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Abstract. The airline industry has suffered a severe impact due to the
COVID-19 pandemic. It resulted in significant financial losses. Strate-
gic route planning is now an urgent need to mitigate the ongoing cri-
sis. Motivated by the importance of customer sentiment in informing
airline route decisions, this paper presents EAGLE (Enhancing Airline
Groundtruth Labels and rEview rating prediction), a novel two-stage
framework that leverages the power of Large Language Models (LLMs)
to address the limitations of current works, which often rely on man-
ual labeling and traditional machine learning models. In the first phase,
EAGLE introduces a pseudo-labeling approach using LLMs to automat-
ically label customer reviews to reduce the need for manual annotation
and mitigate potential biases that exist in human labeling. The second
phase employs a zero-shot LLM-based text classification method to pre-
dict customer sentiment and preferences from online reviews to provide a
more accurate and context-aware analysis of customer feedback. Through
extensive experiments, we demonstrate the effectiveness and robustness
of EAGLE to demonstrate its superior performance compared to exist-
ing techniques. The proposed framework empowers airline companies to
make data-driven decisions about route expansions, considering customer
preferences and sentiments. Our contribution fibs in enhancing the objec-
tivity of sentiment analysis and providing a comprehensive and scalable
solution for airline route planning in the post-pandemic era, eventually
leading to improved customer satisfaction and optimized operations.
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1 Introduction
The COVID-19 pandemic has had a profound impact on the aviation industry,
causing unprecedented disruptions and challenges. As countries enforced border
closures and restrictive measures to contain the spread of the virus, the de-
mand for air travel plummeted, leading to a significant drop in the number of
flights [4,22]. According to the International Air Transport Association (IATA),
global passenger traffic declined by 65.9% in 2020 compared to 2019, with in-
ternational passenger demand falling by 75.6% [2]. Airlines suffered net losses of
126.4 billion USD on a revenue loss of 373 billion USD in 2020. Direct aviation
jobs decreased by approximately 43%, and aviation-supported jobs are estimated
to have reduced by 52% [2,27].

The pandemic’s impact on the aviation industry has been fast and severe,
with many businesses struggling to survive [3,6,24]. Airlines have been forced to
ground their fleets, lay off employees, and seek government support to stay afloat
[4]. For example, Virgin Australia, one of Australia’s largest airlines, entered
voluntary administration in April 2020 due to the financial strain caused by the
pandemic [3]. Similarly, numerous airlines and aviation-related businesses have
faced bankruptcy or have had to significantly downsize their operations to cope
with the crisis.

Amidst the turbulence caused by the pandemic, airlines have been compelled
to reevaluate their strategic frameworks considering unprecedented challenges.
The aviation industry has been actively adopting diverse strategies to navigate
uncertain and increasingly complex business environments. Studies such as those
by Linden [14] and Schwenker and Wulf [21] have employed simulations and
scenario-based strategic planning to project multiyear trajectories, highlighting
the significance of scenario analysis and dynamic decision-making in response to
market shifts. Traditional strategic planning methods, including customer data
collected from surveys, continue to play a pivotal role. The accessibility and
rapid analysis of big data, particularly user-generated content (UGC), are also
recognized as reliable and valid methods for informing strategic decision-making,
complementing other internal and external determinants.

In the competitive airline industry, understanding customer preferences is
critical for optimizing routes, services, and overall satisfaction [10,31,34]. Airlines
traditionally relied on surveys to gather feedback, primarily for route expansion
within existing markets (e.g., gauging interest in adding flights to nearby cities)
[8]. However, this approach has limitations. Surveys often have low response rates
and may not capture the full spectrum of customer sentiment. Other works
relied heavily on traditional machine learning methods or sentiment analysis
to evaluate the quality of service by evaluating the customer reviews on social
media [1,5,5,7,9,11–13,19,29,30,32] . While these methods provide some insights,
they often struggle to capture the nuanced and contextual information present in
customer feedback, limiting their effectiveness in informing strategic decisions.
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In our work, we propose using Large Language Models (LLMs) to bridge this gap
by leveraging their ability to understand and generate human-like text, enabling
more accurate and context-aware analysis of customer sentiment.

In this paper, we present EAGLE (Enhancing Airline Groundtruth Labels
and rEview rating prediction), a novel two-stage framework that leverages the
power of LLMs to address the limitations of traditional approaches in analyzing
customer reviews for the airline industry. EAGLE introduces a pseudo-labeling
approach using LLMs to automatically label customer reviews, reducing the need
for manual annotation and mitigating potential biases that exist in human la-
beling. By employing zero-shot learning, our method enables the analysis and
rating of reviews without requiring pre-defined examples for each rating category.
In the second stage, EAGLE utilizes a zero-shot LLM-based text classification
model to predict customer sentiment and preferences from online reviews. This
approach allows for a more accurate and context-aware analysis of customer
feedback, capturing the nuanced and contextual information that traditional
methods often struggle to identify. We conduct extensive experiments to val-
idate the effectiveness and robustness of EAGLE, demonstrating its superior
performance compared to existing techniques. Our work has significant implica-
tions for the airline industry, enabling airlines to make more informed decisions,
improve customer satisfaction, and optimize their route planning strategies in
the post-pandemic era. By providing a comprehensive and scalable solution for
customer review analysis, EAGLE paves the way for enhanced decision-making
and strategic planning in the highly competitive airline industry. Our contribu-
tions are summarized as follows:

– We introduce a pseudo-labeling approach using Large Language Models
(LLMs) to automatically label customer reviews, reducing the need for man-
ual annotation and mitigating potential biases that exist in human labeling.

