection strategy gives rise to a variety of techniques. Initial methods
like the KL/FM method [28, 49] was more suited for graph bisection. Later, 𝑘−way extensions
to this method were proposed [48, 70]. Most existing local search algorithms swaps nodes
between adjacent blocks of the partition trying to minimize a dispersion function. This results
in highly restrictive scope of possible improvement. For instance, the METIS approach cannot
create balanced and contiguous partitions [96].

(3) Multi-level approaches perform graph partitioning by varying the granularity of the graphs [79,
89, 90]. It consists of the three main phases: coarsening, initial partitioning, and uncoarsening.
Coarsening helps to reduce the problem size by iteratively approximating the original input
graph with fewer degrees of freedom. This translates to substituting the parallel edges in the
input graph with a single edge in the coarsened graph. Coarsening is terminated when the
original graph is sufficiently small enough to be initially partitioned using some (possibly
expensive) exact methods discussed earlier. Uncoarsening happens in two steps. Firstly, the
partition in the coarse-level graph is translated back to a fine-level graph. Then, iterative
improvement methods (discussed earlier) are usually applied to improve the partition. While
multi-level approaches are successful for partitioning large graphs, it becomes challenging
to tune this methods for graphs with fixed centers and highly varying degree of balance
between the partitions.

(4) Metaheuristics have been increasingly applied to the GP domain recently [50]. There is a
two-fold advantage of using metaheuristics. First, these frameworks are defined in a general
sense, and hence can be modified to suit the needs of real-life optimization problems in terms
of practical constraints like solution quality and execution time. Secondly, metaheuristics do
not put any restriction on the optimization problem formulation (like constraints/ objective
functions to be expressed as a linear function of the decision variables). Our focus is on
population-based metaheuristics like Evolutionary Algorithms (EAs), which are derivative-free
global optimization methods inspired by the process of natural evolution [25]. An EA starts by
initializing a population of trial solutions to the optimization problem, then it tries to improve
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the solutions via search operations, like recombination and selection, till a termination criteria
is reached. In our work, we augment EAs with local search techniques for solving SOP.

Capacity-Constrained Network-Voronoi Diagram. Problems like districting, specially school dis-
tricting, can be treated as a Capacity Constrained Network-Voronoi Diagram (CCNVD): “Given a
graph and a set of service center nodes, a CCNVD partitions the graph into a set of contiguous service ar-
eas that meet service center capacities and minimize the sum of the shortest distances from graph-nodes
to allotted service centers” [95, 96]. For the school districting problem, the service centers represent
the spatial units containing schools inside them. The Pressure Equalizer (PE) algorithm and its vari-
ants were proposed by Yang et al. [95, 96] to address CCNVD. However, some important differences
do exist. In the PE approach, the objective was to minimize the sum of the shortest distances from
graph-nodes to their allotted service centers. Additionally, the following assumptions were made:
all service centers have the same capacity, each non-service-center node has unit demand and all
the service centers together could serve the demand of all the non-service-center nodes at any point
of time. These simplistic assumptions may not apply for problems like districting. For instance,
in school districting, the capacity of the schools and the student population corresponding to the
graph nodes can vary considerably. Also, compactness is preferred to distance-based measures due
to arbitrary shapes of spatial units forming a school district.

2.3.1 Hybrid metaheuristics. Recently, researchers try to assimilate ideas from different classes
of metaheuristics into a “hybrid” framework. One such framework, called memetic algorithm [66],
combines the local search technique with the recombination operator of EAs in order to balance
exploration-exploitation. Thus, memetic algorithms benefit from the synergy between iterative
improvement (exploitation) of the local search and the recombination operation (exploration) of
the population-based methods. We take a step in this direction by integrating a randomized local
search within a swarm-intelligent algorithm that mimics the foraging behavior of honeybees [1].
However, adapting EAs to SOPs is non-trivial due to the following: Firstly, EAs are designed

to solve continuous-valued real-parameter global optimization problems. As such, they employ
linear search moves for exploring the decision space by perturbing the incumbent solutions. This
strategy is hardly suitable for discovering promising solutions in the discrete decision space of
SOPs. Secondly, the presence of spatial constraints (topological properties), like contiguity, make
SOPs highly constrained in nature and harder to find feasible solutions. In fact, the infeasible
solutions significantly outnumber the feasible solutions with an increase in problem size. This
often results in expending tremendous computational effort in finding a feasible solution, especially
when the search operators are not spatially cognizant. Lastly, EAs tend to reinitialize the solutions
when they stagnate or violate constraints. In SOPs, such a move is detrimental to preserving the
goodness of solutions and lead to loss of valuable information.

2.3.2 Domain knowledge for spatial search. In view of the above challenges, it is increasingly
impracticable for vanilla EAs to solve SOPs [43]. This is mostly because the linear search moves
are not suited to the discrete nature of problems we encounter. Besides, the traditional constraint
handling techniques used in conjunction with EAs are of little help [64]. Hence, we use domain
knowledge to guide the search process. Domain knowledge refers to any auxiliary information that
may enable a metaheuristic to efficiently search for feasible solutions. It includes bothmodel-specific
and problem-specific instructions. Next, we discuss howmodel-specific domain knowledge is helpful
in conducting spatially-aware search within an EA framework.
The first step in solving SOPs is to instantiate initial feasible solution(s) and then improve the

solution(s) locally by flipping spatial units between the adjacent (neighboring) territories [68, 69].
There are two types of possible moves: a) move one unit from its present (donor) territory to a
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neighboring (recipient) territory; b) swap/ exchange units between two neighboring territories. The
new solution produced by these moves are kept only if it is feasible and leads to an improvement
in the objective function. Additionally, the local nature of the moves restricts the exploration
of the decision space beyond the immediate neighborhood of the incumbent solution. However,
these moves may also result in breaking the spatial contiguity of the territories involved in the
move, thereby leading to an infeasible solution. Path relinking can be helpful in such scenarios for
repairing the solutions if they enter the infeasible search space [34]. When infeasible solutions are
made feasible again via repair operation, these solution(s) undergo strategic oscillations between
the feasible and infeasible decision space, and may find better intermediate solutions [32].

3 SPATIAL PARTITIONING AS AN OPTIMIZATION PROBLEM
The optimization formulation corresponding to spatial partitioning problems can be written as

(P0)
minimize
X ∈ X J

(
X
)
=

𝑁∑︁
𝑢=1

𝑁∑︁
𝑣=1

𝑋𝑢𝑣 · 𝐷𝑢𝑣 (1a)

s. t.
𝑁∑︁
𝑢=1

𝑋𝑢𝑣 = 1, ∀𝑣 = 1, 2, . . . , 𝑁 , (1b)

𝑁∑︁
𝑢=1

𝑋𝑢𝑢 = 𝐾, (1c)

(1 − 𝜏) 𝜇 · 𝑋𝑢𝑢 ≤
𝑁∑︁
𝑣=1

𝑋𝑢𝑣 · 𝐴𝑣, ∀𝑢 = 1, 2, . . . , 𝑁 , (1d)

𝑁∑︁
𝑣=1

𝑋𝑢𝑣 · 𝐴𝑣 ≤ (1 + 𝜏) 𝜇 · 𝑋𝑢𝑢, ∀𝑢 = 1, 2, . . . , 𝑁 , (1e)∑︁
𝑣∈⋃𝑙∈𝑆N𝑙 \𝑆

𝑋𝑢𝑣 −
∑︁
𝑣∈𝑆

𝑋𝑢𝑣 ≥ 1 − |𝑆 |,∀𝑢 = 1, 2, . . . , 𝑁 , 𝑆 ⊂ {1, 2, . . . , 𝑁 }\(N𝑢 ∪ {𝑢}) (1f)

