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Abstract. The exponential growth of academic literature presents sig-
nificant challenges for researchers attempting to find relevant informa-
tion. Traditional keyword-based retrieval systems often fail to address
issues such as synonyms, homonyms, and semantic nuances, leading to
suboptimal search results. This paper introduces a novel system called
IntelliSMART (Intelligent Semantic Machine-Assisted Research Tool),
which leverages large language models (LLMs) and advanced seman-
tic processing techniques to improve the retrieval of academic literature.
Our approach integrates query rewriting, embedding generation, efficient
indexing, and complex article retrieval mechanisms to provide highly ac-
curate and contextually relevant results that align with the user’s intent.
The IntelliSMART system features a user-friendly front end that facil-
itates intuitive query input, along with a robust back end for handling
user queries, generating embeddings, indexing extensive collections of
academic papers, and efficiently retrieving the most relevant documents.
The proposed system shows significant improvements over conventional
methods, highlighting its potential to transform the search experience in
academic research.
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1 Introduction

The rise of digital academic resources and scholarly literature necessitates effi-
cient retrieval methods. Traditional keyword-based Information Retrieval (IR)
systems struggle with synonyms, homonyms, and contextual understanding.
While more complex keyword-based systems address some limitations, they re-
quire ongoing refinement, expertise, and cost. Major search engines like Google
and Bing have adopted Large Language Models (LLMs) for improved IR, lever-
aging deep contextual understanding and semantic representation to enhance
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information acquisition [1]. Similarly, LLMs offer academia promising avenues
to improve traditional IR systems.

IR systems aim to quickly find and prioritize relevant information. Traditional
keyword-based, or Boolean models, use static semantics and Boolean logic, which
can miss linguistic nuances and hinder intuitive searches as digital repositories
expand [2]. Binary keyword assessments fail to provide nuanced search results.

Semantic processing helps address these issues by considering textual intri-
cacies and reducing word sense ambiguity. This involves extracting and under-
standing connotations and meanings within text using statistical models [3].
Accurate sense identification enhances all subsequent IR processes.

Our project applies LLMs in key areas:
Query Rewriter: This crucial stage processes user queries by analyzing key-

words, phrases, and questions. It considers contextual nuances and semantic rela-
tionships, providing deeper insights into user intent. Techniques like tokenization
and semantic analysis help extract relevant information from the queries.

Retriever: As the IR system’s core, the retriever fetches relevant documents
based on user queries. It involves preprocessing and indexing the document cor-
pus with advanced LLM text embedders and indexers, facilitating efficient re-
trieval. This process considers textual information, metadata, and latent seman-
tic meanings, ensuring precise and relevant results.

The rest of this proposal is structured as follows: Section 2 reviews related
work and the inspiration behind our approach. Section 3 details the proposed
approach and implementation. Sections 4 and 5 discuss the data used, evaluation
methodology, and the results.

2 Related Work

2.1 Query Rewriting

Conventional strategies for improving retrieval performance involve enriching
initial queries with insights from top-ranked documents. Methods like relevance
feedback [4–7] and word embedding-based techniques [8, 9] are widely used, but
limited by inadequate semantic comprehension and understanding of user intent.

Ad-hoc retrieval, with brief and ambiguous queries, challenges traditional
search engines. LLMs excel at understanding language semantics, providing two
key benefits: mitigating the "vocabulary gap" and acting as "meaning inter-
preters" for vague queries [10–13]. LLMs address various ad-hoc retrieval chal-
lenges beyond vocabulary expansion and intent clarification [10–15]. In the le-
gal domain, PromptCase [16] uses LLMs to bridge complex legal questions and
computer-readable formats, simplifying legal research.

2.2 Retriever

Retrieval models have evolved from statistical algorithms [17] to neural models
[18, 19], which better interpret complex user intents and offer improved semantic
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understanding. Despite this advancement, challenges persist, such as the brevity
and vagueness of user queries and the length and noise of documents, along with
the time-consuming and costly process of collecting human-annotated relevance
labels.

Large Language Models (LLMs) significantly enhance text processing capa-
bilities, offering more accurate query and document understanding compared to
smaller models [20]. Research into model scale’s impact on retrieval performance
has involved using LLMs as retrieval encoders [21–23]. For instance, OpenAI [21]
employs adjacent text segments as positive pairs in the unsupervised pre-training
of text embedding models, with parameter values ranging from 300M to 175B.
Additionally, incorporating task-specific instructions, as demonstrated by TART
[23], can enhance retrieval performance by aligning the model’s capabilities with
user search intentions across various tasks.

