
2024 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

HyperSMOTE-MC: Enhancing Multiclass Bot
Detection on X through Hypergraph-based

Resampling

Lulwah AlKulaib1[0000−0001−9827−0882] and Chang-Tien
Lu2[0000−0003−3675−0199]

1 Department of Computer Science, Kuwait University, Sabah AlSalem University
City, Kuwait lalkulaib@cs.ku.edu.kw

2 Department of Computer Science, Virginia Tech, Falls Church, VA 22043 USA
ctlu@vt.edu

Abstract. The complexity and variety of bot behaviors on social media
platforms like X (formerly Twitter) demand advanced detection meth-
ods that can handle multiclass imbalances effectively. Existing binary
classification methods often fall short in accurately identifying and dis-
tinguishing between various bot types and genuine users, leading to
biased and incomplete detection. To address these challenges, we in-
troduce HyperSMOTE-MC, a novel hypergraph-based approach specifi-
cally designed for multiclass bot detection. By constructing a hypergraph
where users are represented as nodes and their interactions as hyper-
edges, HyperSMOTE-MC captures the multifaceted relationships among
users. This method employs synthetic minority oversampling to balance
the dataset, ensuring fair representation of all bot classes. Addition-
ally, HyperSMOTE-MC integrates a Hypergraph Convolutional Network
(HGCN) to leverage these complex interactions for improved classifica-
tion performance. Evaluated on the TwiBot-20 dataset, HyperSMOTE-
MC demonstrates superior accuracy, precision, recall, F1 score, and AUC-
ROC compared to baseline methods, showcasing its robustness and ef-
fectiveness in handling multiclass bot detection across various domains.

Keywords: hypergraph · hypergraph learning · bot detection · class
imbalance · node classification.

1 Introduction

The influence of social networks like X, Instagram, and TikTok extends far be-
yond personal communication, impacting societal and political landscapes [4,19].
These platforms grapple with the pervasive issue of bots—sophisticated algo-
rithms that mimic human behavior to manipulate perceptions and disseminate
misinformation [6]. Early bot detection methods primarily utilized binary clas-
sification models to differentiate between genuine users and bots. However, the
increasing diversity of bot types requires advanced multiclass detection strate-
gies [7, 20]. These strategies are crucial for identifying various bot types, each

2 L. AlKulaib and Lu

with distinct roles and tactics [17]. On platform X, bots are categorized based
on their specific tasks, further complicating detection efforts [2, 17].

Graph-based machine learning techniques have leveraged network topologies
to improve bot detection algorithms [9]. Despite this, many existing approaches
focus on binary classification, which fails to capture the complexities of multi-
class scenarios [9, 13]. Addressing this gap, we introduce HyperSMOTE-MC, a
novel extension of the original HyperSMOTE framework designed specifically to
navigate the challenges of multiclass imbalances. HyperSMOTE-MC constructs
a hypergraph model of X’s network, enabling the detection of diverse bot be-
haviors using synthetic minority oversampling techniques (SMOTE) [5]. This
method preserves network structure integrity, enhancing classification accuracy
and robustness.

Detecting bots in multiclass environments is challenging due to the diverse
and evolving nature of bot behaviors [17]. Traditional detection methods are
often overwhelmed by the vast data volumes and dynamic online interactions,
complicating the identification of bots amidst legitimate user activities [1]. More-
over, as bots continuously adapt their tactics, detection algorithms must evolve
to recognize new behavior patterns [4]. Existing binary classification frameworks
lack the contextual sensitivity needed to fully understand the relational data
among accounts, limiting the precision of bot identification and understanding
of bots’ broader network effects [13,14].

HyperSMOTE-MC addresses these issues by enhancing model sensitivity to a
wide range of bot strategies, ensuring robust detection even against bots designed
to evade traditional mechanisms. Our approach leverages the structural bene-
fits of hypergraphs, addressing class imbalance through innovative oversampling
techniques while preserving the complex relational dynamics within the data.
Our objective is to develop a robust system capable of accurately classifying ac-
counts on platforms such as X by integrating advanced machine learning models
with a novel representation of social interactions.

Our contributions include:

– Hypergraph-based Representation for Social Media: We represent
the multifaceted interactions on platforms like X within a hypergraph struc-
ture, facilitating analysis and detection of complex bot behaviors.

– Multiclass Imbalance Handling: We propose an innovative approach
for addressing multiclass imbalances using synthetic minority oversampling
techniques that maintain the integrity of hypergraph structures, ensuring
balanced training datasets.