– We propose a zero-shot LLM-based text classification model for predicting
customer sentiment and preferences from online reviews, enabling more ac-
curate and context-aware analysis of customer feedback.

– We conduct extensive experiments to validate the effectiveness and robust-
ness of EAGLE, demonstrating its superior performance compared to exist-
ing state-of-the-art techniques.

2 Related Work
2.1 Pseudo-Labeling and Semi-Supervised Learning

Annotating data for domain-specific natural language tasks is a challenge that
has been addressed through pseudo-labeling and semi-supervised learning. Moezzi
et al. [20] approached pseudo-labeling by utilizing an uncertainty-aware frame-
work and observed that the selection of prediction with low uncertainty improves
generalization. In a recent work [17], a large language model was used for a com-
parative study on the effectiveness of LLM-generated pseudo labels compared to
human annotation for domain-specific text classification tasks. Although their
result indicated superior performance on human-annotated data, the goal of the
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project was to generate synthetic data for samples in under-represented classes
which does not address the efficacy of generating labels for existing texts based
on human-annotated examples or the inherent bias that exists in a small sample
size of annotated data. Wang et al. [28] adapt a zero-shot learning approach
that utilizes label phrase expansion to find more semantically aligned words or
phrases for alleviating the class imbalance problem of the naive-zero shot ap-
proach. However, the quality of pseudo-labeled data is not generalizable to all
human annotated dataset. Another work [33], addresses this issue by proposing
a prototype-guided module that chooses samples around a prototype text repre-
sentation of an under-labeled class to assign pseudo labels. However, this work
does not leverage LLMs for assigning pseudo-labels to examine if the same issue
persists. Despite useful insights gained from the mentioned approaches, there
still exists a gap in harnessing the power of LLMs for pseudo-labeling. Hence, in
this work, we leverage the power of pre-trained LLMs for zero-shot learning of
pseudo-labels in airline customer reviews.

2.2 Text Classification Techniques for Customer Reviews

The field of text classification for customer reviews has advanced significantly,
with recent works addressing various challenges. Sun et al. [26] introduced Clue
And Reasoning Prompting (CARP), using progressive reasoning to enhance clas-
sification performance in large-scale language models. Similarly, Zhang et al. [35]
presented RGPT, an adaptive boosting framework leveraging ensembling tech-
niques for specialized text classification, outperforming state-of-the-art models.
Nguyen et al. [18] integrated sentiment analysis and rating prediction to im-
prove recommendation systems, while Subroto et al. [25] focused on predicting
review ratings through machine learning models analyzing attributes and topics.
Mandal et al. [16] introduced review network feedback, incorporating customer
interactions to enhance recommendation systems. Our work differs by utilizing
LLMs for zero-shot pseudo-labeling and text classification, providing accurate
and context-aware analysis of customer feedback without extensive manual anno-
tation. This scalable and adaptable framework can be applied across various do-
mains, including the airline industry, to drive customer-centric decision-making
and improve business outcomes.

2.3 Customer Feedback Analysis in the Aviation Industry

Customer feedback analysis has gained significant attention in the aviation in-
dustry to improve services and inform decision-making. Various approaches, in-
cluding sentiment analysis, topic modeling, and machine learning, have been
employed. BERT, adapted for aviation-specific tasks, shows the potential of
fine-tuned models for processing vast text data [12]. Sentiment analysis, widely
applied to understand passenger opinions, compares methods like VADER and
logistic regression [9]. Combining topic modeling and sentiment analysis helps
identify key issues in airline reviews, highlighting factors like seat, service, meals,
and delays [13].
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Advanced techniques such as sarcasm detection [11], deep learning [7], mul-
timodal approaches [30], time series methods [32], and aspect-based sentiment
analysis [1] address the nuances of aviation customer feedback. These studies
capture sudden changes in passenger sentiments, aiding airlines in taking mit-
igatory measures. Data from blogs and text extracting software assess service
levels perceived by airport customers [5]. Despite these advancements, many
rely on human-labeled data, which can introduce biases, and primarily focus on
sentiment analysis.

Our method utilizes LLMs for zero-shot pseudo-labeling, reducing the need
for human labeling and associated biases. We conduct multi-class text classifi-
cation on user ratings, offering a granular understanding of customer feedback.
These diverse applications and our novel approach enhance decision-making and
service quality in the aviation industry.

3 Methodology

Fig. 1: The illustrative architecture of EAGLE framework.

In this study, we explain our approach (illustrated in figure. 1) which splits
into two main parts: first, we develop an LLM pseudo-labeling to give an initial
rating to customer reviews, and second, we classify these initially rated reviews
to predict their final ratings. This two-step process helps us better understand
and predict how customers feel about airline services for better decision-making.
Our method uses two types of learning: zero-shot and supervised learning. Zero-
shot learning helps us analyze and rate reviews without needing examples of each
rating beforehand, while supervised learning uses examples with known ratings
to learn how to rate new reviews accurately. We create specific instructions, or
prompts, for the LLM to follow so it can understand and rate the text reviews
on a scale of 1 (most negative) to 10 (most positive).
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3.1 Pseudo-labeling with LLM

Notation: Let AG = {(x(i), y(i))}NG
i=1 be the dataset contains the text reviews

labeled by human with NG

Define AG = {(x(i), y(i))}NG
i=1 as the dataset comprising human-labeled text

reviews, where NG denotes the total number of samples. Each input x(i) repre-
sents a text review, and its corresponding label y(i) = [y

(i)
1 , . . . , y

(i)
C ] ∈ {1, . . . , 10}C

encapsulates the ratings across C class categories. In this rating system, y(i)c = 1

signifies the most negative review sentiment, and y
(i)
c = 10 signifies the most

positive review sentiment. The objective is to generate a pseudo-label ỹ(i) for
every y(i) by learning from the LLM on the dataset AG. The output will be the
updated dataset AS = {(x(i), y(i), ỹ(i))}NS

i=1

In this scenario where the pseudo-labeling is performed using a LLM, the
adaptation to the specific pseudo-labeling task can be achieved through methods
such as:

– Zero-shot Learning: The LLM is directly queried with inputs phrased in a
way that includes the task description, aiming for the model to leverage its
pre-trained knowledge to generate pseudo labels.