𝑋𝑢𝑣 ∈
{
0, 1

}
, ∀𝑢 = 1, 2, . . . , 𝑁 , ∀𝑣 = 1, 2, . . . , 𝑁 . (1g)

where, 𝑢 and 𝑣 are the indices corresponding to the nodes of graph G; X ∈ {0, 1}𝑁×𝑁 is a
binary assignment matrix, where 𝑋𝑢𝑢 = 1 implies that node 𝑢 is center node of a given subgraph;
D ∈ R𝑁×𝑁 is the distance (or dissimilarity) matrix, where 𝐷𝑢𝑣 is a distance2 between nodes 𝑢 and
𝑣 ; A ∈ R𝑁×1+ is the activity matrix, where 𝐴𝑣 is an activity measure with respect to node 𝑣 . (P0) is a
constrained optimization problem with binary decision variables encoded by X. Solving (P0) exactly
will output an optimal partitioning plan encoded by the solution X∗ that minimizes the objective
function (1a), i.e., J

(
X∗

)
≤ J

(
X
)
, ∀X ∈ X, subjected to a set of constraints (1b)-(1f). X is the set

of all possible partitioning plans, i.e., the assignment of 𝑁 spatial units to 𝐾 territories as show in
Figure 2. As spatial partitioning is analogous to graph partitioning, we shall interchangeably use
the following groups of terms−spatial units/nodes and territories/subgraphs.
Constraint (1b) enforces that each node is assigned uniquely to a subgraph. Constraint (1c)

ensures that the number of center nodes is 𝐾 implying that are exactly 𝐾 subgraphs since each
subgraph has an unique center node. Constraints (1d)-(1e) restricts the total activity measure in

2Normally, the Euclidean distance between the centroids of two spatial units is considered.
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a given subgraph to lie within a range of the mean activity measure 𝜇 (which is computed as
𝜇 = 1

𝐾

∑𝑁
𝑣=1𝐴𝑣) as measured by the tolerance parameter 𝜏 . Usually the value of 𝜏 is kept in the range

[0.01, 0.1] depending on the application. These constraints are designed to ensure that a given
subgraph has zero activity if it does not contain any center node, i.e., 𝑋𝑢𝑢 = 0. Lastly, the contiguity
constraint (1f) that ensures that each subgraph is connected, where N𝑢 refers to all the nodes
adjacent to a given node 𝑢. The connectivity constraint ensures that each territory is geographically
contiguous, i.e., we can travel between any two points within a territory without crossing over
to another adjacent territory. However, connectivity is expressed by an exponential number of
comparisons, i.e., O

(
𝐾𝑁2𝑁

)
[22], thereby making it impracticable to exactly solve moderate to

large instances of this problem within a reasonable amount of time.

Remarks. Equation (1) can be solved by exact methods, like Linear Programming (LP), Integer
Programming (IP), mixed-integer LP (MILP) [6]. However, in trying to do so we made some
interesting observations. Firstly, these methods minimize a linear objective function based on
dispersion, as in the 𝑝−median problem or the 𝑝−center problem [78]. These linear measures
of dispersion cannot account for optimizing the non-linear compactness metric. Secondly, the
exponentially big connectivity constraints may not guarantee territorial contiguity. Lastly, it may
be difficult to find feasible solutions when the bound constraints (1d) and (1e) are tightened by
setting the value of 𝜏 to be sufficiently low.

Computational complexity. Though the problem (P0) with exponential number of connectivity
constraints, if we are given a 𝑝−partition G′ =

(
V ′, E ′

)
of a graph G =

(
V, E

)
, we can check

whether each subgraph of G′ is connected or not in polynomial time by using breadth-first-search
algorithms. The feasibility of a solution to the problem can be verified in polynomial time, i.e., P0
is NP. Next, let us consider a particular instance where G is a planar connected graph. If we take
high values of tolerance parameter 𝜏 , we can ensure that the balancing constraints (1d) and (1e) are
always satisfied. Then it becomes a 𝑝−Median Problem (𝑝MP), which is a well-known NP-hard
problem [36]. Since 𝑝MP is reducible to P0 in polynomial time, we can say that P0 is NP-hard.
Interested readers may refer to [24] for an in-depth analysis of the computational complexity.

3.1 School districting
The school districting problem follows a spatial partitioning structure where the spatial units (or
SPAs) are the nodes of a graph and the school boundaries (or SAZs) are the balanced, connected
subgraphs. Hence, we reformulate (1) to define the school districting problem. We do make some
adjustments in the optimization model based on the above-mentioned remarks and problem-specific
domain knowledge. We shall visit them in turn.
Let a graph G =

(
V, E

)
represent a school district with 𝑁 SPAs and 𝐾 schools. The number 𝐾

varies with the school level L := ES,MS or HS, since we solve the problem at each level independently.
Each node (SPA) can be represented as 𝐴𝑣 =

(
ES𝑝𝑣,MS𝑝𝑣, HS𝑝𝑣, ES𝑐𝑣,MS𝑐𝑣, HS𝑐𝑣

)
, 𝑣 ∈ {1, 2, . . . , 𝑁 } ,

where L𝑝𝑣 is the student population residing in SPA 𝑖 corresponding to the school level L (ES:
elementary school, MS: middle school, HS: high school), and L𝑐𝑣 is the program capacity of the
schools contained in the same SPA. We assume that all the schools in a school district follow a
consistent grade structure with respect to the school levels. For majority of the SPAs that don’t
enclose any school inside them, we have ES𝑐𝑣 = 0, MS𝑐𝑣 = 0 and HS𝑐𝑣 = 0. We consider a set of
center nodesV =

{
𝑣 |𝑋 𝑣𝑣 = 1

}
,V ⊂ V corresponding to the SPAs containing schools inside them.

Alternatively, we may writeV = {𝑣1, 𝑣2, . . . , 𝑣𝐾 }, where 𝑣𝑖 is the node containing the 𝑖th school.
While drawing school boundaries, the following must be considered. Firstly, each school has a

different capacity to accommodate students. This is equivalent to the bound constraints (1d) and (1e),
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except that mean activity measure 𝜇 is replaced by the corresponding school’s capacity L𝑐𝑣 . Secondly,
Euclidean distance between the centroid of the spatial units in (1a) may not be a good representative
of the commute time due to the widely varying shapes of these units. Compactness measures that
take into account the geometric shape can be a better alternative. These two considerations are
linearly weighed using the weight factor 𝜆, 0 ≤ 𝜆 ≤ 1, in formulating the optimization problem.

minimize
X ∈ XJ 𝑠

(
X
)
= 𝜆

𝐾∑︁
𝑖=1

��������1 −
𝑁∑
𝑢=1

𝑋𝑢𝑣𝑖
· L𝑝𝑢

𝑁∑
𝑢=1

𝑋𝑢𝑣𝑖
· L𝑐𝑢

��������︸                       ︷︷                       ︸
target balance (aspatial)

+ (1 − 𝜆)
𝐾∑︁
𝑖=1

�������1 − 4𝜋 · Area
(⋃

𝑁
𝑢=1{𝑢 |𝑋𝑢𝑣𝑖 = 1}

)[
Peri

(⋃
𝑁
𝑢=1{𝑢 |𝑋𝑢𝑣𝑖 = 1}

) ]2
�������︸                                              ︷︷                                              ︸

target compactness (spatial)

. (2)

Several remarks are in order. 1) The target balance measures the discrepancy between the schools’
capacity and their attending student population. It attains the ideal value of 0 when every school’s
attending student population (numerator) is equal to its program capacity (denominator). Note that
target balance consolidates the bound constraints (1d) and (1e) into an objective or a soft constraint.
This helps to deal with solutions that cannot satisfy both these constraints in (1) by penalizing
them heavily. 2) The target compactness measures how far is a school’s boundary from a perfectly
compact shape (like a circle). We use the non-linear Polsby-Popper score [72], which is the ratio
of the area of a zone to the area of a circle whose circumference is equal to the perimeter of the
zone. The more compact the school boundaries become, the closer the value of target compactness
gets to 0. 3) Most of the school (re)districting happen to balance the student populations between
existing schools. Hence, target balance is given more weightage than target compactness. In our
setting, we always ensure that 𝜆/1−𝜆 ≥ 2. 4) Prefixing the center nodesV helps to satisfy the hard
constraint (1c) and automatically reduce the size of the optimization problem. Due to this advantage,
we prefer to use problem-specific domain knowledge to perform prefixing. In the absence of any
such information, clustering algorithms like 𝐾−medoids [71] can be used to determine a set of
initial center nodes. 5) The remaining hard constraints, i.e., mutually exclusive assignment of nodes
(1b) and subgraph connectivity (1f), can be satisfied when initializing a feasible solution X and
then perturbing it locally. 6) In solving (2), the minimizer seeks a 𝐾−partition of a geographical
area such that the territories are well-balanced, compactly-shaped and geographically contiguous.
Overall, this approach generalizes to other spatial partitioning problems, like commercial territory
design [77] and political redistricting [92], that involve optimization of similar dispersion metric
and subjected to constraints like balance, contiguity and compactness.

