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Abstract—Climate change is intensifying rainfall extremes,
making high-resolution precipitation projections crucial for
society to better prepare for impacts such as flooding. However,
current Global Climate Models (GCMs) operate at spatial
resolutions too coarse for localized analyses. To address this
limitation, deep learning-based statistical downscaling methods
offer promising solutions, providing high-resolution precipitation
projections with a moderate computational cost. In this work,
we introduce a bias-informed conditional diffusion model for
statistical downscaling of precipitation. Specifically, our model
leverages a conditional diffusion approach to learn distribution
priors from large-scale, high-resolution precipitation datasets.
The long-tail distribution of precipitation poses a unique
challenge for training diffusion models; to address this, we
apply gamma correction during preprocessing. Additionally,
to correct biases in the downscaled results, we employ a
guided-sampling strategy to enhance bias correction. Our
experiments demonstrate that the proposed model achieves highly
accurate results in an 8× downscaling setting, outperforming
previous deterministic methods. The code and dataset are
available at Github.

Index Terms—Deep learning, Denoising Diffusion Probability
Models, Statistical Downscaling, Climate Modeling

I. INTRODUCTION

Due to climate change, there is a growing demand for
reliable weather and climate simulation at local scales [10].
The current de facto technique Global Climate Models
(GCMs) [8] can simulate the Earth’s response to varying
atmospheric greenhouse gas (GHG) emissions scenarios.
However, the outputs from GCMs are often coarse and lack
the granularity [7] needed to understand local weather patterns
and their impacts on specific sectors such as agriculture, water
resources, and food security.

One of the foundational methods is statistical downscaling,
which enhances coarse climate model outputs by predicting
fine-resolution data based on statistical relationships between
low-resolution and high-resolution observations. This
approach shares similarities with image super-resolution
techniques in computer vision. A historically significant
image super-resolution method is the Super-Resolution
Convolutional Neural Network (SRCNN). Although SRCNN
has been widely adopted and dominated the field for nearly a
decade, it suffers from limitations such as a restricted receptive
field and insufficient network depth, which impede its ability
to capture global context and effectively extract features
[13]. Additionally, SRCNN struggles with poor adaptation to

long-tail data distributions [5], such as precipitation, making
it unsuitable for tasks like 8× downscaling.

Recently, denoised diffusion models [9], [16] have
emerged as the dominant deep generative models for images
due to their comprehensive coverage of data distributions
and high-quality outputs. Improved Denoising Diffusion
Probabilistic Models (DDPMs) [14] are generative models
that produce high-quality samples, achieve competitive
log-likelihoods with simple modifications, enable faster
sampling through learned variances, and scale effectively with
model capacity and compute. Furthermore, diffusion models
outperform state-of-the-art generative models like GANs [6]
in image synthesis tasks by leveraging improved architectures
and classifier guidance for enhanced fidelity and diversity,
achieving superior FID scores across multiple resolutions
while maintaining efficient sampling and better distribution
coverage [3].

In this work, we aim to adapt conditional diffusion
models for the task of precipitation downscaling. However,
precipitation downscaling has its unique challenges. 1) The
distribution of precipitation is inherently non-normal, posing
difficulties for traditional deep learning models to capture
its long-tail characteristics. 2) Bias is a critical metric
for precipitation downscaling, as small inaccuracies can
significantly impact downstream applications. To tackle these
issues, we introduce a Bias-aware Guided Sampling (BGS)
approach to systematically reduce bias during the downscaling
process, improving the overall accuracy and reliability of the
generated high-resolution precipitation data.

II. METHOD

In this section, we first introduce the definition and
statistical downscaling. Then we explain how to train
a conditioned denoised diffusion model for statistical
downscaling. Finally, we introduce the motivation and
formulation of our two core innovations: Gamma Correction
and Bias-aware Guided Sampling.

A. Problem Setting and Conditional Diffusion Models

Statistical downscaling involves generating high-resolution
climate variables from low-resolution counterparts using
statistical methods. This process closely resembles the image
super-resolution task in computer vision. [15].
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Fig. 1. Overall pipeline of the proposed framework: In the training phase, a noise-corrupted high-resolution image, a low-resolution image, and a topography
image are concatenated and input into a U-Net model. The U-Net is trained to predict the noise in the corrupted high-resolution precipitation image. In the
prediction phase, the trained U-Net iteratively denoises precipitation images, transforming pure noise into high-resolution precipitation. Our bias-informed
sampling strategy quantifies and reduces the bias between the corrupted high-resolution precipitation and the low-resolution input at each denoising step.