– Supervised Learning: For pseudo labeling, the LLM is first trained on a la-
beled dataset specific to the task. It then uses this trained model to generate
pseudo labels for the dataset.

Zero-shot Learning Pseudo-labeling Prompt Construction The prompt,
shown as x(i)

prompt, is made using the variable x(i) and includes three main parts:
(1) System Description: xsystem succinctly encapsulates the operational

essence of what the LLM can do. It describes the wide range of information the
model knows about and how it uses this knowledge to look at different kinds
of data. For pseudo-labeling, we use this example prompt: You are an expert
system designed to evaluate airline flight trips based on industry standards and
customer expectations. Your knowledge base covers various aspects of the air
travel experience, including flight operations, airport services, customer service,
safety, sustainability, and innovation. You will be provided with details of a spe-
cific flight trip.

(2) Input: xinput represents the textual sequence intended for pseudo-labeling.
The composite prompt, xprompt, is methodically constructed by the concatena-
tion of the system description xsystem, the input xinput, and the task directive
xtask. Formally, this can be represented as:

xprompt = xsystem || xinput || xtask

where || denotes the concatenation operation.
(3) Task Description: xtask explains the objective to be accomplished,

aligning the task of pseudo-labeling with the context of the LLM’s capabilities.
For pseudo-labeling, the task is explained as: your task is to analyze the infor-
mation and provide a comprehensive evaluation report. Rate from 1 to 10. Your
answer should only be a number only.
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Supervised Learning Pseudo-labeling Prompt Construction The prompt,
denoted as x

(i)
prompt, is built using the variable x(i) and comprises three distinct

elements:
(1) System Description: xsystem concisely outlines the capabilities of the

LLM, detailing its extensive knowledge base and application across various data
types. For pseudo-labeling, consider the following example: You are an expert
system tasked with evaluating airline flights based on criteria such as Aircraft,
Airline Name, Cabin Type, Date Flown, ratings for Entertainment, Food, Ground
Service, Origin Country, Overall Score, Recommendation status, Review Route,
Seat Comfort, Service, Value, and Wifi. Details on a specific flight will be pro-
vided.

(2) Input: xinput is the text sequence for pseudo-labeling, highlighting fea-
tures and customer ratings in the reviews. Example input text: Airline Name:
AB Aviation. Cabin Type: Economy Class. Date Flown: November 2019. Enter-
tainment Rating: 0. Food Rating: 4. Ground Service Rating: 4. Origin Country:
Netherlands. Overall Score: 9.0. Recommended: Yes. Review: A surprisingly de-
cent airline with efficient online booking, check-in, and boarding. The short flight
included complimentary water and biscuits. Both flights were punctual. Route:
Moroni to Moheli. Seat Comfort Rating: 4. Service Rating: 5. Value Rating: 3.
Wifi Rating: 0. The full prompt, xprompt, is created by concatenating xsystem,
xinput, and xtask as follows:

xprompt = xsystem || xinput || xtask

where || symbolizes the joining of these texts.
(3) Task Description: xtask outlines the goal, tailoring the pseudo-labeling

activity to the LLM’s strengths. The task is detailed as: Your job is to assign
an overall rating between 1 and 10, based solely on a numerical response.

3.2 Customer Reviews Text Classification with LLM

Notation: Let AS = {(x(i), y(i), ỹ(i))}NS
i=1 be the dataset containing the text

reviews labeled by LLM (pseudo labels) with NS samples, where x(i) is a text
review input, and ỹ(i) = [ỹ

(i)
1 , . . . , ỹ

(i)
C ] ⊆ {1, . . . , 10}C is the corresponding label

with C class categories. For a sample i, ỹ(i)c = 1 denotes that the text review
rating is most negative, and ỹ

(i)
c = 10 denotes that the text review rating is most

positive. The objective is to accurately map the input text reviews x(i) to their
corresponding labels ỹ(i), leveraging the intrinsic capabilities of the LLM.

Given the utilization of an LLM for classification, the training or inference
process diverges from conventional approaches that rely on minimizing a pre-
defined loss function. Instead, the model leverages its pre-existing knowledge,
acquired through extensive pre-training on diverse text corpora, to perform the
task of text classification. The process can be formalized as follows:

ŷ(i) =c P (ỹ(i)c | x(i); θ)
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where x(i) is a text review input, ỹ(i) is the set of possible labels, ŷ(i) is
the predicted label by the LLM, and θ represents the parameters of the LLM.
The prediction ŷ(i) is determined by selecting the label c that maximizes the
conditional probability P (ỹ

(i)
c | x(i); θ), which is computed by the LLM.

In this scenario where the text classification is performed using a LLM, the
adaptation to the specific classification task can be achieved through methods
such as zero-shot Learning where the LLM is directly queried with inputs phrased
in a way that includes the task description, expecting the model to leverage its
pre-trained knowledge to infer the correct label without any task-specific fine-
tuning.