4 THE SPATIAL ALGORITHM
In this section, we describe our SPATIAL method for solving spatial partitioning problems. SPA-
TIAL starts by initializing a population of randomly generated trial solutions as detailed in Section 4.1.
These solutions are iteratively improved till a termination criterion is met. The improvement takes
place in two phases, local improvement and spatially-aware recombination, as detailed in Sections 4.2
and 4.3, respectively. The outline of our approach illustrated in Figure 3.

4.1 Initialization of trial solutions
Given a graph G =

(
V, E

)
, the initialization module instantiates a set of 𝑁𝑝 trial solutions,

X = {X(1) ,X(2) , . . . ,X(𝑁𝑝) }, where the 𝑖th solution, X(𝑖) , represents a particular partitioning of G.
Note that we are overloading the notation on X The feasibility of these solutions are ensured by
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Fig. 3. Outline of the SPATIAL approach for solving the school redistricting problem.

the seeding phase followed by the guided growth phase as shown in Figure 4. The pseudocode of
initialization is provided in Algorithm 1.

(a) Seeding phase (b) Guided growth phase

Fig. 4. The seeding phase (a) followed by the guided-growth phase (b) results in a new solution. Seeding
identifies the spatial unit corresponding to the center nodes. The guided-growth phase helps to grow the
territories by assigning the free spatial units (marked in light grey) based on the adjacency relation.

Seeding. This step helps to identify the seed units (prefix the center nodes) by leveraging problem-
specific domain knowledge and assign each such unit (center node) to an unique territory (subgraph).
In the context of school districting, seeding identifies each of the 𝐾 school-containing SPAs as
center nodes as shown in Figure 4a. This leads to creation of 𝐾 partial subgraphs with just a single
node in it, thereby ensuring that constraint (1c) is satisfied. The assignment of these center nodes
remain fixed throughout the partitioning process.

Guided growth. In the next step, the adjacency relationship between the spatial units are leveraged
to grow the seed units into complete territories. This generates𝐾 connected subgraphs representing
a 𝐾−partition of G. Figure 4b shows the guided growth phase, where a territory is randomly picked
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and grown by adding an adjacent (unassigned) spatial unit to it. The process is repeated till all the
spatial units have been assigned to a territory, thereby satisfying constraints (1b) and (1f).

Algorithm 1: Initialization
Input :Contiguity graph G, Population size 𝑁𝑝 , School level L.
Output :X : Population of trial solutions
begin

Determine the center nodesV for school level L and set 𝐾 ← |V|
X ← {} ⊲ Empty population
for 𝑖 = {1, 2, . . . , 𝑁𝑝} do
V: Get the set of nodes in G
Seeding phase ⊲
Set an initial assignment, i.e., X(𝑖) ∈ 0𝑁×𝑁

for 𝑣 ∈ V do
𝑋
(𝑖)
𝑣𝑣
← 1 ⊲ Assignment

V ← V\ {𝑣}
Guided-growth phase ⊲
do

Randomly pick a center node 𝑣, 𝑣 ∈ V
Determine the subgraph 𝑉 containing 𝑣 , i.e., 𝑉 =

{
𝑢 |𝑢 ∈ V, 𝑋 (𝑖)

𝑢𝑣
= 1

}
Find unassigned nodes adjacent to 𝑉 , i.e., N (𝑉 ) =

{
𝑢 |𝑢 ∈ V, ∑𝑣∈V 𝑋

(𝑖)
𝑢𝑣 = 0

}
while |N (𝑉 ) | > 0 do

𝑢: Randomly select a node from N (𝑉 )
𝑋
(𝑖)
𝑢𝑣
← 1 ⊲ Assignment

N (𝑉 ) ← N (𝑉 ) \ {𝑣} ,V ← V\ {𝑣}
while |V| > 0
X ← X⋃ {

X(𝑖)
}

return X

Note that during the growth phase, the adjacent spatial units are added in a random manner to
grow the territories without consideration for the quality of the trial solutions generated. Hence, it
is more than likely that the trial solutions will have low solution quality. To improve these solutions,
we perform two steps of refinement discussed next.

4.2 Local improvement
The local improvement searches the immediate neighborhood of an incumbent solution for im-
proving the solution quality. Given the 𝑖th solution, X(𝑖) , we randomly pick a pair of subgraphs
𝑉 𝑧 and 𝑉 𝑤 (𝑤, 𝑧 ∈ {1, 2, . . . , 𝐾},𝑤 ≠ 𝑧) such that they are adjacent, i.e., |E𝑧,𝑤 | > 0. Then we may
move a boundary node from 𝑉 𝑧 to 𝑉𝑤 or vice-versa. This flipping of nodes between adjacent
subgraphs result in a new solution X̃(𝑖) . If this newly produced solution is of better quality, i.e.,
J (X̃(𝑖) ) < J (X(𝑖) ), then X̃(𝑖) replaces X(𝑖) in the population. Note that the connectivity of sub-
graphs 𝑉 𝑧 and/or 𝑉𝑤 may be broken during flipping, thereby making X̃(𝑖) infeasible. To prevent
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Reject the flip

Accept the flip

Flip proposal

Fig. 5. The local improvement helps to search for neighboring solutions that can be reached by flipping the
membership of a boundary node. The Flip proposal involves changing the assignment of a boundary node
followed by acceptance/rejection of the new solution.

such infeasibility, we only allow a move if it does not break the contiguity of the involved sub-
graphs. The local improvement operation is illustrated in Figure 5 and the pseudocode is provided
in Algorithm 2. Since the local improvement of a solution is independent of other solutions, it can
leverage the parallel architecture of the computing platform.

Algorithm 2: Local improvement
Input :Population of solutions X, Contiguity graph G
Output :Updated solution
begin

for 𝑖 = {1, 2, . . . , 𝑁𝑝} do
X̃(𝑖) ← X(𝑖) , 𝑓 𝑙𝑖𝑝𝑝𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒

while not flipped do
Randomly pick two adjacent subgraphs 𝑉 𝑧 and 𝑉𝑤 , i.e., |E𝑧𝑤 | > 0
Find boundary nodes in 𝑉 𝑤 : N

(
𝑉 𝑧

)
=
{
𝑣 | (𝑢, 𝑣) ∈ E𝑧𝑤, 𝑢 ∈ 𝑉 𝑧

}
while |N

(
𝑉 𝑧

)
| > 0 && 𝑛𝑜𝑡 𝑚𝑜𝑣𝑒𝑑 do

𝑣 : From N (𝑧) pick a random node 𝑣
Move node 𝑣 from zone 𝑉 𝑤 to 𝑉 𝑧 , i.e., �̃�

(𝑖)
𝑧𝑣 ← 1, �̃� (𝑖)𝑧𝑤 ← 0

if 𝑉𝑤 and 𝑉 𝑧 are contiguous then
if J (X̃(𝑖) ) < J (X(𝑖) ) | | 𝑟𝑎𝑛𝑑 (0, 1) ≤ 𝑝𝑟 then

X(𝑖) ← X̃(𝑖) , 𝑓 𝑙𝑖𝑝𝑝𝑒𝑑 ← 𝑇𝑟𝑢𝑒 ⊲ Fitness-based replacement
else

�̃�
(𝑖)
𝑧𝑣 ← 0, �̃� (𝑖)𝑧𝑤 ← 1 ⊲ Revert back the assignment

N
(
𝑉 𝑧

)
← N

(
𝑉 𝑧

)
\ {𝑣}

The random selection of subgraphs, i.e., 𝑉 𝑧 and 𝑉𝑤 , for performing node swaps may lead to
redundancy. To prevent this, one may sequentially pick a subgraph, say 𝑉 𝑧 , from a randomized list
of subgraphs and determine adjacent subgraphs, say 𝑉𝑤 , for flipping the node. This is continued
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till a node flip is made. A flip is made when we find a better neighboring solution or we accept
an inferior solution, i.e., J (X̃(𝑖) ) > J (X(𝑖) ), with a very small probability 𝑝𝑟 . While the former
approach is greedy and prone to getting stuck at local optima, latter one helps in randomization of
the search move and is applied in metaheuristics like Simulated Annealing (SA) [51].

