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Abstract. This study presents an innovative framework for predict-
ing school success, leveraging Large Language Models (LLMs) to de-
fine ground truth labels based on comprehensive school information with
Factor-Reasoning-Classification (FRC) prompting. In this article, we con-
ceptualize school data as a complex social network and create two dif-
ferent graphs where schools are defined as nodes. Similarity Graph cap-
tures school similarities, integrating factors such as graduation rates,
ACT scores, socioeconomic conditions, crime rates, and community re-
sources. Geographic Proximity Graph models spatial relationships among
schools using geographical coordinates. We define Merged GNN that en-
hances prediction accuracy by incorporating both similarity-based and
spatial proximity-based information. Our approach leverages Graph Neu-
ral Networks (GNN) to predict the most probable labels the LLM model
identifies. Experimental results on the school success dataset not only
demonstrate the superior predictive performance of our methodology
over baseline models but also highlight the importance of integrating
diverse sources of information for accurate prediction and analysis.

Keywords: Data labeling · School success prediction · Graph neural
network · Classification · Spatial analysis.

1 Introduction

The choice of high school profoundly impacts students’ futures including college
admissions and career trajectories. Yet, public school quality is often affected
by external factors like geographic location and community resources [1]. Given
the significant impact of these factors on educational outcomes, understanding
school performance is essential. Prioritizing school achievement prediction em-
powers parents, urban planners, and policymakers to make informed decisions
for societal benefit. A school’s success hinges on several factors, which can be
grouped into four categories. First, school climate like teaching environment and
safety of students are pivotal [2]. Second, crime rates can directly impact the
educational environment [3]. Third, social amenities such as libraries and parks
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enrich the learning experience [4]. Finally, socioeconomic factors like employment
rates, income distribution, and community health can influence the educational
landscape. Understanding these socioeconomic dynamics is crucial for enhancing
educational equity and opportunity [5].

Students’ prior academic achievements, demographic background, and psy-
chological traits are widely recognized as the primary factors influencing the
prediction of academic success [6, 7]. Predicting school and student success can
be determined by factors such as residential crowding [8], crime rates [9, 10],
socioeconomic background [11, 12], and mental [13] and physical health [14] of
the community or individuals.

In our study, the prediction of school success rather than individuals is high-
lighted. We present an innovative approach for predicting school success by in-
tegrating two distinct graph structures. The first graph is constructed based
on the similarity of schools, utilizing various parameters such as graduation
rate, educational attainment levels, socioeconomic conditions, crime rates, and
the availability of community resources such as parks and libraries. This graph
encapsulates the multidimensional aspects of school environments and their sur-
rounding communities, comprehensively representing school characteristics. The
second graph is built using geographical coordinates (latitude and longitude)
to capture the spatial proximity between schools. By exploiting the geographic
proximity of different locations, this graph allows us to model the spatial depen-
dencies, reflecting their geographical relationships.

For ground truth labeling of school success, we present LLM-based Factor-
Reasoning-Classification prompting. In our method, critical factors that might
impact school success are asked, encompassing both positive and negative influ-
ences, and is provided a brief explanation of the diagnostic reasoning process,
explaining the rationale behind the classification of each school’s success level.
Drawing upon the identified factors and diagnostic reasoning, the model assigns
success classes (high, medium, or low) to each school. Merged GNN is designed
to predicts the success levels that our prompt model assigns. Through this com-
prehensive approach, our methodology aims to provide a robust framework for
assessing and understanding school performance.

Experimental evaluations conducted on real-world school success dataset
demonstrates the effectiveness of our proposed approach. Comparative analyses
against baseline models showcase the superior predictive performance achieved
by integrating multiple graph structures. Our findings underscore the importance
of incorporating both similarity-based and spatial proximity-based information
for accurate school success prediction, highlighting the potential of graph-based
techniques in education analytics.

We summarize our contribution as follows:

– Data labeling prompting: We introduce a novel data labeling prompting
strategy utilizing Large Language Models (LLMs), which enables the auto-
matic definition of school success classes based on comprehensive information
that reduces the need for human labeling.
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– Predictive modeling (Merged GNN) with MergeGraph: We advance
predictive modeling techniques by employing different types of message pass-
ing of GNN, a cutting-edge approach for analyzing graph-structured data.

– Analyzing comprehensive school success datasets: We introduce an
approach of combining heteregenous data sources into a single framework,
enabling a nuanced understanding of school success rather than solely focus-
ing on student success.