Zero-shot Learning Text Classification Prompt Construction Given
the dataset AS = {(x(i), y(i), ỹ(i))}NS

i=1 for text classification using an LLM, the
prompt construction for zero-shot Learning is outlined as follows, utilizing x(i)

as the input:
(1) System Description: This part, x(i)

system, provides a brief on the LLM’s
design and domain expertise. For instance, You are an expert sentiment anal-
ysis system designed to classify the sentiment of flight customer reviews. Your
knowledge base covers various aspects of the air travel experience, including flight
operations, airport services, customer service, safety, sustainability, and innova-
tion.

(2) Input: Denoted as x(i)
input, this component is the actual text review that

needs classification. It is the raw data on which the LLM operates, without any
additional processing or context added.

(3) Task Description: The task, x(i)
task, clarifies the objective of the classi-

fication, structured as a directive to the LLM. An example task could be, Your
task is to analyze the information and provide a classification score on a scale
from 1 to 10, where: 1 is most negative and 10 is most positive. Your response
should be an integer between 1 and 10 without any additional text or explanation

The prompt x
(i)
prompt for each ith instance in the dataset is formulated by

amalgamating these elements, expressed as:

x
(i)
prompt = x

(i)
system || x(i)

input || x(i)
task

where || signifies the concatenation operation. This structured prompt facilitates
the LLM’s zero-shot Learning capability by providing a clear, comprehensive
context for each text classification task.

4 Experiment and Results
In this section, we present the dataset and the evaluation of our proposed frame-
work. To assess the effectiveness of our approach, we conduct experiments in
two distinct stages. First, we employ an LLM to generate pseudo-labels for
the dataset under two different setups: binary pseudo-labeling and multi-class
pseudo-labeling. Second, we evaluate the performance of the LLM in classifying
customer reviews, considering both binary and multi-class classification tasks.
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4.1 Dataset

The dataset used in this study was collected by Ljungström [15], who scraped
and extracted public reviews from the Air Travel Review (ATR) website7. ATR
is a customer forum owned and operated by the airline rewards company Sky-
Trax, providing comprehensive reviews for airports, airport lounges, airline seats,
and airlines. The dataset contains individual reviews related to airlines on ATR,
consisting of 21 variables. The full dataset comprises 128,631 reviews from 547
airlines, ranging from April 2005 to September 2022. However, due to the devel-
opment of ATR over time, not all dimensions have been consistently available for
rating, resulting in incomplete data for some variables. In our experiments, rows
with missing values were excluded from the analysis. For certain parts of the
experiment, we focus on two specific variables: Review (The customer feedback
text on the taken trip) and OverallScore (the provided rating by the customer).
In other parts, we include all 21 variables, such as AirlineName, DataFlown,
CabinType, Recommended, etc. To address class imbalance, we randomly sam-
ple 1,700 reviews for each of the three categories based on OverallScore: "Low"
(1-3), "Medium" (4-6), and "High" (7-10) which results in 5100 samples. The
distribution of word counts for the Review variable ranges from 1 to 1,058 words,
with an average length of 136 words.

4.2 Experiment Settings and Evaluation Metrics

In this research, we employed Claude, an AI model developed by Anthropic, for
pseudo-labeling and text classification tasks. We specifically used Claude version
"claude-3-opus-20240229" due to its superior performance compared to other
language models like ChatGPT. Previous studies have demonstrated that Claude
outperforms ChatGPT in terms of accuracy and consistency across various nat-
ural language processing tasks [23]. To optimize the performance of Claude for
pseudo-labeling and text classification, we carefully tuned the hyperparameters
of the Claude API. The engine name was set to "claude-3-opus-20240229", which
represents the specific version of Claude used in our experiments. We configured
the maximum number of tokens to 1000, allowing the model to generate suffi-
ciently long responses while maintaining computational efficiency. The temper-
ature parameter, which controls the randomness of the generated outputs, was
set to 0 to ensure deterministic and consistent results. The default topp param-
eter which is 1 was used which means all possible tokens were considered during
the sampling process. To ensure the robustness and reliability of our results, we
ran each prompt through the Claude API three times and calculated the aver-
age performance across the three runs. This approach helps mitigate potential
variability in the model’s outputs and provides a more stable and representative
assessment of its performance.

7 https://www.airlinequality.com

https://www.airlinequality.com
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4.3 Pseudo-labeling Results and Analysis

In this experiment, we developed two zero-shot learning pseudo-labeling prompts,
denoted as ZP1 and ZP2, and two supervised learning pseudo-labeling prompts,
denoted as SP1 and SP2. ZP1 and SP2 are provided in the methodology sec-
tion 3. ZP2 has less instructions and is a more simplified version of ZP1 in
terms of the system and task. SP1 is also a simplified version of SP2 and less
details and instructions in terms of system and tasks as well. The performance
of these engineered prompts was evaluated on two levels: binary and multi-class
pseudo-labeling.

For binary pseudo-labeling, we considered any label or rating ỹ above 5 as
positive and any label or rating ỹ below 5 as negative. The effectiveness of the
binary pseudo-labeling was measured using the Mean Absolute Error (MAE),
Mean Squared Error (MSE), and R-squared (R2) metrics. These metrics were
calculated between the human-assigned labels or ratings and the pseudo-labels
generated by the prompts.

For multi-class pseudo-labeling, the prompts provided labels or ratings on a
scale from 1 to 10, with 1 being the most negative and 10 being the most positive.
The performance of the multi-class pseudo-labeling was evaluated using the same
metrics as in the binary case: MAE, MSE, and R2. These metrics were calculated
between the human-assigned labels or ratings and the multi-class pseudo-labels
generated by the prompts.