– Advanced Classification with Hypergraph Convolutional Networks:
We develop a novel convolutional network architecture designed for hyper-
graphs, significantly enhancing detection capabilities for diverse and sophis-
ticated bot activities in a multiclass setting.

– Comprehensive Empirical Validation: We validate our methods on sev-
eral challenging datasets, demonstrating their superiority in identifying and
classifying different bot types, thereby outperforming existing techniques.

2. RELATED WORK 3

2 Related Work

We reviewed studies on detecting various types of bots on social media, par-
ticularly using hypergraphs and machine learning. This section summarizes key
advancements and highlights areas that still need further research.

2.1 Bot Detection in Social Media

The detection of bots on social media platforms has increasingly become a vi-
tal area of research, particularly with the growing sophistication of manipulation
tactics employed by such automated accounts. Ferrara et al. [11] and Kudugunta
and Ferrara [15] explore various machine learning techniques, including super-
vised and unsupervised approaches, to identify characteristics typical of bots.
While these methods provide a foundation, they primarily focus on binary classi-
fication tasks and often fail to address the complexities introduced by multi-class
settings where bots may fulfill different roles.

2.2 Graph-Based Machine Learning for Social Networks

Graph-based machine learning has been leveraged to enhance the detection
mechanisms by utilizing the relational information inherent in social media struc-
tures. Works by Feng et al. [8] and Allem et al. [3] utilize graph convolutional
networks (GCNs) to analyze and predict user behavior and information spread,
which are indirectly relevant to bot detection. These methodologies emphasize
the potential of graph-based approaches but often do not modify their strategies
to address the multi-class imbalances present in bot populations.

2.3 Handling Class Imbalance

The issue of class imbalance in machine learning, particularly in the context of
graph data, presents significant challenges. Traditional approaches like SMOTE
[5] and its variants [12] have been adapted to graph data, but recent innovations
such as GraphSMOTE [21] specifically address node classification in imbalanced
graph-based data. However, these methods are generally not optimized for the
high-order relationships and complex class structures seen in social network data,
particularly within hypergraph contexts. A comprehensive framework for han-
dling multi-class imbalanced big data using Spark introduces a novel version of
SMOTE that maintains spatial coherence among instances, significantly improv-
ing learning from multi-class imbalanced big data [18].

HyperSMOTE, designed to handle class imbalance within hypergraphs, gen-
erates synthetic bot accounts to ensure a balanced training dataset while pre-
serving the hypergraph’s semantics [1]. This approach demonstrates significant
improvements over baseline methods, highlighting the efficacy of hypergraph-
based resampling techniques in handling imbalanced data. These advancements
emphasize the importance of solutions targeting class imbalance in complex data

4 L. AlKulaib and Lu

structures. Our work builds on these foundations by extending HyperSMOTE to
multiclass settings within hypergraphs, addressing the challenges of multiclass
bot detection on social media platforms.

2.4 Hypergraph Techniques in Data Science

Hypergraphs extend traditional graph theory by enabling higher-order relation-
ships, a feature particularly useful in social media analytics where interactions
are not merely pairwise. Zhou et al. [22] and Feng et al. [10] demonstrate the ap-
plication of hypergraphs in clustering and classification, laying the groundwork
for their use in more complex scenarios such as bot detection. However, there
remains a gap in research specifically focused on hypergraph-based learning ap-
proaches tailored to handle the intricate dynamics and class imbalances seen in
bot detection tasks.

In summary, while there is substantial research in each of these areas in-
dependently, there is a discernible lack of integrated approaches that leverage
hypergraph-based learning for multi-class bot detection in social media. Our
work bridges this gap by synthesizing these concepts into a cohesive framework
that is particularly adept at handling the challenges posed by social media plat-
forms.

3 Proposed Method

In this section, we introduce HyperSMOTE-MC, an extension of HyperSMOTE
designed specifically for multiclass bot detection using hypergraph-based resam-
pling. Our approach involves constructing a hypergraph from social media in-
teractions and addressing class imbalance through synthetic sample generation
within this hypergraph structure.

3.1 Problem Definition

Given a social media platform like X, we aim to classify user accounts into multi-
ple classes, including various types of bot and genuine user accounts. Formally, let
G = (V, E) be a hypergraph where V represents the set of nodes (user accounts)
and E represents the set of hyperedges (interactions among users). Each node
v ∈ V is associated with a feature vector xv and a class label yv ∈ {1, 2, . . . , C},
where C is the number of classes.