Markov Chains and Local Search. The local search mechanism here can be thought as instantiating
the Flip-based walk, i.e., generating a new solution or districting plan by changing the assignment of
a single node as shown in Figure 5. Instantiating a series of flips to generate a sample of districting
plans is akin to performing a random walk on the states of graph partitions and is encoded
by a Flip-based Markov Chain [18]. Relatedly, Markov chain Monte Carlo, popularly known as
MCMC, is an effective technique for sampling owing to strong underlying theory, in the form of
mixing theorems and convergence properties [21]. In context of redistricting, lets imagine each
districting plan representing a state and a random walk is being performed on this state space. As
the walker traverses from one state to another, we collect each state. On terminating the walk,
this collection constitutes the representative sample of the plans. Performing the Flip-based walk
involves changing the assignment of individual geographic units along district borders. In the
standard MCMC paradigm, altering this basic step adjusts the stationary distribution. Figure 6
gives a rough approximation of the idea.

. . . . . .
. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

Fig. 6. Theoretically if the flip proposal is carried out sufficient number of times, one may approximate the
stationary distribution of transitions of the state space, where each state correspond to a districting plan.

The main purpose of these sampling-based techniques is to compare the a given districting plan
in context of a representative sample, i.e., a set of valid alternative plans. Closely following this is
the need to relate the sampling distribution to the criteria set forth by domain experts. This may be
a tough ask since any redistricting effort can be accompanied by a varying set of criteria, some of
which are difficulty to quantify objectively. Our objective here is different. We use a customized
sampling distribution to generate an ensemble of plans and save the best quality plan, as determined
by an objective function.

4.3 Spatially-aware recombination
During local improvement, the individual solutions are improved independently without any ex-
change of information between them. Interestingly, it is possible to determine a better intermediate
solution by combining features from two solutions. Population-based methods enable mixing
of solutions through the recombination operation [25]. This results in better exploration of the
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Fig. 7. Illustrating the individual steps involved in the spatially-aware recombination operator.

search space. However, the vanilla recombination operation is not suitable for spatially-constrained
problems. Hence, we develop the spatially-aware recombination operation.

The recombination operation is motivated by the exchange of genetic material between different
organismswhich leads to production of offspring. In this process, two (parent) solutions, sayX(𝑖) and
X( 𝑗) , are selected such that X(𝑖) is picked randomly while solution X( 𝑗) is selected probabilistically
based on the fitness value. The fitness function is defined to allow solutions with lower functional
value have higher fitness as this is a minimization problem. For maximization, the fitness can be
set equal to the objective functional value. We expect that X( 𝑗) is fitter than X(𝑖) and thus X(𝑖) can
learn from X( 𝑗) . The steps of recombination operation are provided in Algorithm 3.

Algorithm 3: Spatially-aware recombination
Input :X : Population of solutions, G : Contiguity graph
Output :Updated solution
begin

Find the fitness values:H (𝑖) = 1
1+|J(X(𝑖 ) ) |

��� ∀𝑖 = 1, 2, . . . , |X|
for 𝑖 = {1, 2, . . . , |X|} do

X̃(𝑖) ← X(𝑖) , X̃( 𝑗) : Probabilistically selected 𝑗𝑡ℎ solution based on the fitness value
Randomly pick a subgraph 𝑉 such that 0 <

��𝑉 (𝑖) ∩𝑉 ( 𝑗) �� < min
(
|𝑉 (𝑖) |, |𝑉 ( 𝑗) |

)
Find the set of incoming nodes 𝐼𝑉 =

{
𝑣 |𝑣 ∈ 𝑉 ( 𝑗) \𝑉 (𝑖) and ∃𝑢 ∈ 𝑉 (𝑖) s.t. (𝑢, 𝑣) ∈ E

}
and outgoing nodes 𝑂𝑉 =

{
𝑢 |𝑢 ∈ 𝑉 (𝑖) \𝑉 ( 𝑗) and ∃𝑣 ∈ 𝑉 ( 𝑗) s.t. (𝑢, 𝑣) ∈ E

}
Randomly pick an incoming node 𝑣 ∈ 𝐼𝑉 and an outgoing node 𝑢 ∈ 𝑂𝑉
Simultaneously insert node 𝑣 into 𝑉 (𝑖) and remove node 𝑢 from zone 𝑉 (𝑖) ; also
update the assignments in X̃(𝑖)

If 𝑉 (𝑖) has rendered non-contiguous by the swap operation, repair X̃(𝑖)

for 𝑖 = {1, 2, . . . , |X|} do
if F

(
X̃(𝑖)

)
≤ F

(
X(𝑖)

)
then

X(𝑖) ← X̃(𝑖) ⊲ Fitness-based update

Suppose a subgraph 𝑉 is present in both solutions 𝑖 and 𝑗 , marked as 𝑉 (𝑖) and 𝑉 ( 𝑗) , such that
they have a common node. Every subgraph should satisfy this condition since the center nodes
remain unchanged. The subgraph 𝑉 (𝑖) is modified by simultaneously inserting a node 𝑣 (present in
𝑉 ( 𝑗) but not in 𝑉 (𝑖) ) and deleting a node 𝑢 (present in 𝑉 (𝑖) but not in 𝑉 ( 𝑗) ). This swapping of node
steers solution X(𝑖) towards the fitter solution X( 𝑗) as illustrated in Figure 7. In doing so, we expect
to find intermediate solutions that may have better fitness than the incumbent solution X(𝑖) .

Interestingly, the swapping of the nodes may break the connectivity of the involved subgraphs. To
reduce the chances of such undesirable scenarios, we perform the swap operation using boundary
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Fig. 8. During the recombination, the swapping of spatial units (A) may result in an infeasible solution (B),
which needs to be repaired (C) to make the solution feasible (D). As a result of these moves, the solution
oscillates between feasible and infeasible search space as demonstrated above. For illustration purposes, we
have depicted this oscillation through a continuous search space. We notice that the recombination plus
repair operation may result in a solution that differs from the incumbent solution by multiple hops. As a
result, it may approach (locally) optimal solutions.

nodes. Nevertheless, a repair operation still needs to be applied in case the connectivity of the
subgraphs are broken. To repair a solution, we use the breadth-first search (BFS) traversal for
enumerating the connected components in the disconnected subgraph, say𝑉 . Then, each connected
component is analyzed for the presence of the center node. If center node is absent, all the nodes in
this component is reassigned to the neighboring subgraphs. When no prior information about the
center nodes is available, we may retain the largest-sized connected component of 𝑉 and reassign
the other components. The repaired solution X̃(𝑖) might be few steps away from the incumbent
solution X(𝑖) in discrete space and thus helps in controlled exploration of the search space. The
advantage of repair operation is shown in Figure 8. Note that we have used a depiction of continuous
search space in Figure 8 though this is a discrete optimization problem. This was done to simply
show the movement of a solution through the repair process.
The solutions newly generated from the recombination operation needs to be updated in the

population synchronously based on their fitness values. The solution update is important to keep
the fitter solutions in the population so as to make the search progress. With careful implementation,
this step can be parallelized in modern computer systems by using multiprocessing.