Pseudo-binary labeling Pseudo-multi-labeling

Model MAE MSE R2 MAE MSE R2

ZP1 0.1466 0.0344 0.7687 1.3417 2.7155 0.7746
ZP2 0.1727 0.7575 0.2836 2.3249 11.4223 0.0249
SP1 0.3064 0.1807 -0.2176 2.8575 15.6064 -0.2961
SP2 0.2749 0.1604 -0.0788 2.7323 14.5931 -0.2109

Table 1: Comparison of the first stage of EAGLE’s performance in pseudo-binary-
labeling and pseudo-multi-label between zero-shot and supervised learning.

The performance of the four pseudo-labeling models, namely ZP1, ZP2, SP1,
and SP2, was evaluated in both binary and multi-class settings, as presented
in Table 1. In the binary pseudo-labeling task, ZP1 demonstrated the best per-
formance with the lowest MAE of 0.1466 and MSE of 0.0344, as well as the
highest R-squared (R2) value of 0.7687. This indicates that ZP1 achieves the
highest agreement with human annotations in the binary setting. ZP2 exhibited
slightly lower performance compared to ZP1, with an MAE of 0.1727, MSE of
0.7575, and R2 of 0.2836. On the other hand, the supervised learning models,
SP1 and SP2, showed relatively higher error rates and lower R2 values in the
binary task, suggesting that they may not capture the binary labels as effectively
as the zero-shot learning models.

In the multi-class pseudo-labeling task, ZP1 once again outperformed the
other models, achieving the lowest MAE of 1.3417 and MSE of 2.7155, along with
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the highest R2 value of 0.7746. This suggests that ZP1 is able to generate multi-
class pseudo-labels that align well with the human annotations. ZP2 exhibited
higher error rates and a significantly lower R2 value of 0.0249 in the multi-class
setting, indicating a weaker agreement with human labels compared to ZP1. The
supervised learning models, SP1 and SP2, showed even higher error rates and
negative R2 values in the multi-class task, implying that they may struggle to
capture the nuances of the multi-class labels.

Overall, the results demonstrate that the zero-shot learning model ZP1 con-
sistently outperforms the other models in both binary and multi-class pseudo-
labeling tasks. It achieves the lowest error rates and highest R2 values, indicating
a strong agreement with human annotations. The supervised learning models,
SP1 and SP2, exhibit relatively lower performance in both settings, suggesting
that they may not be as effective in capturing the underlying label distribution.
These findings highlight the potential of zero-shot learning approaches, particu-
larly ZP1, for generating accurate pseudo-labels in both binary and multi-class
scenarios.

k Pseudo-binary labeling Pseudo-multi labeling

MAE MSE RMSE R2 MAE MSE RMSE R2

1000 0.1567 0.0401 0.1992 0.7268 1.3715 2.9592 1.7202 0.7481
2000 0.1542 0.0381 0.1948 0.7467 1.3698 2.8560 1.6899 0.7632
3000 0.1513 0.0368 0.1918 0.7553 1.3633 2.8288 1.6819 0.7673
4000 0.1487 0.0357 0.1889 0.7608 1.3413 2.7379 1.6546 0.7724
5000 0.1466 0.0344 0.1860 0.7687 1.3417 2.7155 1.6479 0.7746

Table 2: Performance metrics for pseudo-binary labeling and pseudo-multi la-
beling tasks.

To optimize computational resources and efficiency, we investigated the min-
imum amount of data required to achieve a desired level of performance using
the best-performing prompt, ZP1. Let D = (x1, y1), (x2, y2), ..., (xn, yn) denote
the entire dataset, where xi represents the input features and yi represents the
corresponding human-annotated labels. We define a subset of the dataset as
Dk = (x1, y1), (x2, y2), ..., (xk, yk), where k ∈ 1, 2, ..., n represents the size of the
subset.

We conducted a series of experiments by gradually increasing the size of
the subset Dk and evaluating the performance of ZP1 on each subset. The per-
formance was measured using the MAE, MSE, and R2 metrics, as defined in
the previous section. Let MAE(k), MSE(k), and R2(k) denote the respective
metrics calculated on the subset Dk.

By incrementally increasing the size of the subset Dk and evaluating the
performance metrics, we aim to identify the minimum amount of data required to
achieve the desired performance level. Table 2 presents the performance metrics
for the best-performing prompt, ZP1, on subsets of the dataset with varying
sample sizes. The metrics are evaluated for both pseudo-binary labeling and
pseudo-multi-labeling tasks.
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In the pseudo-binary labeling, as the number of samples increases from 1000
to 5000, we observe a consistent improvement in performance. The MAE de-
creases from 0.1567 to 0.1466, indicating a reduction in the average absolute
difference between the predicted and true binary labels. Similarly, the MSE
decreases from 0.0401 to 0.0344, suggesting a decrease in the average squared
difference between the predicted and true labels. The RMSE also shows a de-
creasing trend, from 0.1992 to 0.1860, indicating a reduction in the standard
deviation of the prediction errors. Moreover, the R2 value increases from 0.7268
to 0.7687, indicating an improvement in the proportion of variance in the true
labels that can be explained by the predicted labels.