The challenge lies in the imbalanced nature of the dataset, where some classes
(e.g., certain types of bot accounts) are underrepresented. This imbalance can
lead to biased classifiers that perform poorly on minority classes. Our objective
is to design a classifier f : V → {1, 2, . . . , C} that accurately predicts the class
labels while addressing the class imbalance through hypergraph-based resam-
pling.

3. PROPOSED METHOD 5

3.2 Hypergraph Construction

To construct the hypergraph G, we represent user accounts as nodes and their in-
teractions as hyperedges. The hypergraph captures complex, high-order relation-
ships among users, which are crucial for effective bot detection. The construction
process involves the following steps:

Node Representation Each user account v ∈ V is represented as a node with
an associated feature vector xv that encapsulates information about the user’s
profile, activity patterns, and other relevant attributes.

Hyperedge Formation Hyperedges in the hypergraph are formed based on
different types of interactions among user accounts. We define four primary types
of hyperedges to capture diverse and complex interactions:

– Tweet Interaction Hyperedges: For every tweet, the author of the tweet
and all users who interact with it (e.g., retweets, replies, mentions) form a
hyperedge. Mathematically, for a tweet tj , the hyperedge etj is defined as:

etj = {v | v interacts with tj} (1)

– Content Sharing Hyperedges: Users who share similar content or hash-
tags can be grouped under a hyperedge. For a specific content or hashtag
hk, the hyperedge ehk

is defined as:

ehk
= {v | v shares content or hashtag hk} (2)

– Temporal Interaction Hyperedges: Users who interact within a specific
time window can be connected by a hyperedge, capturing temporal patterns
of interaction. For a time window τl, the hyperedge eτl is:

eτl = {v | v interacts within time window τl} (3)

– Class-Specific Interaction Hyperedges: To specifically address multi-
class scenarios, we introduce hyperedges that capture interactions among
users within the same class or between specific classes. For instance, con-
sider a class ci representing a particular type of bot. The hyperedge eci can
capture all users of class ci who interact with each other. Formally, for a
class ci, the hyperedge eci is defined as:

eci = {v | yv = ci and v interacts with other ci users} (4)

Additionally, for interactions between two classes ci and cj , the hyperedge
eci,j can be defined as:

eci,j = {v | yv ∈ {ci, cj} and v interacts with ci and cj users} (5)

6 L. AlKulaib and Lu

Hypergraph Weighting The weights of the hyperedges in the hypergraph
are crucial for capturing the significance of different types of interactions. These
weights can be determined based on various factors such as the frequency of
interactions, the significance of shared content, or other relevant metrics.

For general hyperedges like Tweet Interaction, Content Sharing, and Tem-
poral Interaction Hyperedges, the weight we of a hyperedge e can be computed
as:

we =

∑
v∈e interaction frequency of v

|e|
(6)

where |e| denotes the number of nodes in hyperedge e.
For Class-Specific Interaction Hyperedges, the weighting needs to account

for the interactions within the same class as well as between different classes.
Let eci represent a hyperedge for interactions within class ci, and eci,j represent
a hyperedge for interactions between classes ci and cj . The weight weci

of a
class-specific hyperedge eci can be computed as:

weci
=

∑
v∈eci

interaction frequency of v

|eci |
(7)

For hyperedges between classes ci and cj , the weight weci,j
can be computed

as:

weci,j
=

∑
v∈eci,j

interaction frequency of v

|eci,j |
(8)

Additionally, we can introduce a class interaction factor γij to account for
the significance of interactions between different classes:

weci,j
= γij ·

∑
v∈eci,j

interaction frequency of v

|eci,j |
(9)

where γij is a predefined or learned parameter that reflects the importance of
interactions between classes ci and cj .

To extend this further, we consider the overall weighting scheme for all
types of hyperedges in the hypergraph. Let Egeneral denote the set of general
hyperedges, Eintra-class denote the set of class-specific intra-class hyperedges, and
Einter-class denote the set of class-specific inter-class hyperedges. The total weight
for the hypergraph can be expressed as:

WG =
∑

e∈Egeneral

we +
∑

e∈Eintra-class

weci
+

∑
e∈Einter-class

weci,j
(10)

This comprehensive weighting approach ensures that the hypergraph accu-
rately captures the significance of various interactions, including those specific
to certain classes and those between different classes. It allows the model to
leverage these weights during training, improving the robustness and accuracy
of the classification process.

3. PROPOSED METHOD 7

3.3 Addressing Class Imbalance with HyperSMOTE-MC

To handle class imbalance, we extend the HyperSMOTE approach by generating
synthetic samples within the hypergraph, specifically targeting underrepresented
classes. The key steps involve:

– Identifying minority classes and selecting nodes belonging to these classes.
– Generating synthetic nodes by interpolating between feature vectors of ex-

isting nodes within the same class.
– Ensuring that synthetic nodes are connected to appropriate hyperedges to

maintain the hypergraph structure.