5 EXPERIMENTATION
In this section, we conduct experiments with the proposed SPATIAL method and some well-known
metaheuristics on the school districting problem. The dataset description is provided in Section 5.1
followed by the performance metrics in Section 5.2. Details about setting the objective function and
the baseline methods are provided in Sections 5.3 and 5.4 respectively. The comparative evaluation
of the baseline methods is performed in Section 5.5 followed by studies on the effect of solution
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Table 1. Summary statistics of the school districts for the school year 2020-21.

District #SPAs (𝑁 ) #Schools (𝐾 )
Elementary Middle High

X 453 57 16 16
Y 1313 138 26 24

initialization in Section 5.6 and computational analysis in Section 5.7. Next, Section 5.8 focuses on a
series of ablation tests for investigating the individual components of SPATIAL. Lastly, Section 5.9
studies how SPATIAL can aid planners in real-life planning.

5.1 Dataset
The study was performed on two school districts (counties) located in the mid-Atlantic region
of the USA. These school districts have seen recent population growth in certain areas, thereby
making the problem challenging for the SOPs tested here. The following GIS data attributes of
both the district swere used for experimentation.

• SPAs: The location coordinates of the spatial units along with aggregated student count at
different school levels (Elementary, Middle and High).
• Schools: The location of the school building, school level, and its program capacity.

In comparison to the dataset used in [8], the only difference is that here we used the data for
the school year 2020 − 2021. We resorted to using the new dataset since many parents unenrolled
their children from the public schools at the onset of the COVID-19 pandemic resulting in more
population imbalance. This would present more challenging problem scenarios for the redistricting
algorithms. Table 1 presents the summary statistics of this new dataset.

We performed a few additional pre-processing steps. Specifically, we modeled the SPAs as nodes
in a graph and generated the adjacency relationship between the nodes. Also, we determined the
center nodes, i.e., the nodes corresponding to the spatial units containing schools inside them, by
performing point-in-polygon test using the PySal library [74].

5.2 Evaluation metrics
The solution to the school redistricting problem generated by an algorithm is actually a plan or a
zoning configuration of the school boundaries. For evaluating the plan, we utilized two performance
metrics that can be interpreted as percentage scores since they lie in the range [0, 100].
• Balance measures the average balance between a school’s program capacity and the number
of students residing within its boundary. It is calculated as

bal (X) = 100 ×

��������1 −
1
𝐾

𝐾∑︁
𝑖=1

��������1 −
𝑁∑
𝑢=1

𝑋𝑢𝑣𝑖
· L𝑝𝑢

𝑁∑
𝑢=1

𝑋𝑢𝑣𝑖
· L𝑐𝑢

��������
�������� (3)

We penalized both under-enrolled and overburdened schools equally with respect to the
capacity of schools. This is an important metric for school planners since most of the boundary
changes occur to achieve a better balance in schools.
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• Compactness measures how tightly a school’s boundary is packed on an average with
respect to its perimeter. A scaled Polsby-Popper score [72] is used to measure compactness as

com (X) = 100
𝐾

𝐾∑︁
𝑖=1

�������4𝜋 · Area
(⋃

𝑁
𝑢=1{𝑢 |𝑋𝑢𝑣𝑖 = 1}

)[
Peri

(⋃
𝑁
𝑢=1{𝑢 |𝑋𝑢𝑣𝑖 = 1}

) ]2
������� (4)

Compact school boundaries often translate to proximal schools that students can walk to
and thereby lower the transportation cost incurred by the school district.

5.3 Setting the objective function
The two objectives- balance and compactness - are conflicting in nature [10]. Hence an optimizer is
needed to trade-off between the objectives while solving the problem.We ensured that the condition
𝜆/1−𝜆 ≥ 2 held for both the districts while defining the objective function in Equation (2), i.e., we
set the weighing parameter 𝜆 in Equation (2) to 0.7 and 0.8 for districts X and Y , respectively. This
could ensure that the importance of population balance is at least twice3 as that of compactness.
The value of 𝜆 was higher for district Y since it had higher population imbalance in the schools to
begin with. For each school district, we independently solved three instances of the redistricting
problem− Elementary School (ES), Middle School (MS), and High School (HS). We observed varying
characteristics of the problem in each instance.
The ES instance of the problem is more challenging than the others due to different factors.

Firstly, a school district that has seen recent population growth is most likely due to an influx
of young children, which often leads to burgeoning demand for new ESs. Oftentimes, the new
ESs are situated at arbitrary locations without sufficient separation between them. This goes
against the clustering assumption of well-separated cluster centers. Secondly, the ESs exhibit a
wide variation in their program capacity, with the newly built ones having higher capacity than
their older counterparts, thereby making it difficult to balance the student population with the
schools’ capacity. In attempting to satisfy the schools’ capacities, the optimization algorithm may
fill in concave segments in the school boundaries with regular-shaped spatial units having a high
density of student population. The MS and HS, being well-separated and showing fewer deviations
of capacity, are comparatively easier to solve. Interestingly, the ES boundaries are more compact
than their MS and HS counterparts. In comparison to ES SAZs, a greater proportion of boundaries
of MS and HS share borders with the school district’s boundary, which is usually zigzagged by
naturally occurring geographies (highly irregular geometries). These additional considerations,
besides the spatial constraints, make school redistricting a challenging SOP to solve.

5.4 Baseline methods
The following baseline methods are used for comparative study:

• Local search-based techniques: We set the parametric configuration for each of these
baselines based on the literature [10].
– Stochastic Hill Climbing (SHC) [44]: A variation of the basic Hill Climbing that searches
the immediate neighborhood of a feasible solution in a random manner. If an equally good
or a better solution is found, it replaces and the search continues till a local optimum is
obtained.

3Balancing a school’s attending population w.r.t. its program capacity is the driving forces behind school redistricting. This
is consistent with the actual practices of school planners, who give more importance to balance over compactness.
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– Simulated Annealing (SA) [51]: A stochastic version of the Hill Climbing that is based on
the process of tempering of metals. It allows for worsening moves to take place if no better
solutions are found and can escape local optima.

– Tabu Search (TS) [33]: An algorithm uses a restrictive (tabu) list to forbid revisiting recently
explored solutions so that the new neighboring solutions can be explored.

• Sampling-based techniques: We include three sampling-based optimization techniques
developed based on the link between MCMC and redistricting stated earlier in Section 4.2.
– Balanced, Always Accept (BAA)
– Balanced and Compact, Always Accept (BCAA)
– Accept Improving Objective (AIO)
For more details about these techniques, refer to [9].
• SPATIAL [8]: The population size was set to 10 and 20 for districts X and Y, respectively.
Trial runs were simulated till 1000 and 2000 iterations for districts X and Y, respectively.

Note that we considered two more baseline methods−Greedy Randomized Adaptive Search
Procedure (GRASP) [77] and Mixed Integer Linear Programming (MILP) [82]. While GRASP’s
performance was inferior to the other baselines, MILP could not converge to a feasible solution for
4/6 test cases even with a run-time budget of 24 hours. For codes of SA, TS, SHC and SPATIAL, go
to https://github.com/subhodipbiswas/SpatialPartitioning and for the sampling-based techniques,
check out https://github.com/subhodipbiswas/SamplingbasedSchoolRedistricting.

5.5 Comparison with existing methods
For comparison purposes, we simulated 25 trial runs of each baseline and recorded the final solutions.
Each solution represented a districting plan of school boundaries, which were evaluated based
on the metrics defined in Section 5.2. In Table 2, we reported the mean and standard deviation of
these metrics. We also included the existing school boundary configuration of the school districts.
It is marked as Existing in the table. The results revealed that SPATIAL was able to generate
better quality solutions in the majority of the test cases. This especially held for district X. Besides
achieving better balance, SPATIAL obtained improved compactness score. The difference is specially
marked when you compare the Existing plans with the plans generated by SPATIAL.
For district Y, the performance of SPATIAL was comparable to the baseline in terms of the

balance scores, yet the compactness scores were comparatively better. SPATIAL was the only model
that achieves at par or better compactness than the Existing plan. We observed similar trend
for district X. The baseline methods adopted a greedy approach by continuing to look for better
solutions in the local neighborhood of the incumbent solution. In doing so, the solutions lying
just outside their immediate neighborhood remained elusive to them. On the other hand, the
spatially-aware recombination technique enabled SPATIAL to find intermediate solutions outside
the immediate neighborhood. The repair operation was particularly instrumental in finding such
solutions, some of which may be better than the solutions presented in the immediate neighborhood.
This is in line with the findings reported in [32].