– Conducting extensive experiment: We investigate an experiment on a
real-world Chicago school dataset to demonstrate that our model is capable
of capturing the shape of success classification.

2 Related Work

In this section, three groups of related work are discussed: 1) School and student
success, 2) LLM-Based data classification and labeling, and 3) Node classification
with graph neural networks.

2.1 School and Student Success

The discovery of factors affecting academic success is an ongoing field of study
as the definition of success evolves over time. Emotional and social competencies
play a pivotal role in self-awareness, higher educational attainment, improved
mental and emotional health, and a decrease in engagement with criminal ac-
tivities [13]. Conversely, it’s evident that reductions in crime rates and improve-
ments in overall welfare also contribute to the pathways to success. Woehr and
Newman [15] demonstrated that the presence of dogs can alleviate stress among
elementary and high school students, shedding light on innovative methods to
support student well-being. Bastedo et al. [16] concluded that both raw and con-
textualized measures of high school GPA, along with ACT scores, serve as robust
predictors for underrepresented students, influencing outcomes such as freshman
college GPA, retention rates, and graduation success. Additionally, providing a
positive school environment has been identified as a powerful intervention to im-
prove academic performance and promote holistic student well-being by Daily
et al. [2]. Rodriguez et al. [17] delved into the interaction between socioeconomic
status and academic achievement, finding a positive correlation, highlighting
social and economic factors in shaping educational outcomes.

Hashim et al. [7] compared the performances of several supervised machine
learning algorithms, such as Decision Tree, Naïve Bayes, Logistic Regression,
Support Vector Machine, K-Nearest Neighbour, Sequential Minimal Optimisa-
tion, and Neural Network for forecasting student success in bachelor study pro-
grammes. Malik and Jothimani [18] proposed a framework to choose important
features that impact student quality and reduce dropout rates. Natek and Zwill-
ing [19] conducted a study focusing on specific students, analyzing their academic
records and family backgrounds to predict performance, utilizing models such as
Rep Tree, J48, and M5P. Khalaf et al. [20] forecasted exam outcomes leveraging
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student-filled questionnaires on social activities. In the context of predicting stu-
dent dropout, Yukselturk et al. [21] explored various models, including K-Nearest
Neighbour, Decision Tree, Naïve Bayes, and Neural Network.

2.2 LLM-Based Data Classification and Labeling

Recently, large language models (LLMs) have drawn significant attention for
tasks like text classification, data annotation, and content creation. Trained on
vast text and multi-modal data, these models excel in identifying patterns and
connections, enabling them to tackle various NLP tasks with exceptional adapt-
ability and generalization [22–24].

One of the most significant benefits of LLMs is their ability to reduce the
need for extensive data annotations, which can be especially difficult to obtain for
complex tasks. Sushil et al. [22] investigated the use of LLMs in breast cancer
pathology classification, showcasing their potential to alleviate the burden of
extensive data labeling. Bansal et al. [23] and Clavié et al. [24] also emphasized
the importance of LLMs in improving the generalization of NLP models through
innovative annotation techniques. Sun et al. [25] propose clue and reasoning
prompting (CARP) for the task of text classification. Gilardi et al. [26] found that
ChatGPT outperformed crowd workers in tasks such as relevance, stance, topic,
and frame detection, with a zero-shot accuracy approximately 25 percentage
points higher than that of human annotators across different datasets. This
highlights not only the efficiency of LLMs in text classification but also their
ability to handle tasks with high accuracy and reliability.

Lastly, Wang et al. [27] addressed the scalability of text classification by
proposing a set of best practices for deploying LLMs to classify large volumes of
comments efficiently and cost-effectively. These practices underscore the practi-
cal implications of LLMs in real-world settings, where they can offer substantial
improvements over traditional methods.

2.3 Node Classification with Graph Neural Networks

Node classification, the task of predicting a category for a node in a network,
is an active area of research with various approaches being developed. Among
these, semi-supervised learning methods play a significant role in leveraging both
labeled and unlabeled data to improve classification accuracy. Abu-El-Haija et
al. [28] introduced N-GCN, employing multi-scale graph convolution to capture
information from nodes at varying distances in the network. Wang et al. [29] pro-
posed NodeAug, which utilizes data augmentation techniques tailored for graphs
to enhance model generalizability and classification performance. Yang et al. [30]
developed MGCN, employing contrastive learning to effectively leverage infor-
mation from labeled and unlabeled nodes, resulting in improved classification
accuracy in semi-supervised settings. Xu et al. [31] introduced LC-GNN, em-
phasizing the importance of label consistency and enlarging the receptive field
of nodes to improve classification accuracy.
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Fig. 1. School Success Prediction with FRC and Merged GNN