Algorithm 1 HyperSMOTE-MC for Hypergraph Node Augmentation

Require: Hypergraph G = (V, E), Minority class set Vmin, Oversampling rate
r

Ensure: Augmented hypergraph G′

1: for each node vi in Vmin do
2: for j = 1 to r do
3: Identify neighboring nodes of vi and associated hyperedges
4: Randomly select a neighboring node vj from the same class
5: Compute the difference in feature vectors: ∆x = xvj − xvi

6: Generate a synthetic feature vector: xsyn = xvi + λ∆x where λ is a
random number between 0 and 1

7: Add the synthetic node with feature vector xsyn to V
8: Connect the synthetic node to relevant hyperedges based on similarity

criteria
9: end for

10: end for
11: return Augmented hypergraph G′ = (V, E)

3.4 Hypergraph Convolutional Network for Multiclass Bot
Detection

To effectively detect multiple classes of bots and genuine user accounts, we pro-
pose a Hypergraph Convolutional Network (HGCN) to handle multiclass im-
balances within the hypergraph structure. This network aggregates information
from various types of hyperedges to generate robust node embeddings for accu-
rate classification.

Hypergraph Convolution Operation The convolution operation on a hy-
pergraph is an extension of the traditional graph convolution, designed to handle

8 L. AlKulaib and Lu

the high-order relationships captured in hyperedges. For a given node vi ∈ V,
we aggregate information from its neighboring nodes and hyperedges.

The convolutional feature update for node vi is given by:

h
(l+1)
i = σ

∑
e∈Ei

1

|e|
∑
vj∈e

1√
didj

W(l)h
(l)
j

 (11)

where: - h
(l+1)
i is the updated feature vector of node vi at layer l + 1. - σ(·)

is a non-linear activation function, such as ReLU. - Ei is the set of hyperedges
incident to node vi. - |e| is the number of nodes in hyperedge e. - di and dj are
the degrees of nodes vi and vj , respectively. - W(l) is the weight matrix for layer
l. - h(l)

j is the feature vector of node vj at layer l.
This formulation ensures that the features are normalized and aggregated

from all connected nodes within each hyperedge, capturing the complex interac-
tions present in the hypergraph.

Incorporating Class-Specific Interactions Given the multiclass nature of
the problem, it is crucial to incorporate class-specific interactions into the convo-
lutional operation. For this, we introduce class-specific convolutional filters that
adjust the feature aggregation process based on the class of the nodes.

For intra-class interactions (within the same class), the convolution operation
is adjusted as:

h
(l+1)
i,intra = σ

 ∑
e∈Ei,intra

1

|e|
∑
vj∈e

1√
didj

W
(l)
intrah

(l)
j

 (12)

where Ei,intra denotes the set of intra-class hyperedges incident to node vi, and
W

(l)
intra is the weight matrix for intra-class interactions.
For inter-class interactions (between different classes), the convolution oper-

ation is adjusted as:

h
(l+1)
i,inter = σ

 ∑
e∈Ei,inter

1

|e|
∑
vj∈e

1√
didj

W
(l)
interh

(l)
j

 (13)

where Ei,inter denotes the set of inter-class hyperedges incident to node vi, and
W

(l)
inter is the weight matrix for inter-class interactions.

Pooling and Classification After multiple layers of convolution, the node fea-
tures are pooled to obtain a fixed-size representation. We apply a global pooling
operation that combines the features from all nodes in the hypergraph. The
pooled feature vector hpool is given by:

hpool = Pool({h(L)
i | vi ∈ V}) (14)

4. EXPERIMENTS 9

where Pool(·) is a pooling function, such as max pooling or mean pooling, and
L is the number of convolutional layers.

The pooled features are then passed through a fully connected layer followed
by a softmax activation to obtain the classification probabilities for each node:

yi = softmax(Wfchpool + bfc) (15)

where Wfc and bfc are the weight matrix and bias vector for the fully connected
layer, respectively, and yi is the predicted class distribution for node vi.

Loss Function and Training To train the HGCN, we use a cross-entropy loss
function that measures the discrepancy between the predicted and true class
labels. The loss L for a single node is given by:

L = −
C∑

c=1

yi,c log(ŷi,c) (16)

where C is the number of classes, yi,c is the true label (1 if the node belongs to
class c, 0 otherwise), and ŷi,c is the predicted probability of the node belonging
to class c.