We are given a dataset of low-high resolution precipitation
pairs, denoted D = {xi,yi}Ni=1, which represent samples
drawn from an unknown conditional distribution p(y|x). Here
y represents high-resolution precipitation and x represents
low-resolution precipitation. Due to the high correlation
between topography information and precipitation [2], we
concatenate it with x as the input for our model.

The conditional diffusion model generates a high resolution
precipitation y0 in T refinement steps. Starting with an
initial noise precipitation yT ∼ N (0, I), the model
progressively refines the precipitation through successive
iterations (yT−1,yT−2, ...,y0) using learned conditional
transition distributions pθ(yt−1|yt,x) such that y0 ∼ p(y|x).

B. Gamma correction

Distribution of precipitation naturally deviates from
Gaussian distribution, which is favored by deep learning
models. Inspired by the similarity between distributions of
precipitation and low-light images [11], we apply Gamma
Correction on both low and high resolution precipitation data
in preprocessing stage. The equation of Gamma Correction is

â = aγ , γ = 0.15 (1)

This approach addresses the issue of large precipitation
areas dominating the optimization process, thereby effectively
enhancing the model’s performance.

C. Bias-aware Guided Sampling(BGS)

Classifier-guided sampling is a technique used in [3]. This
approach can improve the performance of diffusion model

without slowing down the training process. We propose to
incorporate this technique in our sampling process.

While the diffusion process conditions on low-resolution
image x, we assume that the information of x is not
fully leveraged due to indirect connection between x and
y. Moreover, the x comes from GCMs, which are expert
models with minimum bias from real climate variables. To
fully leverage this prior knowledge, we propose a Bias-aware
Guided Sampling approach [3]. Specifically, we use a L2 norm
f = ∥yt−x∥2 to quantify the bias between yt and x and use
its gradients to steer the generation process at each diffusion
step. Formally,

yt−1 =
1

√
αt

(yt −
1− αt√
1− ᾱt

ϵθ(yt,x, t))− w∇f (2)

where w = 100 is a hyperparameter we searched by
experiments.

III. EXPERIMENT AND RESULTS

A. Dataset

The high-resolution precipitation data(4km) is from PRISM
Climate data [1]. The low-resolution precipitation data(32km)
is bilinearly downsampled 8x from the high-resolution data.
We use the data between 2000-2018 for training and
2019-2022 for evaluation.

B. Evaluation metrics

Following DeepSD [17], we evaluate our method and
baselines using three metrics: RMSE, correlation, and bias.
RMSE measures the average error, correlation assesses the
linear relationship and bias quantifies systematic errors. Both
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TABLE I
EVALUATION OF DOWNSCALING METHODS ON PRISM DATASET

Methods RMSE(mm/day) Corr Bias(mm/day)

Interpolation 3.134 0.939 -0.0053
SRCNN 5.921 0.828 0.0660
Ours w/o BGS, Topo 3.019 3.943 0.0544
Ours w/o BGS 2.991 0.944 -0.0548
Ours 2.972 0.945 -0.0389

Fig. 2. One example of 16× 16 → 128× 128 downscaling of precipitation.

RMSE and bias are in mm/day. The interpolation method uses
bilinear interpolation to upscale the original low-resolution
image to high resolution, serving as our baseline. SRCNN
performs poorly in the evaluation metrics, with a significantly
increased RMSE and noticeably low correlation, highlighting
its limitations in effectively downscaling precipitation data.

C. Implementation details

Our code is based on improved diffusion [14]. We treat
both the high and low resolution precipitations as 128 × 128
grayscale images. All the precipitations are cropped from
the same region for convenience. We use AdamW [12] and
learning rate 3e-4. We train our model using one A100 for
1000 epochs, which takes around one day.

D. Quantitative and qualitative results

The quantitative results are presented in Tab I. As
shown, our method outperforms the deterministic baseline
SRCNN [4], [17], and both the incorporation of topography
information (Topo) and Bias-aware Guided Sampling (BGS)
prove effective in this setting.

As shown in Fig 2, while SRCNN struggles to generate
high-resolution precipitation under an 8× super-resolution
setting. The distribution and visual performance of the SRCNN
image significantly deviate from the high-resolution ground
truth, while our method generates physically and visually
plausible results with fine details.

IV. CONCLUSION

In this work, we proposed a bias-informed conditional
diffusion model for precipitation downscaling, addressing
the challenges posed by the long-tail distribution of
precipitation and biases in low-resolution input data. By
incorporating gamma correction during preprocess and
introducing Bias-aware Guided Sampling (BGS), our method
achieved significant improvements in accuracy and bias
correction compared to baseline methods. The experimental
results demonstrated the effectiveness of our approach in
producing high-resolution precipitation maps with fine details,
making it a promising solution for localized climate impact

studies. Future work will explore extending this framework to
other climate variables and integrating physical constraints for
enhanced generalizability.
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