In multi-label classification, Xu et al. [32] introduce AdaNN, leveraging gated
recurrent units (GRUs) to combine node attributes and network topology at
different time points, facilitating adaptation to dynamic graph changes. Zhou et
al. [33] propose LANC, employing a label-attentive convolution mechanism to
focus on informative neighboring nodes for each label, enhancing classification
accuracy in multi-label tasks. Zan et al. Zhang et al. [34] present a novel multi-
label relational classifier that identifies similar nodes based on local network
structure performs clustering on nodes with known labels.

3 Methodology

In this study, we aim to precisely define and predict the success levels of schools
by analyzing a comprehensive set of features. Our methodology is structured
around three core components: robust feature extraction, innovative FRC (Factors-
Reasoning-Classification) prompting, and strategic Merged Graph integration
with Merged GNN, each contributing uniquely to the predictive accuracy of our
model. We showed our framework in Figure 1.

3.1 Preprocessing and Feature Extraction

In the feature extraction phase of our study, we utilized a comprehensive ap-
proach that integrates multiple datasets, enabling us to effectively capture the
intricate dynamics of school environments and their communities. Our dataset
included comprehensive details about the spatial distribution of key amenities
such as parks and libraries within a 2 km radius of each school, enhancing our
analysis with critical insights into the accessibility of important recreational and
educational resources. To further enrich our feature set, we grouped schools using
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the K-means clustering into four different feature categories: school-related met-
rics, socioeconomic indicators, social amenities, and safety statistics. We deter-
mined the optimal number of clusters for each category using the elbow method,
enabling precise capture and analysis of the underlying patterns and interrela-
tionships within the data.

Additionally, to mitigate issues with missing data, we implemented an impu-
tation strategy that involves replacing missing values with the mean of available
corresponding features for each school. For example, if attainment data were
missing for a given year, we calculated the mean from the data of adjacent years
to ensure our dataset’s continuity and integrity.

3.2 Factors-Reasoning-Classification Labeling

To determine the success levels of schools, we developed a specialized prompting
method tailored for Large Language Models (LLMs). This innovative approach
fosters a gradual decision-making environment.

The method entails a systematic approach consisting of three steps:

– Key Influencing Factors Identification: The model prompts to identify
critical factors that influence school success, both positively and negatively.
This initial step is instrumental in explaining the multifaceted aspects con-
tributing to a school’s overall performance.

– Diagnostic Reasoning Process: Model provides a concise explanation of
the diagnostic reasoning process, justifying the classification of each school’s
success level. Model takes the positive and negative influencing factors that
might affect school success. This step enables the expression of the thought
process behind their classification decisions, enhancing transparency and in-
terpretability.

– Success Classification: Based on the identified factors and diagnostic rea-
soning, the model assigns success classes (high, medium, or low) to each
school. This final step synthesizes the input data and user rationale to pro-
duce actionable insights regarding school success levels.

This prompting model processes by ingesting the individual features of each
school as inputs for detailed analysis. Once the analysis is complete, it assigns a
specific class label—high, medium, or low—to each school based on the insights
gained. These class labels are compared to human evaluation results and then
utilized as the ground truth within our Merged GNN methodology. This inte-
gration significantly enhances both the accuracy and reliability of our overall
approach.

3.3 Graph Construction

We conceptualize schools as nodes within a network, with their connections
representing various interrelationships. This setup forms the basis of a node
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classification problem, where schools are systematically categorized into three
distinct success levels: high, medium, and low.

In the graph construction phase, we define two distinct graph structures, de-
noted as Gm = (V,Em), where m specifies the graph (either Similarity Graph
(1) or Geographic Proximity Graph (2)), and each graph contains a set of n
nodes V = {v1, v2, . . . , vn}. The adjacency matrix for each graph is represented
as Am ∈ Rn×n, and the node feature matrix is indicated by X ∈ Rn×F , where F
represents the number of features for each node. For Similarity Graph, edges are
defined based on the cosine similarity between nodes; an edge emij between nodes
vi and vj is established if their cosine similarity exceeds a predetermined thresh-
old (62%), with the edge weight equal to this similarity value. For Geographic
Proximity Graph, edges are determined by the haversine distance between nodes,
where an edge is formed if the distance is below another specified threshold (5
km). These thresholds ensure that each node is connected to at least one other
node in the graph. The ultimate objective is to use these graph structures to
predict success levels, represented by Y = {Y1, Y2, . . . , Yn}, where Yi is labeled
as 2 for high, 1 for medium, and 0 for low success.