In the pseudo-multi-labeling, we observe a similar trend of improving perfor-
mance as the sample size increases. The MAE decreases from 1.3715 to 1.3417,
indicating a reduction in the average absolute difference between the predicted
and true multi-class labels. The MSE also decreases from 2.9592 to 2.7155, sug-
gesting a decrease in the average squared difference between the predicted and
true labels. The RMSE shows a decreasing trend, from 1.7202 to 1.6479, indicat-
ing a reduction in the standard deviation of the prediction errors. The R2 value
increases from 0.74805 to 0.7746, indicating an improvement in the proportion
of variance in the true labels that can be explained by the predicted labels.

It is worth noting that the improvement in performance metrics becomes
smaller as the sample size increases, suggesting a diminishing return in perfor-
mance gain. For example, the decrease in MAE is more pronounced when the
sample size increases from 1000 to 2000 compared to the decrease when the sam-
ple size increases from 4000 to 5000. This observation aligns with the concept
of learning curves, where the performance improvement tends to plateau as the
sample size becomes sufficiently large.

The results in Table 2 provide insights into the trade-off between sample
size and performance. While increasing the sample size generally leads to better
performance, the marginal improvement diminishes as the sample size grows
larger.

4.4 Text classification Results and Analysis

In this experiment, we conducted zero-shot text classification and evaluated the
results on two levels: binary and multi-label classification. For binary classifica-
tion, any rating ỹ above 5 was considered positive, while any rating ỹ below 5
was considered negative. We measured various performance metrics, including
MAE, MSE, RMSE, R2, precision, recall, and F1-score. These metrics provide a
comprehensive evaluation of the model’s performance, considering different as-
pects such as accuracy, precision, and recall, which are essential for assessing the
effectiveness of the classification model.

The dataset was divided into training, validation, and testing sets using cross-
validation. We compared our work to traditional machine learning models (e.g.,
Logistic Regression, Naïve Bayes, SVM, Random Forest), deep learning mod-
els (e.g., CNN, RNN), and pre-trained models such as BERT and RoBERTa.
RoBERTa was fine-tuned on an NVIDIA 3060 GPU with hyperparameters tuned



Empowering Airline Route Decisions 13

on the validation set, including learning rates ∈ {2e − 5, 3e − 5, 4e − 5}, batch
sizes ∈ {16, 32}, a dropout rate of 0.3, a weight decay of 0.01, and a warmup
proportion of 0.01.

Similar to the pseudo-labeling experiment, we measured the minimum amount
of data required to achieve a certain level of performance for both binary and
multi-label classification. Table 3 presents the binary classification results, while
Table 4 shows the multi-label classification results.

Table 3: Binary classification results
k MAE MSE RMSE R2 P R F1

1000 0.0690 0.0152 0.1235 0.8325 0.99 0.97 0.97
2000 0.0695 0.0157 0.1255 0.8258 0.98 0.97 0.97
3000 0.0710 0.0173 0.1317 0.8058 0.98 0.96 0.97
4000 0.0686 0.0158 0.1259 0.8198 0.98 0.96 0.97
5000 0.0686 0.0154 0.1241 0.8237 0.99 0.97 0.97

For binary classification (Table 3), as the number of samples (k) increases,
the performance metrics remain relatively stable. The MAE ranges from 0.0686
to 0.071, indicating a low average absolute error. The MSE and RMSE also
show low values, suggesting a good fit of the model. The R-squared values are
consistently high (above 0.8), indicating that the model explains a significant
portion of the variance in the data. The precision, recall, and F1-score for the
binary classification is high, demonstrating the model’s ability to accurately
classify both positive and negative samples.

k MAE MSE RMSE R2 P R F1 Purity
1000 0.7960 3.5102 1.8735 0.3933 0.81 0.76 0.78 0.7643
2000 0.7622 3.2422 1.8003 0.4294 0.81 0.76 0.78 0.7644
3000 0.7624 3.2424 1.8007 0.4296 0.81 0.76 0.78 0.7675
4000 0.7911 3.4689 1.8625 0.3798 0.82 0.76 0.78 0.7675
5000 0.7507 3.1767 1.7823 0.4282 0.81 0.76 0.78 0.7644

Table 4: Multi-label classification results

In the multi-label classification (Table 4), as the number of samples (k) in-
creases, the performance metrics show improvements. The MAE decreases from
0.796 to 0.7507, indicating a reduction in the average absolute error. The MSE
and RMSE also decrease, suggesting a better fit of the model. The R-squared val-
ues increase, indicating that the model explains more variance in the data as the
sample size grows. The precision, recall, and F1-score remain relatively stable,
with values around 0.81, 0.76, and 0.78, respectively. We also corroborate our
results by measuring the purity. Purity is a metric commonly used to evaluate
the quality of clustering algorithms, including those used in multi-classification
tasks. It measures the extent to which clusters contain a single class or category.
The purity score is between 0.7643 and 0.7644 which indicates that, on average,
76.44% of the instances within each cluster belong to the same true class. This
suggests that EAGLE achieves a reasonably good level of cluster homogeneity.
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Model Precision Recall F1-score Accuracy
LR 0.50 0.57 0.47 0.57
NB 0.31 0.53 0.39 0.53
SVM 0.42 0.57 0.44 0.57
Random Forest 0.51 0.55 0.41 0.55
LR (BoW) 0.51 0.54 0.52 0.54
LR (TF-IDF) 0.52 0.57 0.47 0.57
LR (Word) 0.39 0.46 0.41 0.46
CNN 0.53 0.58 0.52 0.57
RNN 0.30 0.45 0.34 0.45
Bert 0.63 0.65 0.64 0.65
Roberta 0.63 0.64 0.64 0.65
EAGLE 0.81 0.76 0.78 0.76

Table 5: Model performance comparison.