The sampling-based methods, with the exception of AIO, do not result in high quality plans since
they are not optimizing on a particular objective. They are designed to operate like random search
methods without a greedy selection procedure. AIO, on the other hand, applies greedy selection
procedure and in essence similar to the techniques like SA, TS and SHC.

5.6 Effect of solution initialization
To inspect if solution initialization has any effect on the quality of solutions, we created a variant of
the baseline methods indicated by an asterisk−Algorithm∗ is the newly created variant of Algorithm.
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Table 2. Performance of peer algorithms on the problem of school boundary formation in both the districts.

District X

Models Elementary School Middle School High School
Balance Compactness Balance Compactness Balance Compactness

Existing 83.5020 ± 0.0000 32.5344 ± 0.0000 89.7379 ± 0.0000 26.7671 ± 0.0000 87.0786 ± 0.0000 27.3452 ± 0.0000

SA 87.7697±0.8280 38.1032±1.6977 92.3789±0.5726 32.3574±3.6421 96.4240±1.9741 26.9094±2.7749
TS 87.3788±0.7079 36.4537±1.5931 92.5729±0.2888 33.0756±2.1707 95.9435±1.8527 28.3494±2.1524
SHC 86.6755±0.8642 36.5780±1.7189 92.5583±0.1806 32.3115±2.3647 95.6461±1.9090 27.9708±2.1571

BAA 71.7328±2.3193 30.5329±1.5741 89.4501±1.1493 18.6148±1.6085 90.3080±1.8968 16.8370±1.7453
BCAA 71.0820±2.4890 30.7455±1.3047 90.1128±1.5444 18.6181±1.7215 90.9247±1.6280 17.0758±2.0001
AIO 86.6930±1.0247 37.4850±1.5981 92.4021±0.4920 33.4105±2.3518 95.7360±1.7613 30.5854±2.3411

SPATIAL 87.9353±0.6175 38.8988±1.4759 92.5926±0.1191 37.5398±1.6283 97.7948±0.4602 31.5193±1.8568
District Y

Models Elementary School Middle School High School
Balance Compactness Balance Compactness Balance Compactness

Existing 82.3835 ± 0.0000 35.9234 ± 0.0000 84.2310 ± 0.0000 27.7096 ± 0.0000 86.9541 ± 0.0000 26.8006 ± 0.0000

SA 94.6386±1.0634 30.0782±1.4172 91.3987±1.1006 22.9419±2.4456 93.1795±1.5845 24.2182±2.8013
TS 93.3600±0.7183 29.7212±0.6997 92.1146±0.4123 25.5295±2.8529 93.6894±1.4057 26.4599±2.7025
SHC 92.9656±0.9595 29.7697±0.9929 91.4258±0.8386 24.5064±2.5644 93.2757±1.4755 24.3142±2.1289

BAA 67.4731±1.9623 27.1551±0.8379 86.0361±1.2005 10.3140±1.1395 84.8948±2.1824 10.1874±0.8616
BCAA 67.3870±2.1147 27.2899±0.7668 86.6818±1.4137 10.6439±1.1396 85.4392±1.7517 10.1476±0.7313
AIO 93.0592±0.8565 30.7064±0.7959 91.9071±0.5007 25.7025±2.6570 93.4927±1.4288 26.1186±2.2065

SPATIAL 94.9097±0.4351 30.2618±0.9105 92.3780±0.1295 27.8174±2.2644 92.6337±0.6078 29.6600±1.5477

If say SPATIAL starts with randomly generated initial solutions (as depicted in Section 4.1), the initial
solutions in SPATIAL∗ will correspond to the existing boundary configuration of the school district
under consideration. Since the school districts redraw their boundaries frequently (in response
to changing needs), the existing boundary configuration represents a (locally) good solution to
the problem. This is akin to solving the school redistricting problem where we redraw the school
boundaries instead of designing them from scratch as in school districting. This subtlety is more
of a matter of technicality. Interestingly, while performing school redistricting, we ensured that
each school boundary was geographically contiguous to being with. If not, we would use the repair
operation outlined earlier to reassign some SPAs for creating contiguous school boundaries.

We ran 25 simulations on each school level of both the districts and tabulated the performance
metrics in Table 3. We observe that on an average the Algorithm∗ variants are better than Algorithm
in both the metrics. This is mostly because the existing solution that Algorithm∗ starts with is
of better quality than the randomly-generated solutions used by Algorithm. For district X, there
is a clear trend showing that Algorithm∗ is better than Algorithm across all the possible metrics
and problem instances. However, we do see some exceptions in district Y, especially for MS and
HS problem instances. This can be attributed to the Algorithm∗ variants getting stuck in a local
optima. This is highly plausible since the initial solutions of Algorithm∗ are very similar4 to each
other. On the other hand, Algorithm may manage to escape the local optima courtesy the widely
varying range of the starting solutions it is initialized with. The number of local optima increases
exponentially with the increase in problem size. Hence, this trend is expected since district Y is
4The only difference between the solutions are due to the reassignment of discontinuous SPAs of school boundaries for the
purposes of maintaining the contiguity of the school boundaries.
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Table 3. The effect of solution initialization on peer algorithms. The .

District X

Models Elementary School Middle School High School
Balance Compactness Balance Compactness Balance Compactness

Existing 83.5020 ± 0.0000 32.5344 ± 0.0000 89.7379 ± 0.0000 26.7671 ± 0.0000 87.0786 ± 0.0000 27.3452 ± 0.0000

SA 87.7697±0.8280 38.1032±1.6977 92.3789±0.5726 32.3574±3.6421 96.4240±1.9741 26.9094±2.7749
SA∗ 87.9809±0.5044 40.9826±1.0907 92.5345±0.2965 37.1108±2.1572 97.3246±0.5107 33.0759±1.8799
TS 87.3788±0.7079 36.4537±1.5931 92.5729±0.2888 33.0756±2.1707 95.9435±1.8527 28.3494±2.1524
TS∗ 88.2290±0.3177 40.4481±0.5532 92.7145±0.0019 38.1273±0.1339 97.3869±0.1536 32.7663±0.3416
SHC 86.6755±0.8642 36.5780±1.7189 92.5583±0.1806 32.3115±2.3647 95.6461±1.9090 27.9708±2.1571
SHC∗ 88.0565±0.3398 40.4219±0.6413 92.6503±0.1009 37.9347±1.1750 97.5288±0.6344 33.3857±1.6935

BAA 71.7328±2.3193 30.5329±1.5741 89.4501±1.1493 18.6148±1.6085 90.3080±1.8968 16.8370±1.7453
BAA∗ 83.0738±0.6002 32.4948±1.0189 92.1247±0.3935 28.4179±0.8139 94.5031±0.7808 26.3284±1.3810
BCAA 71.0820±2.4890 30.7455±1.3047 90.1128±1.5444 18.6181±1.7215 90.9247±1.6280 17.0758±2.0001
BCAA∗ 84.1403±0.5138 32.2777±1.0458 92.2637±0.3897 29.6189±1.0030 95.5958±0.8448 26.2145±1.6023
AIO 86.6930±1.0247 37.4850±1.5981 92.4021±0.4920 33.4105±2.3518 95.7360±1.7613 30.5854±2.3411
AIO∗ 87.7953±0.4931 41.0278±0.7990 92.6865±0.0594 37.1659±0.8954 96.6412±1.0957 33.7013±1.7627

SPATIAL 87.9353±0.6175 38.8988±1.4759 92.5926±0.1191 37.5398±1.6283 97.7948±0.4602 31.5193±1.8568
SPATIAL∗ 88.2474±0.3008 41.6610±0.9948 92.6639±0.0642 39.9138±0.7408 98.0286±0.2052 35.2453±1.2159