We employed the Node2Vec algorithm [35] to generate node embeddings
that effectively capture the topological proximity of nodes within our graphs.
Node2Vec operates by taking a graph G(V,E) as input—where V and E rep-
resent nodes and edges respectively—and it learns an n-dimensional embedding
for each node. The learned embeddings are then represented as follows:

node2vec(G = (V,E)) → Rn×c (1)

where c indicates the number of embedding dimensions per node. These embed-
dings are integrated with the original node features X ∈ Rn×F , resulting in an
enriched node feature matrix X ∈ Rn×(F+c), which combines both the original
features and the new embeddings, thus updating the node features for enhanced
graph analysis.

3.4 Merged GNN

To leverage the distinct topological information embedded in the two types of
graphs representing our school network, we implement a Merged Graph Neural
Network (Merged GNN) described in Algorithm 1. This approach combines the
node embeddings generated from both graphs using the node2vec algorithm,
along with the base node features common to each graph. We called Similarity
Graph as G1 and Geographic Proximity GraphG2 in the formula. The resultant
new node feature matrix is formalized for use in Merged GNN as follows:

Xnew = Concat(node2vec(G1), node2vec(G2), X) (2)

We create a combined adjacency matrix by summing the adjacency matrices
of the two graphs, each weighted appropriately to optimize the model’s perfor-
mance. We denote the weights for Similarity Graph as γ which is a learnable
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parameter and for Geographic Proximity Graph as 1 − γ. The new adjacency
matrix is updated as:

Anew = (γ ×A1 + (1− γ)×A2) (3)

In our node classification approach, we employ both Graph Convolutional
Network (GCN) [36] and Graph Neural Network (GNN) [37] techniques on the
merged graph structure. Given the merged graph G with node feature matrix
Xnew ∈ Rn×(F+2c) and the combined adjacency matrix Anew, the GCN operates
as follows:

H = ÃnewXnewΘ (4)

where Ãnew is the normalized version of Anew, calculated by:

Ãnew = D− 1
2AnewD

− 1
2 + I (5)

with D representing the diagonal node degree matrix and I the identity matrix.
Each GCN layer i updates as:

Hi = ÃnewH
i−1Θ (6)

and the output from the final layer is computed by:

Hfinal = σ(H lΘ) (7)

Here, σ represents the ReLU activation function, Θ learnable parameter, and l
the number of hidden layers.

The GNN component begins by defining the neighborhood Ni for each node
vi, consisting of nodes vj directly connected to vi:

Ni = {j : eij ∈ E} (8)

Message Passing in GNNs involves transforming node features using a function
F , aggregating these transformations from neighbors:

F (xj) = Wj · xj + b (9)

m̄i = G ({Wj · xj : j ∈ Ni}) (10)

Node features are updated by combining the node’s current feature vector with
the aggregated messages:

hi = σ(K(H(xi), m̄i)) (11)

where K is a projection neural network (MLP) that integrates the features into
a new dimension.

By integrating the outputs from both GCN and GNN layers, we derive the
final predictions for our node classification task, effectively capturing both lo-
cal and global structural information. In Algorithm 1, linear refers to a linear
transformation applied to combine features, and softmax is used to normalize
the output logits into probabilities.
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Algorithm 1 Merged Graph Neural Network (Merged GNN) for School Success
Prediction
Require: Graph adjacency matrix A, node features X, number of classes C
Ensure: Predicted class labels for each node
1: Step 1: Initialize Graph Convolutional Network Layers
2: Setup transformation matrices Θ(1), Θ(2) for GCN layers
3: Setup weight matrix W for GNN layer
4: Step 2: Apply Graph Convolutional Network Layers
5: for i = 1 to 2 do
6: if i == 1 then
7: H(1) ← σ(ÃXΘ(1)) ▷ First GCN layer
8: else
9: H(2) ← σ(ÃH(1)Θ(2)) ▷ Second GCN layer

10: end if
11: end for
12: Step 3: Apply Graph Neural Network Operations
13: H(GNN) ← σ(A(XW )) ▷ GNN operation using learned weights
14: Step 4: Integrate GCN and GNN Outputs
15: H(combined) ← H(2) +H(GNN)

16: Step 5: Class Prediction
17: Z ← softmax(Linear(H(combined))) ▷ Compute class probabilities

return Z ▷ Return the class probabilities

4 Experiments

To assess the performance of our proposed model, FRC, and MergeGraph, we
conducted extensive experiments to validate its effectiveness.