2.3 Text Embeddings

In NLP, word embeddings transform words into numerical vectors to capture se-
mantic similarity and aid various language tasks. Techniques such as Word2Vec
[24] and GloVe generate these vectors, reflecting semantic and relational in-
formation [25]. Trained on large datasets [26], embeddings streamline feature
engineering in neural networks.

There are two main approaches: (1) Feature-based embeddings, where pre-
trained networks generate static or dynamic embeddings, and (2) Fine-tuning
embeddings, where models initially trained on general tasks are fine-tuned for
specific NLP tasks. Static embeddings remain consistent across contexts, while
dynamic embeddings adapt to context, addressing polysemy.

Word2Vec [24] uses techniques like Continuous Bag of Words (CBOW) and
Skip-gram to predict target words from context or vice versa. These methods
are efficient and reduce computational complexity.

GloVe differs by integrating local context windows with global matrix fac-
torization, providing a broader context than Word2Vec.

ELMo [27] advances embeddings by using a bidirectional LSTM to generate
context-sensitive representations influenced by the entire input sentence.

BERT [28] employs a bidirectional Transformer encoder to predict masked
words using both left and right contexts, offering deep bidirectional representa-
tions pre-trained on unlabeled text.

3 Proposed Approach

Building the semantic processing LLM for academic literature retrieval requires
the development and integration of the following essential components:

3.1 Query Rewriting

The query rewriter module enhances user queries through a structured One-shot
Learning process.
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Fig. 1. Proposed Architecture

Notation: Let AQ = {q(i)}NQ

i=1 be the set containing user queries with NQ

samples, where q(i) is a textual user query. This scenario describes a query
rewriter module that leverages a One-shot Learning approach, categorized into
two stages: Refining and Understanding and Expanding and Exploring.

Refine and Understand The initial step involves correcting grammatical er-
rors, spelling inaccuracies, and redundant words. For example, the query "The
causes of global warming and what effect it has on environment" is refined to
"The causes of global warming and what effects it has on the environment." This
ensures queries adhere to linguistic norms, facilitating accurate semantic under-
standing and effective processing. The module then progresses to the Expanding
and Exploring stage.

Expanding and Exploring In this step, the module interprets query intent
by understanding subtle meanings and broader context. It enhances queries with
synonyms and related terms, such as "climate change" and "greenhouse gases"
for global warming, and suggests alternative queries to better capture user needs.
This approach improves user experience and search result accuracy.

Prompt Construction: For each user query q(i) ∈ AQ, the system generates
a prompt p(i) for the One-shot Learning process:

(1) System Description (p(i)system): Provides an overview of the query rewriter’s
functionalities. Example: You are a query refinement system designed to enhance
user search queries and suggest alternate queries. Example query: ’The causes
of global warming and what effect it has on environment.’

(2) Task Description (p(i)task): Outlines the One-shot Learning objective.
Example:
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I. Refine and Understand: Correct grammar and spelling: ’The causes of
global warming and what effects it has on the environment.’ Identify intent:
User seeks articles on the causes and impacts of global warming. Add synonyms
and related terms: ’global warming’, ’climate change’, ’greenhouse gases’, ’an-
thropogenic factors’

II. Expand and Explore: Suggest additional terms: ’environmental impact’,
’climate change effects’, ’mitigation strategies’.

III. Present Options: Offer refined query: ’Climate change causes and
environmental consequences.’ Suggest alternative queries: ’Anthropogenic
factors in climate change’ or ’Effects of climate change on specific ecosystems’.

(3) Input (p(i)input): Represents the user’s original query, which the LLM pro-
cesses without additional context.

The complete prompt for the ith query is formulated by combining these
elements:

p(i) = p
(i)
system || p(i)task || p(i)input

3.2 Embedding Generation

We use SOTA embedding models like GTE-Base Sentence Transformer and
Google’s Gemini to encode academic articles and queries into high-dimensional
vectors. These embeddings effectively measure semantic similarity, improving
query-article matching and retrieval efficiency by positioning related concepts
closer in vector space. Using both models ensures robust performance and en-
ables comparative analysis.