District Y

Models Elementary School Middle School High School
Balance Compactness Balance Compactness Balance Compactness

Existing 82.3835 ± 0.0000 35.9234 ± 0.0000 84.2310 ± 0.0000 27.7096 ± 0.0000 86.9541 ± 0.0000 26.8006 ± 0.0000

SA 94.6386±1.0634 30.0782±1.4172 91.3987±1.1006 22.9419±2.4456 93.1795±1.5845 24.2182±2.8013
SA* 95.1757±0.5959 33.9204±0.9149 91.4492±0.6952 28.2519±1.6041 92.2339±0.4015 30.4304±1.2035
TS 93.3600±0.7183 29.7212±0.6997 92.1146±0.4123 25.5295±2.8529 93.6894±1.4057 26.4599±2.7025
TS* 93.9882±0.2143 37.4500±0.4358 89.8580±0.6495 31.9823±1.0187 92.0073±0.1227 34.3255±0.7516
SHC 92.9656±0.9595 29.7697±0.9929 91.4258±0.8386 24.5064±2.5644 93.2757±1.4755 24.3142±2.1289
SHC* 94.2043±0.5056 35.3233±0.6058 90.7112±1.3864 29.9091±1.3810 91.9250±0.0950 32.1575±1.0527

BAA 67.4731±1.9623 27.1551±0.8379 86.0361±1.2005 10.3140±1.1395 84.8948±2.1824 10.1874±0.8616
BAA* 80.1400±0.4253 32.3159±0.4638 81.5796±1.0063 22.8711±0.9850 87.7556±0.6411 22.6101±0.7538
BCAA 67.3870±2.1147 27.2899±0.7668 86.6818±1.4137 10.6439±1.1396 85.4392±1.7517 10.1476±0.7313
BCAA* 81.3120±0.3927 32.0952±0.5303 83.1391±0.9270 22.4642±0.7627 88.9047±0.5496 22.2048±0.7405
AIO 93.0592±0.8565 30.7064±0.7959 91.9071±0.5007 25.7025±2.6570 93.4927±1.4288 26.1186±2.2065
AIO* 94.3157±0.5046 35.8568±0.7109 91.3974±0.9010 31.1680±1.5590 91.8972±0.1067 33.0105±1.1274

SPATIAL 94.6537±0.3691 30.1714±0.6381 92.3885±0.1194 28.9142±1.1682 92.6819±0.7202 29.5414±1.3540
SPATIAL* 95.3731±0.3617 36.1492±0.7468 91.7854±0.2029 31.8754±1.3194 91.9185±0.1156 34.6683±0.9838

almost three times the size of districtX. Note that both the variants of SPATIALwere able to achieve
superior results in majority of the cases.
Nevertheless, the advantage of Algorithm* variants like SPATIAL* is in reconfiguration of the

existing school boundaries, i.e., it is useful in scenarios like opening of a new school or closure of
an existing school. However, to enable Algorithm* work successfully, it is desired that the existing
plan has a high percentage of connected subgraphs. For instance, some of the existing plans of
district Y did not have geographic contiguity (subgraph connectivity) and hence the disconnected
subgraphs have to be repaired. We noticed that a higher proportion of disconnected subgraphs, on
being repaired, results in arbitrarily-shaped districts. For such districts, it may be difficult to arrive
at a better configuration due to the local structure that the problem imposes.
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5.7 Computational complexity and ideas on scaling up
To analyze the computational complexity of thesemethods, we plotted thewall-clock time for all trial
runs in the form of error plots in Figure 9. Run-time analysis reveals that for the smaller District X,
SPATIAL takes longer time than the local search algorithms SA and SHC. TS is comparatively
more expensive than any of the local search methods but much quicker than the sampling-based
techniques that simulate 10 million flips. Interestingly, for the larger District Y, TS takes the longest
time and shows wide variation in the run time. This high variance can be attributed to a multitude of
factors: strong dependence on initial solution, randomized order of search moves, and the tendency
to get trapped in local optima. We noticed that the methods applying local search do suffer from
these issues. Also, the design of local search and the computation of target compactness may be
reasons for a higher computation time. Efficient algorithm design can lead to overcoming these
bottlenecks. Interestingly, the sampling-based methods are built on top of the GerryChain library
which is scalable to larger-sized problem instances.

The calculation of the Polsby-Popper compactness measure in techniques like SA, SHC, TS and
SPATIAL, is a key computational bottleneck and it is imperative to look for faster alternatives. We
posit some ways in which techniques like SPATIALcan be made faster. Firstly, spatial recombination
can be promoted at scale by swapping multiple nodes instead of pairwise swap in use presently. This
will help to promote better exploration of the search space. Secondly, finding good initial solution
can help to accelerate the search significantly. For instance, replacing the random assignment of
nodes (in the guided-growth phase in Section 5.6) with a distance-based assignment can lead to
more compact territories to being with. Lastly, for large-sized graphs roughly corresponding to a
grid structure and having high number of nodes per subgraph, the compactness measure can be
closely approximated by the edge cuts.

Fig. 10. The dual graph of a 10 × 10 grid contains 180
edges (marked in grey). The red markers indicate the
edges removed to generate the corresponding parti-
tions. Only 20 of these edges will be removed by a par-
tition that divides the grid into 4 compact territories
(left). However, a plan with arbitrary-shaped territories
(right) could remove up to 54 edges.

Figure 10 shows that a partition with com-
pact territories can be obtained by minimizing
the number of edge cuts. The idea of edge cuts
is a popular concept in graph partitioning liter-
ature where algorithms like min-cut exist [13].
While this approximation might not produce
compact territories for problems like school re-
districting, it might work very well for political
districting problems [3].

As shown in Figure 10, to get compact bound-
aries we need to minimize the number of edge
cuts or retain the maximum number of exist-
ing edges while partitioning graphs. As such,
the number of edges retained can be a proxy
to the compactness metric used here. Simula-
tions on the school redistricting problem have
revealed 5-10x speedup in the algorithms us-
ing local search. However, it comes at an added
cost. The compactness of the boundaries suffer,
this may lead to unnecessarily elongated school
boundaries and consequently increased commute time for students or higher transportation costs
for the school administration. However, for designing school boundaries in city blocks, most of
which are organized in square blocks, the notion of edge cuts can be useful. Hence, the usage of
the edge cuts for the school districting problem should be adopted with caution.
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Fig. 9. The wall-clock time of the different methods reported for all the problem instances. The increase in
the problem size causes significant increase in run time. This can be attributed to the combinatorial explosion
in the search space.

5.8 Ablation study
5.8.1 How effective are the search operators? To understand the effectiveness of the search
operators−local search and spatially-aware recombination, we simulated 25 sample runs of SPA-
TIAL on district X with three possible configurations by selectively activating the operators. They
are as follows:
• Only the local search operator is activated.
• Only the recombination operator is activated.
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• Both the operators are activated.
The results of each configuration are depicted in Figure 11 as point estimates of evaluation

metrics and their corresponding error plots. For fair comparison, we seeded the random numbers to
ensure that the starting solutions are similar for the different configurations. Thus, any difference in
the performance of these configurations can solely be attributed to the search operators. The local
search operator helps in bringing about improvement in balance scores whereas the recombination
operator is responsible for high compactness scores. As mentioned earlier, recombination is less
greedy than local improvement and is able to find (better) intermediate solutions beyond the
immediate neighborhood of the incumbent solution. Interestingly, when both the operators are
active, we noticed that the combined effect of the operators resulted in overall improvement in
the quality of solutions. While local improvement resulted in exploitation of the decision space,
recombination caused controlled exploration of the search space. Both are important for designing
practicable school boundaries.