Table 5 compares the performance of our model EAGLE with various base-
lines. EAGLE achieves the highest precision (0.81), recall (0.76), F1-score (0.78),
and accuracy (0.76) among all the models, outperforming traditional machine
learning models, deep learning models, and pre-trained models such as BERT
and RoBERTa.

Class Precision Recall F1-Score
1 0.4108 0.7984 0.5425
2 0.7206 0.7571 0.7384
3 0.9245 0.7696 0.8414
4 0.6829 0.7421 0.7112
5 0.1316 0.8065 0.2262
6 0.7130 0.7490 0.7306
7 0.7617 0.7920 0.7766
8 0.8825 0.7411 0.8056
9 0.2591 0.7576 0.3861

Table 6: Classification performance by class.

Fig. 2: Classification performance by class confusion matrix

Finally, Table 6 and the confusion matrix 2 show the performance of EAGLE
for each class in the multi-label classification task. The precision, recall, and F1-
score vary across different classes, with some classes (e.g., class 3 and class 8)
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achieving higher performance compared to others (e.g., class 5 and class 9). This
suggests that the model’s performance may be influenced by the characteristics
and distribution of the different classes in the dataset.

In summary, our zero-shot text classification model EAGLE demonstrates
strong performance in both binary and multi-label classification tasks, outper-
forming various baseline models. The results highlight the effectiveness of our
approach and its potential for accurate text classification with limited labeled
data.

5 Conclusion
In this paper, we introduced EAGLE, a two-stage framework leveraging Large
Language Models (LLMs) to enhance the analysis of airline customer reviews.
EAGLE overcomes traditional limitations, offering deep insights into customer
sentiment and preferences at scale. Our LLM-based pseudo-labeling automates
labeling, reducing manual efforts and mitigating biases. Additionally, the zero-
shot LLM-based text classification model accurately analyzes customer feedback,
capturing subtle and contextual information often missed by traditional meth-
ods. Extensive experiments show EAGLE’s superior performance over existing
techniques, offering significant implications for the airline industry. EAGLE em-
powers airlines to make informed decisions, improve customer satisfaction, and
optimize route planning, which is crucial for post-pandemic recovery and growth.
Adopting EAGLE provides insights into customer preferences and feedback,
guiding strategic decisions like expanding flight offerings or modifying routes.
Future research can extend EAGLE to other domains and integrate additional
data sources to further refine customer sentiment analysis.

References
1. Alanazi, M.S.M., Li, J., Jenkins, K.W.: Multiclass sentiment prediction of airport

service online reviews using aspect-based sentimental analysis and machine learn-
ing. Mathematics 12(5), 781 (2024)

2. COVID, I.I.U.: Financial impacts-relief measures needed-[press release] 2020
https://www. iata. org/en/pressroom/pr/2020-03-05-01. Retrieved from.[Google
Scholar] (19)

3. Dube, K., Nhamo, G.: Major global aircraft manufacturers and emerging responses
to the sdgs agenda. Scaling up SDGs Implementation: Emerging Cases from State,
Development and Private Sectors pp. 99–113 (2020)

4. Dube, K., Nhamo, G., Chikodzi, D.: Covid-19 pandemic and prospects for recovery
of the global aviation industry. Journal of Air Transport Management 92, 102022
(2021)

5. Gitto, S., Mancuso, P.: Improving airport services using sentiment analysis of the
websites. Tourism management perspectives 22, 132–136 (2017)

6. Gössling, S., Scott, D., Hall, C.M.: Pandemics, tourism and global change: a rapid
assessment of covid-19. Journal of sustainable tourism 29(1), 1–20 (2020)

7. Gupta, M., Kumar, R., Walia, H., Kaur, G.: Airlines based twitter sentiment anal-
ysis using deep learning. In: 2021 5th International Conference on Information
Systems and Computer Networks (ISCON). pp. 1–6 (2021). https://doi.org/10.
1109/ISCON52037.2021.9702502

https://doi.org/10.1109/ISCON52037.2021.9702502
https://doi.org/10.1109/ISCON52037.2021.9702502
https://doi.org/10.1109/ISCON52037.2021.9702502
https://doi.org/10.1109/ISCON52037.2021.9702502


16 A. Alhamadani et al.

8. Halpern, N., Graham, A.: Airport route development: A survey of current
practice. Tourism Management 46, 213–221 (2015). https://doi.org/https:
//doi.org/10.1016/j.tourman.2014.06.011, https://www.sciencedirect.
com/science/article/pii/S0261517714001137

9. Homaid, M.S., Bisandu, D.B., Moulitsas, I., Jenkins, K.: Analysing the sentiment
of air-traveller: A comparative analysis. International Journal of Computer Theory
and Engineering 14(2), 48–53 (2022)

10. Huse, C., Evangelho, F.: Investigating business traveller heterogeneity: Low-cost
vs full-service airline users? Transportation Research Part E: Logistics and Trans-
portation Review 43(3), 259–268 (2007)

11. Iddrisu, A.M., Mensah, S., Boafo, F., Yeluripati, G.R., Kudjo, P.: A sentiment
analysis framework to classify instances of sarcastic sentiments within the avia-
tion sector. International Journal of Information Management Data Insights 3(2),
100180 (2023)

12. Jing, X., Chennakesavan, A., Chandra, C., Bendarkar, M.V., Kirby, M., Mavris,
D.N.: Bert for aviation text classification. In: AIAA AVIATION 2023 Forum.
p. 3438 (2023)

13. Kwon, H.J., Ban, H.J., Jun, J.K., Kim, H.S.: Topic modeling and sentiment analysis
of online review for airlines. Information 12(2), 78 (2021)