Google’s Gemini Embedding Model provides numerical representations
for words, phrases, and sentences, supporting applications like semantic search
and text classification with API customization and binary quantization for ef-
ficient storage. The GTE-Base Sentence Transformer, based on the BERT
framework, generates dense representations for semantic similarity comparisons
[29]. It features English proficiency, a 512-token maximum sequence length, a
768-dimensional embedding, and a model size of 0.22GB.

3.3 Storing and Retrieving Vector Embeddings

We use ANNOY and FAISS indexing systems to store academic article embed-
dings, which are computed during the initial data preparation phase. This setup
ensures efficient storage and fast retrieval of relevant articles, improving overall
retrieval process efficiency.

ANNOY excels in Approximate Nearest Neighbor Search, making it ideal
for scenarios where efficiency is prioritized over exact matches. It uses random-
ized trees to build indexes, facilitating quick approximate queries while being
memory-efficient and supporting disk-based indexes for large datasets through
memory-mapped files. ANNOY handles various distance metrics, such as Eu-
clidean and cosine, and is commonly used in image and document search tasks.
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FAISS, on the other hand, offers efficient similarity search with algorithms like
Index FlatL2, IVFFlat, and HNSW for high-dimensional vector spaces. It in-
cludes vector clustering, scales well with large datasets, and benefits from GPU
acceleration for faster processing. FAISS’s C++ core library, with Python bind-
ings, integrates smoothly into scientific computing workflows.

Upon receiving a user query, it is processed by the Query Rewriting module
and embedded. The embeddings are compared with stored article embeddings
using FAISS and ANNOY for efficient nearest neighbor search. We then retrieve
and rank the top k publications by similarity scores, presenting the results in
a structured DataFrame. This DataFrame includes text, authors, DOIs, and
similarity distances, providing a comprehensive view of the top k search results
for an intuitive user experience.

3.4 User Interface

Users interact with IntelliSMART via an intuitive interface that efficiently re-
trieves relevant publications for queries like "articles about time travel." The
system ranks results by relevance and features a user-friendly design with a con-
sistent color scheme, clear typography, and visual feedback such as highlighted
selections. Its responsive design ensures a smooth experience across different
devices.

Our project integrates a React-based front end and a FastAPI-powered back
end. The front end, using JavaScript and Tailwind CSS, delivers a dynamic,
responsive user experience with efficient state management via ‘useState‘ and
‘useContext‘. It fetches and displays data in JSON format, listing publications
by similarity and providing details like title, authors, publication date, and ab-
stracts, along with hyperlinks and filters for refined searches by author, date
range, and view mode.

The back end, developed with FastAPI and hosted on Uvicorn, ensures
high performance and scalability through asynchronous operations. It processes
and optimizes user queries, generating related queries and converting them into
embeddings for semantic similarity matching. This setup facilitates responsive
search experiences by returning relevant results and suggestions to the front end,
allowing seamless query navigation and refinement.

4 Evaluation Methodology

4.1 Dataset

The Cornell University arXiv dataset [30] is our main data source, contain-
ing over 2.4 million entries with scholarly article metadata, including titles, ab-
stracts, author details, and categorization. It also provides access to some full-
text PDFs through platforms like Kaggle, DataCite’s API, arXiv’s open API, and
an AWS S3 bucket. This dataset supports trend analysis, literature search tools,
and network construction, making it crucial for understanding and advancing
STEM research.
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4.2 Evaluation Metric

Information retrieval metrics fall into online and offline categories. Online met-
rics like session abandonment and click-through rates require real user data,
which isn’t feasible at our current stage. Offline metrics such as precision and
recall need labeled datasets, which we don’t have. Thus, we developed an alter-
native evaluation approach. Our method involves generating synthetic queries
with Gemini LLM and Zero-shot Learning, simulating real user searches based
on the provided articles to assess retrieval effectiveness.

Prompt Construction:
For each article, the system generates a prompt p(i) that guides the zero-shot

learning process. The prompt is constructed as follows:
(1) Task Description: The task, denoted as p

(i)
task, outlines the objective of

the zero-shot learning process. For instance: Generate a short human-like user
query that should return the following academic article on being searched upon.

(2) Input: Denoted as p
(i)
article, this component represents the ith article in

the dataset. The LLM operates on p
(i)
article without any additional processing or

context added.
The complete prompt for the ith article is formulated by combining these

elements:

p(i) = p
(i)
task || p(i)article

Subsequently, with these generated synthetic queries, we deploy IntelliS-
MART to retrieve the most semantically similar articles from our database.
Given our crafted queries, we possess a priori knowledge of the correct articles
that should ideally be retrieved, facilitating meticulous evaluation against the
ground truth—the correct articles identified during query creation.