The model is trained using gradient descent optimization algorithms, ad-
justing the weights to minimize the loss and improve the classification accuracy
across all classes.

This comprehensive approach to hypergraph convolutional networks lever-
ages the structure of hypergraphs and class-specific interactions to enhance the
detection of various bot types and genuine user accounts in a multiclass setting.

4 Experiments

In this section, we evaluate the performance of HyperSMOTE-MC on the TwiBot-
20 dataset [8], which contains a diverse set of Twitter users divided into four
domains: politics, business, entertainment, and sports. We aim to demonstrate
the effectiveness of our method in addressing class imbalance and improving
multiclass bot detection accuracy.

4.1 Dataset Description

The TwiBot-20 dataset is a comprehensive sample of X’s network, providing in-
formation such as following relations between users and interaction data (likes,
retweets), and is representative of the current generation of Twitter bots and gen-
uine users. Although the dataset does not inherently provide multi-class labels,
we used the classification framework from Qi et al.’s paper [17]. According to this
framework, bots are categorized into four primary types: fake followers, content
polluters, traditional spam, and social spam. These categories are defined based
on specific features, including account creation patterns, posting behaviors, and

10 L. AlKulaib and Lu

interaction metrics, as outlined in their methodology. To ensure the robustness
of our labeling, we analyzed the dataset with these criteria, carefully assigning
each bot to its respective class. However, some bots exhibited behaviors that
did not clearly fit into any of these predefined categories. To account for this,
we introduced an additional ’unknown’ category for bots whose activities do not
align with the characteristics of the four primary classes. This classification helps
us maintain comprehensive coverage of the dataset’s diversity, ensuring that no
bot type is overlooked due to classification limitations. The dataset’s statistics,
reflecting these classifications, are presented in Table 1.

Characteristic #
Human 5,237
Bot 6,589
Attributes 33,488,192
Fake follower bots 975
Content polluter bots 1,371
Traditional spam bots 2,677
Social spam bots 1,335
Unknown bots 231

Table 1: TwiBot-20 dataset statistics with detailed bot class labels

Additionally, Each user in the TwiBot-20 dataset is categorized into one
of the four domains, providing domain-specific information that is crucial for
multiclass bot detection. The dataset includes user profile details, recent tweets,
and neighborhood information.

4.2 Experimental Setup

We conducted experiments to compare the performance of HyperSMOTE-MC
with several baseline methods. The evaluation metrics used to assess the perfor-
mance of our model include accuracy, precision, recall, F1 score, and AUC-ROC.
These metrics are calculated for each domain-specific bot detection task to ensure
a comprehensive evaluation. The following baseline methods were considered:

4.3 Baseline Methods

– SMOTE [5]: Synthetic Minority Over-sampling Technique for handling class
imbalance by generating synthetic samples in the feature space.

– ADASYN [12]: Adaptive Synthetic Sampling Approach for Imbalanced
Learning, which adapts the synthetic sample generation process based on
data distribution.

– GraphSMOTE [21]: An adaptation of SMOTE for graph data, generating
synthetic nodes while preserving the graph structure.

4. EXPERIMENTS 11

– GATSMOTE [16]: Combines Graph Attention Networks (GAT) with SMOTE
to address class imbalance in graph data.

– HyperSMOTE [1]: An extension of SMOTE that uses hypergraphs to bet-
ter capture complex interactions in the data.

4.4 Evaluation Metrics

We use several metrics to evaluate the performance of bot detection models:

– Accuracy: Measures the overall correctness of the model.
– Precision: Evaluates the exactness of bot detection.
– Recall: Assesses the completeness of bot detection.
– F1 Score: The harmonic mean of precision and recall.
– AUC-ROC: The area under the receiver operating characteristic curve,

measuring the model’s ability to distinguish between classes.

4.5 Results and Discussion

The performance of HyperSMOTE-MC was evaluated and compared with sev-
eral baseline methods on the TwiBot-20 dataset. The results, presented in Table
2, demonstrate significant improvements in various metrics, particularly in han-
dling multiclass imbalances. Below, we provide a detailed analysis of the findings.

Method Accuracy Precision Recall F1 Score AUC-ROC

SMOTE 0.605 0.595 0.584 0.590 0.784
ADASYN 0.616 0.610 0.597 0.612 0.791
GraphSMOTE 0.688 0.687 0.673 0.680 0.808
GATSMOTE 0.690 0.686 0.675 0.680 0.821
HyperSMOTE 0.793 0.784 0.770 0.777 0.926
HyperSMOTE-MC 0.829 0.823 0.858 0.840 0.974

Table 2: Performance comparison of different methods on the TwiBot-20 dataset.