14. Linden, E.: Pandemics and environmental shocks: What aviation managers should
learn from covid-19 for long-term planning. Journal of Air Transport Management
90, 101944 (2021)

15. Ljungström, Joel: Mining the Skies: An Exploration of Airline Reviews using LDA
(2023), Student Paper

16. Mandal, S., Maiti, A.: Rating prediction with review network feedback: a new
direction in recommendation. IEEE Transactions on Computational Social Systems
9(3), 740–750 (2021)

17. Møller, A., Pera, A., Dalsgaard, J., Aiello, L.: The parrot dilemma: Human-labeled
vs. llm-augmented data in classification tasks. In: Proceedings of the 18th Confer-
ence of the European Chapter of the Association for Computational Linguistics
(Volume 2: Short Papers). pp. 179–192 (2024)

18. Nguyen, T.D.: An approach to improve the accuracy of rating prediction for rec-
ommender systems. Automatika 65(1), 58–72 (2024)

19. Prabhakar, E., Santhosh, M., Krishnan, A.H., Kumar, T., Sudhakar, R.: Sentiment
analysis of us airline twitter data using new adaboost approach. International Jour-
nal of Engineering Research & Technology (IJERT) 7(1), 1–6 (2019)

20. Rizve, M.N., Duarte, K., Rawat, Y.S., Shah, M.: In defense of pseudo-labeling: An
uncertainty-aware pseudo-label selection framework for semi-supervised learning.
arXiv preprint arXiv:2101.06329 (2021)

21. Schwenker, B., Wulf, T.: Scenario-based strategic planning: Developing strategies
in an uncertain world. Springer Science & Business Media (2013)

22. Sobieralski, J.B.: Covid-19 and airline employment: Insights from historical uncer-
tainty shocks to the industry. Transportation Research Interdisciplinary Perspec-
tives 5, 100123 (2020)

23. staff, T.: Chatgpt vs claude 3 test: Can anthropic beat openai’s superstar? Tech.co
(2024)

24. Suau-Sanchez, P., Voltes-Dorta, A., Cugueró-Escofet, N.: An early assessment of
the impact of covid-19 on air transport: Just another crisis or the end of aviation
as we know it? Journal of Transport Geography 86, 102749 (2020)

https://doi.org/https://doi.org/10.1016/j.tourman.2014.06.011
https://doi.org/https://doi.org/10.1016/j.tourman.2014.06.011
https://doi.org/https://doi.org/10.1016/j.tourman.2014.06.011
https://doi.org/https://doi.org/10.1016/j.tourman.2014.06.011
https://www.sciencedirect.com/science/article/pii/S0261517714001137
https://www.sciencedirect.com/science/article/pii/S0261517714001137


Empowering Airline Route Decisions 17

25. Subroto, A., Christianis, M.: Rating prediction of peer-to-peer accommodation
through attributes and topics from customer review. Journal of Big Data 8(1),
9 (2021)

26. Sun, X., Li, X., Li, J., Wu, F., Guo, S., Zhang, T., Wang, G.: Text classifica-
tion via large language models. In: Findings of the Association for Computational
Linguistics: EMNLP 2023. pp. 8990–9005 (2023)

27. Sun, X., Wandelt, S., Zhang, A.: Covid-19 pandemic and air transportation: Sum-
mary of recent research, policy consideration and future research directions. Trans-
portation research interdisciplinary perspectives 16, 100718 (2022)

28. Wang, C., Nulty, P., Lillis, D.: Using pseudo-labelled data for zero-shot text clas-
sification. In: International Conference on Applications of Natural Language to
Information Systems. pp. 35–46. Springer (2022)

29. Wang, L., Guo, W., Yao, X., Zhang, Y., Yang, J.: Multimodal event-aware network
for sentiment analysis in tourism. IEEE MultiMedia 28(2), 49–58 (2021)

30. Wang, L., Guo, W., Yao, X., Zhang, Y., Yang, J.: Multimodal event-aware network
for sentiment analysis in tourism. IEEE MultiMedia 28(2), 49–58 (2021). https:
// doi. org/ 10. 1109/ MMUL. 2021. 3079195

31. Wong, C.W., Cheung, T.K.Y., Zhang, A.: A connectivity-based methodology for
new air route identification. Transportation Research Part A: Policy and Practice
173, 103715 (2023)

32. Wu, S., Gao, Y.: Machine learning approach to analyze the sentiment of airline
passengers’ tweets. Transportation Research Record 2678(2), 48–56 (2024)

33. Yang, W., Zhang, R., Chen, J., Wang, L., Kim, J.: Prototype-guided pseudo la-
beling for semi-supervised text classification. In: Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers). pp. 16369–16382 (2023)

34. Zahraee, S.M., Shiwakoti, N., Jiang, H., Qi, Z., He, Y., Guo, T., Li, Y.: A study
on airlines’ responses and customer satisfaction during the covid-19 pandemic.
International Journal of Transportation Science and Technology 12(4), 1017–1037
(2023)

35. Zhang, Y., Wang, M., Ren, C., Li, Q., Tiwari, P., Wang, B., Qin, J.: Pushing the
limit of llm capacity for text classification. arXiv preprint arXiv:2402.07470 (2024)

https://doi.org/10.1109/MMUL.2021.3079195
https://doi.org/10.1109/MMUL.2021.3079195
https://doi.org/10.1109/MMUL.2021.3079195
https://doi.org/10.1109/MMUL.2021.3079195

	Empowering Airline Route Decisions with LLM-Generated Pseudo-Labels and Zero-Shot Review Prediction