4.1 Datasets

We are utilizing various datasets sourced from the City of Chicago and the
Chicago Metropolitan Agency for Planning (CMAP) [38] for our research. These
datasets include information on crime, parks, libraries, boundaries, demographic,
and economic data as shown in Table 1. For the Chicago School Dataset, we
analyze essential metrics such as graduation rate, college enrollment percentage,
and attendance rate for each school over the years 2014, 2015, and 2016. The
Chicago Crime Dataset provides comprehensive crime data from the Chicago
Data Portal [39]. We focus on specific crime types—robbery, arson, homicide, and
offense—and analyze their correlation with school success. Crime rates around
each school within a 2 km radius are aggregated for each distinct year.

Incorporating region-specific public health data [40] enhances our dataset
with crucial health statistics related to each school’s geographic location. This
enrichment includes features such as teen birth rate, poverty level, housing con-
ditions, and per capita income sourced from the Community Data Snapshots
(CDS) project. We merge data on Chicago Public Parks [39] and libraries [41]
with school data based on latitude and longitude features. Our analysis extends
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to parks conducive to teenage engagement, focusing on amenities suitable for
teenagers. Additionally, we consider the count of libraries near a school, ac-
knowledging their impact on learning opportunities and access to resources like
computers, books, and the internet within a 2 km radius.

Table 1. Dataset Description

Node Features Types

School Dataset Graduation Rate, Attainment, ACT Scores,
College Enrollment, Attendance Rate

Crime Dataset Robbery, Offense, Arson, Homicide

Socioeconomic Dataset Race, Age, Employment, and Income
Distributions, Community Health Data

Social Resource Dataset Parks and Libraries

4.2 Baselines

We compared our proposed method with five baselines that can be categorized
into two groups: graph-based methods and traditional machine-learning models.
To compare traditional machine learning models, we used node embeddings and
node features as tabular data.

Graph-based methods:

– GNN [37]: Predicts school success labels by learning node representations
based on the underlying graph structure.

– GCN [36]: Classifies school nodes by leveraging their spatial and temporal
features along with the features of their neighboring nodes.

– Graph Sage [42]: Aggregates information from neighboring nodes and learns
representations based on school features and the collective information of
neighboring schools and their features.

Traditional machine learning methods:

– XGBoost [43]: Classifies schools by identifying complex patterns and rela-
tionships among the provided features.

– Random Forest [44]: Captures the relationships between input variables and
the target by constructing decision trees based on subsets of school features.

4.3 Evaluation Metrics and Experiment Settings

We compared the results obtained with the learned weights in the final adjacency
matrix required for our proposed model with the results obtained by trying
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various weight configurations. Additionally, we conducted a comparative analysis
between our model and baseline methods. The performance of our model was
assessed using key metrics such as F1-Score and accuracy.

For FRC prompting, we leveraged the Chat-GPT 3.5 Turbo model due to
its advanced capabilities, which offered several benefits to our study. With its
vast language understanding and generation capabilities, this model enabled
more precise predictions. To facilitate manageable input sizes and enhance the
computational workflow, we imposed a maximum token limit of 256.

5 Results

5.1 LLM-Based Data Labeling Results

To assess the efficacy of the FRC prompting method, we conducted a compar-
ative analysis against human-labeled data. Three individuals assigned success
labels to 50 schools based on the subset of the dataset that is provided to the
LLM. We determined the label for each school by selecting the most frequently
assigned category. For instance, if two evaluators labeled a school as “medium”
while another labeled it as “high”, we assigned the label “medium” to that school
as human-labeled data and compared it to prompt labels. Figure 2 shows the
confusion matrix of labeling. While our prompt model doesn’t suggest that a
school commonly perceived as “high” by humans is actually “low”, only one of the
schools identified as “high” by the model is deemed “low” by humans. Regarding
“medium” schools, both human evaluation and our model generally yield similar
assessments. Notably, there are instances where schools classified as “high” by
the model are labeled as “medium” by humans.

We compared human-labels and prompting result to reach F1-score, preci-
sion, and recall. Table 2 presents the convergence of our model’s scores with those
assigned by humans across various evaluation metrics. Remarkably, our model
demonstrated comparable performance in all aspects. On average, there’s a 65%
similarity between human evaluations and prompting results. Consequently, the
LLM enabled us to discern all labels without the need for additional human
labeling efforts, showcasing its efficiency and accuracy in predictive tasks.