– Superior Accuracy: HyperSMOTE-MC achieved the highest accuracy of
0.829, significantly outperforming other methods. This indicates its robust-
ness in correctly classifying both bots and genuine users across multiple
classes.

– Enhanced Precision: With a precision of 0.823, HyperSMOTE-MC demon-
strates a lower false positive rate compared to HyperSMOTE (0.784). This is
crucial in bot detection tasks where minimizing false positives is vital. In the
context of multiclass classification, higher precision ensures that the detected
bots are accurately classified into their respective classes (fake followers, con-
tent polluters, traditional spam, social spam, and unknown). This reduces

12 L. AlKulaib and Lu

the likelihood of misclassifying bots from different classes, which is partic-
ularly important when dealing with varied bot behaviors across multiple
classes. Such precision contributes to better overall trust in the classification
system, as it consistently identifies true positives without overestimating the
presence of bots.

– Improved Recall: The recall of HyperSMOTE-MC is 0.858, indicating its
effectiveness in identifying actual bots, including those from minority classes.
This is a notable improvement over HyperSMOTE’s recall of 0.770, showing
the benefits of the multiclass extension. High recall is especially important
in multiclass settings because it ensures that even the less frequent bot types
(minority classes) are correctly identified. This comprehensive detection ca-
pability is crucial for creating a balanced and fair classifier that does not
overlook certain bot types, thus enhancing the overall detection coverage
across different classes.

– Balanced F1 Score: The F1 score of 0.840 for HyperSMOTE-MC high-
lights its balanced performance between precision and recall, providing a
comprehensive measure of its effectiveness in bot detection. In a multiclass
classification scenario, a high F1 score signifies that the model maintains a
strong balance in identifying true positives while minimizing false positives
and false negatives across all classes. This balance is essential for applica-
tions where both precision and recall are critical, ensuring that the model is
reliable and robust across various bot types and domains.

– High AUC-ROC: HyperSMOTE-MC’s AUC-ROC of 0.974 indicates excel-
lent capability in distinguishing between bot and human accounts across dif-
ferent classes and domains. This is significantly higher than HyperSMOTE’s
AUC-ROC of 0.926, emphasizing the improvements brought by the mul-
ticlass approach. A high AUC-ROC in a multiclass setting demonstrates
that the model is proficient at ranking and distinguishing between multi-
ple classes, not just binary distinctions. This capability is crucial for accu-
rately detecting and classifying bots from different classes, ensuring that the
classifier can effectively handle the complexity and variability inherent in
multiclass bot detection tasks.

Method Fake Followers Content Polluters Traditional Spam Social Spam Unknown
SMOTE 0.628 0.621 0.612 0.593 0.640
ADASYN 0.587 0.584 0.645 0.633 0.615
GraphSMOTE 0.662 0.669 0.672 0.680 0.639
GATSMOTE 0.688 0.700 0.707 0.684 0.656
HyperSMOTE 0.816 0.796 0.757 0.794 0.799
HyperSMOTE-MC 0.825 0.836 0.813 0.869 0.869

Table 3: Accuracy comparison of different methods on the five bot classes in the
TwiBot-20 dataset.

4. EXPERIMENTS 13

Bot Type We further analyzed the performance of different methods across
the five bot classes in the TwiBot-20 dataset: Fake Followers, Content Polluters,
Traditional Spam, Social Spam, and Unknown. The results are summarized in
Table 3. HyperSMOTE-MC achieved the highest accuracy of 0.825 in identi-
fying Fake Followers, demonstrating strong capability in detecting bots that
focus on inflating follower counts. In the Content Polluters category, the model
managed to achieve an accuracy of 0.836, effectively addressing the challenges
posed by bots spreading diverse and misleading content. For the Traditional
Spam class, HyperSMOTE-MC led with an accuracy of 0.813, showcasing its
ability to handle varied and evolving spam strategies. The model excelled fur-
ther in the Social Spam category, with an accuracy of 0.869, highlighting its
robustness in detecting socially manipulative bots, which often employ sophisti-
cated approaches. In the Unknown category, HyperSMOTE-MC also performed
well, achieving an accuracy of 0.869, indicating its versatility and effectiveness
across various undefined or less common bot behaviors. Overall, the results in-
dicate that HyperSMOTE-MC consistently outperforms other methods across
all classes, particularly in distinguishing more subtle and sophisticated bot be-
haviors. This highlights the importance of using advanced multiclass detection
techniques to manage the evolving landscape of bot activity on social media plat-
forms. Additionally, the varied performance across classes suggests that certain
bot types, such as Traditional Spam and Content Polluters, may present more
significant detection challenges, requiring continuous refinement and evolvement
in bot detection methodologies.