Top k Documents
Retrieval System k = 1 k = 3 k = 5 k = 10

Sklearn TF-IDF 64.03% 77.33% 81.73% 86.68%
BM25 63.83% 76.16% 79.96% 83.88%

Gemini Embedding, Annoy Indexing 79.78% 88.28% 89.43% 90.63%
GTE-BASE Embedding, Annoy Indexing 85.35% 92.60% 93.95% 95.20%
GTE-BASE Embedding, FAISS Indexing 87.58% 95.23% 96.65% 97.98%

Gemini Embedding, FAISS Indexing 85.78% 95.13% 96.50% 97.88%

Table 1. Top k document retrieval by Retrieval System combination

In the evaluation phase, we examine the top 1, 3, 5, and 10 retrieved articles
for each synthetic query to understand performance across the different retrieval
depths. We analyze the percentage of queries for which the correct corresponding
article is present within the retrieved set, assessing our model’s ability to capture
semantic relevance. This approach enables assessment of the model’s robustness
and efficacy in delivering semantically aligned search results.



8 A. Khatri et al.

Additionally, we benchmark our model against established content-based
search benchmarks, specifically Sklearn’s Tf-Idf and BM25.

Scikit-learn’s Tf-Idf implementation measures term importance by com-
bining term frequencies within documents with inverse document frequencies,
creating a compact representation for efficient retrieval. BM25 enhances term
frequency scoring by using logarithmic functions to address saturation effects
and adjusts inverse document frequency to counteract common term biases. It
also normalizes document length and introduces saturation thresholds for both
term frequency and inverse document frequency components.

Retrieval System Data Preparation Time Stored Data Size Inferencing Time
Sklearn TF-IDF 27.4 s 90.94 Mb 11.46 mins

BM25 20 mins 841.1 Mb 60.93 mins
Gemini Embedding, Annoy Indexing 40 mins + 0.5 mins 934.3 Mb 27.63 mins

GTE-BASE Embedding, Annoy Indexing 7.5 mins + 0.5 mins 907.4 Mb 8.71 mins
GTE-BASE Embedding, FAISS Indexing 7.5 mins + 0.23 s 293.7 Mb 16.8 mins

Gemini Embedding, FAISS Indexing 40 mins + 0.25 s 294.7 Mb 37.1 mins

Table 2. Retrieval System Combination Statistics

5 Results

Evaluation results from approximately 1,000 queries reveal that Sklearn TF-
IDF and BM25 models perform well, with accuracies ranging from 64% to 87%,
peaking at 86.6% for Sklearn TF-IDF and 83.8% for BM25 at k=10. In con-
trast, IntelliSMART with Gemini Embedding and Annoy or FAISS indexing
consistently outperforms these methods, with the GTE-BASE Embedding and
FAISS indexing achieving the highest accuracy of 97.98% at k=10. These results
highlight the superior effectiveness of embedding-based retrieval systems, par-
ticularly with advanced indexing like FAISS, in improving document relevance.
Table 2 highlights the efficiency and scalability of different retrieval systems in
terms of data preparation time, stored data size, and inference time for 1000
queries. Traditional models like Sklearn TF-IDF and BM25 have shorter data
preparation times (27.4 seconds and 20 minutes, respectively) but longer infer-
ence times (11.46 and 60.93 minutes). In contrast, IntelliSMART with Gemini
Embedding and advanced indexing techniques like FAISS, especially GTE-BASE
Embedding with FAISS, excels in both data preparation and inference. Despite
longer data preparation, these embedding-based models offer faster inference,
with GTE-BASE Embedding and Annoy achieving the shortest inference time
of 8.71 minutes. However, they require more storage compared to traditional
methods, demonstrating the trade-offs between preparation time, storage, and
inference speed.
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6 Conclusion

In conclusion, traditional keyword-based search engines struggle with the grow-
ing volume of academic literature and lack nuance. Integrating large language
models (LLMs) with semantic processing, as seen with IntelliSMART, signifi-
cantly improves query precision and retrieval. Evaluation shows that embedding-
based systems with advanced indexing, like FAISS, outperform traditional meth-
ods, positioning IntelliSMART as a potential game-changer in academic article
retrieval.
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