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Abstract—This paper introduces LSTMGraph, a unified time-
series model designed for demand prediction across multiple
products. This method integrates Long Short-Term Memory
(LSTM) networks to capture temporal dynamics, such as price
fluctuations, and Graph Convolutional Networks (GCN) to model
global dependencies between products. We represent demand
data as a network where each product is a node, constructing
three distinct graphs with different types of edges: (i) a weekly
sales similarity graph, (ii) a customer-based relationship graph,
and (iii) an invoice-based similarity graph. These graphs are
merged to enhance predictive accuracy by incorporating diverse
temporal and relational patterns. Extensive experiments show
that LSTMGraph significantly outperforms existing baseline
models. Additionally, an ablation study is conducted to quantify
the impact of each graph type on overall performance.

Index Terms—Demand prediction, Long short-term memory,
Graph convolutional network, Time series forecasting

I. INTRODUCTION

Reducing holding costs is a critical priority for manufactur-
ers, as excessive inventory directly impacts profitability [1].
Accurate demand forecasting—whether on a daily, weekly,
monthly, or annual basis—has become essential for optimizing
production and supply chain management [2]. Achieving reli-
able forecasts requires a thorough analysis of product charac-
teristics, temporal patterns, and customer demand behavior, all
of which play a crucial role in aligning inventory with actual
market needs [3]. Demand prediction remains a critical and
evolving research area due to its significant role across various
industries, including pharmaceutical supply chains [4] and
grocery retailing [2]. Accurate forecasting in these domains
helps optimize inventory management, reduce costs, and meet
fluctuating customer demands, highlighting the importance of
advanced predictive models in complex supply chain systems.

There are numerous techniques for demand prediction in
the literature. Traditional forecasting methods, often based on
time-series models, rely heavily on limited historical data [2],
which can result in significant information loss and reduced
predictive accuracy. These approaches may struggle to capture
complex temporal patterns or relationships between different
products and external factors, limiting their effectiveness in
dynamic, real-world applications. Today, machine learning and
data mining techniques are increasingly being applied to time
series forecasting, enabling the capture of more intricate pat-
terns and relationships [5]. These advanced methods allow for
the integration of larger datasets, overcoming the limitations of
traditional approaches and improving the accuracy of demand

predictions by leveraging complex temporal and contextual
information.

In this paper, we propose a novel model to enhance the de-
mand forecasting process by leveraging a dataset that captures
the customer-product-sales relationship. To the best of our
knowledge, few studies [5], [6] have explored this tripartite re-
lationship in depth. Our approach combines LSTM networks,
which effectively model temporal dependencies, with GCNs,
allowing us to capture global relationships between products.
This integration enables more accurate demand predictions by
accounting for both time-based trends and complex product
interactions.

We summarize our contribution as follows:
• Time-series forecasting modeling (LSTMGraph): We

present a predictive modeling technique that employs
Long Short-Term Memory (LSTM) networks and Graph
Convolutional Networks (GCN) in a unified framework.
This approach leverages the sequential and temporal rela-
tionships of products to accurately predict their demands.

• Analyzing a comprehensive customer-product-sales
dataset: We introduce a method for creating various types
of graphs using the same dataset, enhancing our analysis
of customer interactions and product sales dynamics.

• Conducting extensive experiments: We perform exper-
iments on the dataset to demonstrate that our model
effectively captures both local and global associations,
leading to improved forecasting accuracy.

• Evaluation of model performance: We assess the
performance of our LSTMGraph model using standard
metrics, comparing it with existing forecasting methods
to validate its effectiveness and robustness in real-world
applications.

II. RELATED WORK

In this section, three groups of related work are discussed:
1) Demand Prediction 2) LSTM for Time Series Problem and
3) Graph Neural Network for Time Series Problem.

A. Demand Prediction

Kumar et al. [7] employed a back-propagation neural net-
work model trained with fuzzy inputs, utilizing historical
demand and sales data alongside advertising effectiveness,
expenditures, promotions, and marketing event data to enhance
prediction accuracy. In a complementary approach, Kilimci et
al. [2] proposed an integration strategy that combines multiple
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forecasting models to improve demand prediction outcomes.
Abbasimehr et al. [8] introduced a demand forecasting method
leveraging multi-layer Long Short-Term Memory (LSTM)
networks, demonstrating the effectiveness of deep learning
in capturing complex demand patterns. Huber and Stucken-
schmidt [9] focused on a bakery chain, specifically addressing
the challenge of forecasting daily demand for various product
categories, particularly around special calendar events. Mean-
while, Nguyen et al. [10] developed a data-mining prediction
framework for remanufactured products, exploring the non-
linear relationships of online market factors as predictors of
customer demand. Li et al. [11] introduced SGNN that utilizes
the Graph Neural Network (GNN) for demand prediction by
leveraging the spatial relationships inherent in online sales
data.