Domain-Specific Performance We further analyzed the performance of HyperSMOTE-
MC across the four domains in the TwiBot-20 dataset: politics, business, enter-
tainment, and sports. The results are summarized in Table 4 and illustrated in
Figure 1. HyperSMOTE-MC demonstrated its effectiveness across the four do-
mains, achieving the highest accuracy of 0.900 in politics, which often involves
more sophisticated bots. In the business domain, the model performed well with
an accuracy of 0.880, reflecting its ability to detect bots mimicking professional
behavior. In the entertainment and sports domains, it achieved accuracies of
0.860 and 0.850, respectively, showcasing its robustness in detecting bots engag-
ing with pop culture and its versatility across various interest areas.

Impact of Upsampling Scale To explore the impact of the upsampling scale
on HyperSMOTE-MC’s performance, we varied the upsampling scale and ob-
served the changes in accuracy. Figure 2 shows the performance trend.

– Increasing Accuracy: As the upsampling scale increases, the accuracy of
HyperSMOTE-MC improves significantly, highlighting the method’s ability
to benefit from additional synthetic data.

– Optimal Scale: The optimal upsampling scale for HyperSMOTE-MC is
around 200%, beyond which the accuracy gains start to diminish. This sug-
gests a balance between enhancing minority class representation and avoiding
overfitting.

14 L. AlKulaib and Lu

Domain Politics Business Entertainment Sports

Accuracy 0.900 0.880 0.860 0.850
Precision 0.890 0.870 0.850 0.840
Recall 0.910 0.890 0.870 0.860
F1 Score 0.900 0.880 0.860 0.850
AUC-ROC 0.940 0.930 0.920 0.910

Table 4: Performance of HyperSMOTE-MC across different domains in the
TwiBot-20 dataset.

Fig. 1: Performance of HyperSMOTE-MC across different domains in the
TwiBot-20 dataset.

Performance Under Different Imbalance Ratios We also evaluated the
performance of HyperSMOTE-MC under different class imbalance ratios to un-
derstand its robustness. The results are summarized in Figure 3.

– High Imbalance: HyperSMOTE-MC maintains high accuracy and robust-
ness even under severe class imbalance conditions, demonstrating its effec-
tiveness in addressing minority class representation.

– Low Imbalance: The performance of HyperSMOTE-MC is consistent and
robust across varying degrees of class imbalance, highlighting its adaptability
to different data distributions.

5 Conclusion

In summary, HyperSMOTE-MC demonstrates superior performance in multi-
class bot detection tasks on the TwiBot-20 dataset. By effectively handling
class imbalances and leveraging hypergraph-based resampling, HyperSMOTE-
MC achieves higher accuracy and robustness compared to existing methods. Our
experiments confirm the efficacy of HyperSMOTE-MC in enhancing multiclass
bot detection and offer insights into optimal configurations for its application.

5. CONCLUSION 15

Fig. 2: Accuracy of HyperSMOTE-MC for different upsampling scales on the
TwiBot-20 dataset.

Fig. 3: Performance of HyperSMOTE-MC under different class imbalance ratios
on the TwiBot-20 dataset.

References

1. Alkulaib, L., Lu, C.T.: Balancing the scales: Hypersmote for enhanced hypergraph
classification. In: Proceedings of the IEEE International Conference on Big Data
(2023)

2. AlKulaib, L.A.: Twitter Bots Multiclass Classification Using Bot-Like Behavior
Features. Ph.D. thesis, The George Washington University (2018)

3. Allem, J.P., Ferrara, E.: Could social bots pose a threat to public health? American
journal of public health 108(8), 1005 (2018)

4. Broniatowski, D.A., Jamison, A.M., Qi, S., AlKulaib, L., Chen, T., Benton, A.,
Quinn, S.C., Dredze, M.: Weaponized health communication: Twitter bots and rus-
sian trolls amplify the vaccine debate. American journal of public health 108(10),
1378–1384 (2018)

5. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: Synthetic
minority over-sampling technique. Journal of artificial intelligence research 16,
321–357 (2002)

6. Chu, Z., Gianvecchio, S., Wang, H., Jajodia, S.: Who is tweeting on twitter: human,
bot, or cyborg? In: Proceedings of the 26th annual computer security applications
conference. pp. 21–30 (2010)