Table 2. FRC and Human Evaluation Comparison

Class F1-Score Precision Recall
High 0.6316 0.5455 0.7500

Medium 0.6522 0.7143 0.6000
Low 0.6857 0.6667 0.7059

5.2 Merged GNN Performance with Different Weights

In our study, we put together two distinct graph structures: one defining the
interconnectivity of schools based on node similarity (Similarity Graph), while
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Fig. 2. Confusion Matrix of Human-Labels and LLM-Labels

the other encapsulated the geographical proximity between schools (Geographic
Proximity Graph). As detailed in Table 3, we systematically evaluated the impact
of different weight distributions on model performance and compared the results
of these weights with the weights learned by our model. The Merged GNN assigns
weights of 0.3063 and 0.6937 to the Similarity Graph and Geographic Proximity
Graph, respectively. The near balance between these weights at (0.3, 0.7) leads
to highly competitive results. This distribution outperforms alternative weight
assignments. This strategic weighting strategy optimally leverages the unique
characteristics of each graph, enhancing the predictive capabilities of our model.

5.3 School Success Prediction Results

As shown in Table 4, our proposed methodology, FRC and Merged GNN, demon-
strates notable superiority when compared to existing graph neural network
models, XGBoost, and Random Forest classifier. Our proposed model achieves an
accuracy of 0.897 and an F1 score of 0.8928, indicating its efficacy in school suc-
cess prediction task. Comparative analysis reveals the individual performance of
graph neural network (GNN), graph convolutional network (GCN), and Graph-
SAGE on the constituent graphs. Specifically, while GNN achieves better re-
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Table 3. Weights For Merge Graph

Weight for G1 Weight for G2 Accuracy F1 Score Precision Recall
0.9 0.1 0.682 0.6711 0.7069 0.6753
0.7 0.3 0.7568 0.7486 0.7858 0.7486
0.5 0.5 0.7872 0.7817 0.8056 0.7906
0.3 0.7 0.897 0.8928 0.8931 0.893
0.1 0.9 0.738 0.7299 0.7578 0.7377

0.3063 0.6937 0.8951 0.8914 0.892 0.8915

sults for Geographic Proximity Graph (G2) with 0.5297, GCN attains 0.7335
and 0.5925 for Similarity Graph (G1) and Geographic Proximity Graph (G2),
respectively. Graph SAGE gives similar results with random forest in terms
of Similarity Graph (G1) but fails to learn from Geographic Proximity Graph
(G2). Moreover, Random Forest predicts classes in Geographic Proximity Graph
(G2) with 70% accuracy, whereas XGBoost’s results hover around 0.50 for both
graphs. These findings underscore the effectiveness of our proposed model in
leveraging the complementary information from merged graphs, offering a ro-
bust framework for predictive modeling in complex network data.

Table 4. Comparison

Models Graphs Accuracy F1 Score Precision Recall
GNN G1 0.4053 0.3944 0.3946 0.3952

G2 0.5297 0.4949 0.5642 0.5148
GCN G1 0.7335 0.729 0.7545 0.7301

G2 0.5925 0.5552 0.6266 0.577
Graph SAGE G1 0.5741 0.4771 0.4887 0.5494

G2 0.2556 0.1357 0.0852 0.3333
XGBoost G1 0.4815 0.4618 0.4588 0.4815

G2 0.5926 0.5956 0.6005 0.5926
Random Forest G1 0.5556 0.5302 0.5377 0.5556

G2 0.7037 0.6956 0.7007 0.7037
Merged GNN Merged Graph 0.897 0.8928 0.8931 0.893

6 Conclusion

As a consequence, our investigation attempts to forecast school achievement by
explaining the multifaceted influences. We introduce a novel methodology by
leveraging Factor-Reasoning-Classification (FRC) prompting and Merged GNN
integration. The FRC prompting method facilitates the automated identification
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of school achievement labels through comprehensive knowledge and diagnostic
reasoning. Simultaneously, the Merged GNN technique combines two distinct
graph structures, one based on school similarity and the other on geographic
proximity, to provide a comprehension of school attributes and interconnections.
Through extensive experiments on real-world datasets, our methodology shows
significant improvements over baseline models. Our approach achieves superior
performance in school achievement prediction by effectively integrating multiple
graph structures and leveraging advanced predictive modeling techniques.
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