5.8.2 What effect does population size have on performance? SPATIAL employs a population of
trial solutions for solving SOPs. To study the effect of population size 𝑁𝑝 on the performance of
the algorithm, 15 runs of SPATIAL are simulated on the three test cases of district X for different
values of population size, 𝑁𝑝 ∈ {10, 20, 30, 40, 50}. We observed increasing the population size
does not always translate to improvement in performance. This is a classic case of exploration-
exploitation trade-off prevalent in optimization algorithms. A higher population size contributes to
diversification (exploration) since more solutions can be distributed over the decision space. To
enhance intensification (exploitation), the number of iterations need to increase in proportion to
the increase in population size. This would result in longer execution time. We came across another
related observation− population-based metaheuristics without recombination operation may not
benefit from a large population size, especially when the objective function is multi-modal and the
functional landscape has attraction basins with a local minimum. This happened since the solutions
present in this attraction basins would quickly eliminate other promising solutions (that could have
led to a better optima) due to fitness-based replacement of the solutions. The objective function in
(2) presents similar challenges as it is multi-modal in nature. The recombination operation (along
with the repair operation) helps to balance such basins of attraction and preserve the solution
diversity. Our observation is in line with recent findings by Chen et al. [16].

5.9 Using SPATIAL in real-life planning
In Section 5.6, we show how algorithms like SPATIAL∗ can be used in redesigning the school
boundaries in order to arrive at an alternative districting plan. Here, we analyze the practical
implications of using SPATIAL∗ in redistricting the school boundaries of both the districts. The
evaluation entails including additional metrics beyond the ones defined in Section 5.2.
• Distance-based metrics: As an alternative to compactness, we do include some distance-
based measures to get an idea of the distance traveled by students to reach schools.
– Mean distance traveled: This is the average distance a student travels to reach their respec-
tive schools. For computing this metric, we weighted the distance between the centroid of
the SPA and the assigned school location with the student population in the SPA.

– Maximum distance traveled: This is the maximum distance between the centroid of a SPA
and its assigned school.

• Balance-based metrics: In addition to balance metric, we included three more metrics to
highlight what proportion of schools are balanced, overcrowded or under-enrolled.
– Number of balanced schools: The number of schools in which the attending student
population is between 80-120% of the school’s program capacity.
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Fig. 11. The performance metrics obtained by the different combinations of search operators in SPATIAL . We
observed that the combined effect of both the operators resulted in better quality solutions.

– Number of under-enrolled schools: The number of schools in which the attending student
population is below 80% of the school’s program capacity.

– Number of overcrowded schools: The number of schools in which the attending student
population is above 120% of the school’s program capacity.

• Ethical metrics: Displacing students should be minimized since these students lose social
ties to their cohorts. Thus, assessing a plan in terms of the social impact it may have on
students is equally important. We show how many students may get displaced if a given plan
is implemented.
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Table 4. Comparing the existing plans with the automated plans of District X.

Elementary School Middle School High School
SPATIAL∗ Existing SPATIAL∗ Existing SPATIAL∗ Existing

Compactness score 42.19 32.53 41.15 26.77 36.07 27.35
Mean distance traveled (in miles) 0.75 0.75 1.24 1.28 1.63 1.52
Max distance traveled (in miles) 9.84 11.75 15.51 17.14 15.84 14.19

Balance score 88.60 83.50 92.78 89.74 98.27 87.08
Number of balanced schools 42/57 31/57 15/17 14/17 16/16 14/16
(in %) 73.68 54.39 88.24 82.35 100.00 87.50
Number of under-enrolled schools 0/57 1/57 0/17 0/17 0/16 0/16
(in %) 0.00 1.75 0.00 0.00 0.00 0.00
Number of overcrowded schools 15/57 25/57 2/17 3/17 0/16 2/16
(in %) 26.32 43.86 11.76 17.65 0.00 12.50

Students displaced 8253/37521 − 2376/20059 − 3269/26728 −
(in %) 22.00 − 11.85 − 12.23 −

Table 5. Comparing the existing plans with the automated plans of District Y.

Elementary School Middle School High School
SPATIAL∗ Existing SPATIAL∗ Existing SPATIAL∗ Existing

Compactness score 36.75 35.92 34.28 27.71 36.44 26.80
Mean distance traveled (in miles) 0.71 0.68 1.68 1.77 1.87 1.88
Max distance traveled (in miles) 5.05 4.13 11.75 12.26 13.51 14.02

Balance score 95.81 82.38 92.09 84.23 91.90 86.95
Number of balanced schools 132/138 91/138 22/26 17/26 21/24 18/24
(in %) 95.65 65.94 84.62 65.38 87.50 75.00
Number of under-enrolled schools 2/138 17/138 0/26 1/26 3/24 6/24
(in %) 1.45 12.32 0.00 3.85 12.50 25.00
Number of overcrowded schools 4/138 30/138 4/26 8/26 0/24 0/24
(in %) 2.90 21.74 15.38 30.77 0.00 0.00

Students displaced 21891/100278 − 6306/28647 − 10749/59593 −
(in %) 21.83 − 22.01 − 18.04 −

For both the districts, we compare the best automated plan generated by SPATIAL∗ against
the existing plan and tabulate the results in Tables 4 and 5. The results in Table 4 reveal that the
automated plans of District X have higher compactness values than the existing plan. However,
that doesn’t always translate to less distance traveled. In fact, the mean distance traveled by
students increases in the automated plan is roughly same as in the existing plan. Interestingly,
the automated plans were able to balance a greater proportion of schools thereby relieving the
overcrowding/under-enrollment in the present schools. However, the improved balance comes
at a cost. The last row reveals that if the automated plan is to be implemented, 22%, 11.85% and
12.23% of the students in the elementary, middle and high schools, respectively, will be displaced
with respect to the existing plan. We noticed similar tendencies in Table 5 for District Y. The only
difference being the percentage of students displaced. District Y has a high imbalance to begin
with and the school administration deal with this issue by making use of modular classrooms for
accommodating the extra students. However, these modular classrooms are expensive and incurs
additional operational cost in the schools. The automated plan ended up changing the assignment
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of 15-20% of the SPAs in order to achieve a better balance thereby resulting in high value of students
displaced.
This massive reshuffling of students is generally not encouraged and may only be done once

in a span of 4-5 years. Usually, in such scenarios, the final say about which criteria to prioritize
lies with the school planners. In doing so, they may consider other factors, including presence of
geographic or man-made barriers, access to walk zones, socioeconomic diversity, the number of
students displaced, and so on. In fact, in an ill-defined spatial problem like school districting, any
automated plan cannot avoid modification. The common practice is to use arrive at the final plan
by modifying a base plan or an automated plan based on subjective judgement.

6 CONCLUSION & FUTUREWORK
This article proposes a metaheuristic-based approach for solving spatial optimization problems like
school districting. We highlight the (computational) difficulty of using exact methods for solving
such problems and motivate the need for sophisticated heuristics. To this end, the SPATIAL approach
makes use of spatially cognizant search operators for seeking improved solutions by searching
through the discrete search space characterized by spatial constraints. We illustrate two key points
here. Firstly, we show how the idea of local search has theoretical underpinnings that flow from
the idea of MCMC sampling on graph partitions. This even led us to compare additional sampling-
based techniques for designing school boundaries. Secondly, the spatially-aware recombination
along with the repair operation is instrumental in obtaining better quality solutions. An in-depth
experimental investigation helped ascertain the efficacy of SPATIAL and related methods in solving
spatial partitioning problems. We also highlight some existing drawbacks in the framework and
provide pointers on ways to improve the framework.
Some possible research directions that can be undertaken in near future are as follows. Firstly,

modifying the recombination operation by incorporating multiple swaps with repair can aid in
further exploration. Even techniques like ejection-chain methods can be helpful in this regard.
Secondly, developing a multi-objective version of SPATIAL by including multiple decision criteria.
This will help to incorporate other ethical considerations, including socioeconomic diversity, equal
opportunity, past displacements, and so on, into the algorithmic model. Thirdly, integrating an
sampling-based technique like MCMC with a population-based metaheuristic can help augment
the search process by enhancing the diversity of the solutions. Lastly, we can apply SPATIAL for
solving similar SOPs like political districting. This may require modifying the objective function
and constraint-handling technique.
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