7. Davis, C.A., Varol, O., Ferrara, E., Flammini, A., Menczer, F.: Botornot: A sys-
tem to evaluate social bots. In: Proceedings of the 25th international conference
companion on world wide web. pp. 273–274 (2016)

16 L. AlKulaib and Lu

8. Feng, S., Wan, H., Wang, N., Li, J., Luo, M.: Twibot-20: A comprehensive twitter
bot detection benchmark. Proceedings of the 30th ACM International Conference
on Information & Knowledge Management (2021)

9. Feng, S., Wan, H., Wang, N., Luo, M.: Botrgcn: Twitter bot detection with re-
lational graph convolutional networks. In: Proceedings of the 2021 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining.
pp. 236–239 (2021)

10. Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In:
Proceedings of the AAAI conference on artificial intelligence. vol. 33, pp. 3558–
3565 (2019)

11. Ferrara, E., Varol, O., Davis, C., Menczer, F., Flammini, A.: The rise of social
bots. Communications of the ACM 59(7), 96–104 (2016)

12. He, H., Bai, Y., Garcia, E.A., Li, S.: Adasyn: Adaptive synthetic sampling ap-
proach for imbalanced learning. In: IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence). pp. 1322–1328.
IEEE (2008)

13. Heidari, M., Jones, J.H.J., Uzuner, O.: An empirical study of machine learning
algorithms for social media bot detection. In: 2021 IEEE International IOT, Elec-
tronics and Mechatronics Conference (IEMTRONICS). pp. 1–5 (2021). https:
//doi.org/10.1109/IEMTRONICS52119.2021.9422605

14. Khaund, T., Kirdemir, B., Agarwal, N., Liu, H., Morstatter, F.: Social bots and
their coordination during online campaigns: A survey. IEEE Transactions on Com-
putational Social Systems 9(2), 530–545 (2022). https://doi.org/10.1109/
TCSS.2021.3103515

15. Kudugunta, S., Ferrara, E.: Deep neural networks for bot detection. Information
Sciences 467, 312–322 (2018)

16. Liu, Y., Zhang, Z., Liu, Y., Zhu, Y.: Gatsmote: Improving imbalanced node classi-
fication on graphs via attention and homophily. Mathematics 10(11), 1799 (2022)

17. Qi, S., AlKulaib, L., Broniatowski, D.A.: Detecting and characterizing bot-like
behavior on twitter. In: Social, Cultural, and Behavioral Modeling: 11th Interna-
tional Conference, SBP-BRiMS 2018, Washington, DC, USA, July 10-13, 2018,
Proceedings 11. pp. 228–232. Springer (2018)

18. Sleeman IV, W.C., Krawczyk, B.: Multi-class imbalanced big data classification on
spark. Knowledge-Based Systems p. 106598 (2020)

19. Weeks, B.E., Ardèvol-Abreu, A., Gil de Zúñiga, H.: Online influence? social media
use, opinion leadership, and political persuasion. International journal of public
opinion research 29(2), 214–239 (2017)

20. Wu, J., Teng, E., Cao, Z.: Twitter bot detection through unsupervised ma-
chine learning. In: 2022 IEEE International Conference on Big Data (Big
Data). pp. 5833–5839 (2022). https://doi.org/10.1109/BigData55660.
2022.10020983

21. Zhao, Tong, Z.X., Wang, S.: Graphsmote: Imbalanced node classification on graphs
with graph neural networks. In: Proceedings of the 14th ACM International Con-
ference on Web Search and Data Mining. pp. 833–841 (2021)

22. Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: Clustering, clas-
sification, and embedding. Advances in neural information processing systems 19
(2006)

https://doi.org/10.1109/IEMTRONICS52119.2021.9422605
https://doi.org/10.1109/IEMTRONICS52119.2021.9422605
https://doi.org/10.1109/IEMTRONICS52119.2021.9422605
https://doi.org/10.1109/IEMTRONICS52119.2021.9422605
https://doi.org/10.1109/TCSS.2021.3103515
https://doi.org/10.1109/TCSS.2021.3103515
https://doi.org/10.1109/TCSS.2021.3103515
https://doi.org/10.1109/TCSS.2021.3103515
https://doi.org/10.1109/BigData55660.2022.10020983
https://doi.org/10.1109/BigData55660.2022.10020983
https://doi.org/10.1109/BigData55660.2022.10020983
https://doi.org/10.1109/BigData55660.2022.10020983

	HyperSMOTE-MC: Enhancing Multiclass Bot Detection on X through Hypergraph-based Resampling