B. LSTM for Time Series Problem

Abbasimehr and Paki [12] integrated Long Short-Term
Memory (LSTM) networks with attention mechanisms to
enhance time-series prediction across various datasets. In a
focused application, Dubey et al. [13] utilized LSTM for
forecasting energy consumption, comparing its performance
against traditional models such as ARIMA and seasonal
ARIMA (SARIMA). Livieris et al. [14] combined Convolu-
tional Neural Networks (CNN) and LSTM to achieve accurate
predictions of gold price movements. Chimmula and Zhang
[15] developed a real-time forecasting model using LSTM
networks to predict COVID-19 transmission dynamics. Ning et
al. [16] conducted a comparative analysis of ARIMA, LSTM,
and Prophet models, revealing that both ARIMA and LSTM
outperformed Prophet in oil price prediction tasks. Zhang et
al. [17] proposed a deep learning hybrid prediction model for
stock market forecasting, incorporating Complementary En-
semble Empirical Mode Decomposition (CEEMD), Principal
Component Analysis (PCA), and LSTM to leverage their com-
plementary strengths. Yadav et al. [18] also employed LSTM
for stock market predictions, highlighting its effectiveness in
capturing market trends. Furthermore, Hu et al. [19] introduced
a variant of LSTM that enhances the memory module by
merging the forget and input gates into a single update gate,
utilizing a Sigmoid layer to regulate information flow.

C. Graph Neural Networks for Time Series Problem

Lazcano et al. [20] integrated Graph Convolutional Net-
works (GCNs) with Bidirectional Long Short-Term Memory
(BiLSTM) networks to effectively predict oil prices. Wu et
al. [21] introduced a general graph neural network framework
specifically tailored for multivariate time series data, which
adeptly extracts unidirectional relationships among variables.
Cao et al. [22] developed StemGNN, a model that simulta-
neously captures inter-series correlations and temporal depen-
dencies in the spectral domain. Cheng et al. [23] proposed a
Multi-modality Graph Neural Network (MAGNN) designed
to learn from multimodal inputs for financial time series
predictions. Wang et al. [24] combined graph neural networks
with multivariate time series (MTS) analysis to uncover the

internal temporal patterns of single-dimensional time series
while considering the complex spatial relationships among
variables. Zanfei et al. [25] created a Graph Convolutional Re-
current Neural Network (GCRNN) to forecast water demand
time series for water supply systems. Khodayar and Wang
[26] proposed a spatio-temporal graph deep neural network
aimed at short-term wind speed forecasting. Additionally, Cui
et al. [27] introduced the Traffic Graph Convolutional Long
Short-Term Memory Neural Network (TGC-LSTM), which
captures interactions among roadways in the traffic network
to forecast network-wide traffic states. Diao et al. [28] also
contributed a dynamic spatio-temporal Graph Convolutional
Neural Network (GCNN) for accurate traffic forecasting.

III. METHODOLOGY

In this study, we aim to accurately define the dependen-
cies and perform time-series forecasting for multiple product
quantities by analyzing a comprehensive set of features. Our
methodology is structured around three core components:
robust feature extraction, creating different types of graphs,
and strategic LSTM and GCN integration. Each component
uniquely contributes to meeting the predictive demands of our
model. A visual representation of our framework is illustrated
in Figure 1.

A. Preprocessing and Feature Extraction

We adopted a cleaning process similar to that outlined by
Yilmaz et al. [6]. In our dataset, we removed all transactions
lacking a description or customer ID, as well as any cancelled
transactions. We also excluded transactions with product prices
below zero, as these are not feasible in real-world scenarios.
Additionally, stock codes containing letters were deemed
irrelevant for this study and were consequently discarded.
Analysis of the price feature revealed that the 75th percentile
is 3.75, while the maximum value is 649.5, indicating the
presence of outliers. To address this, we applied a logarithmic
transformation to the price feature and eliminated transactions
with outlier UnitPrice values, retaining only those that fall
within the top 99% of the data distribution. We implemented
the same procedure for the Quantity feature.

Furthermore, we created daily transaction records for each
product. Notably, some products exhibited zero demand for
over 40% of the two-year period, leading us to exclude them
to enhance prediction accuracy. We also observed instances of
daily demand exceeding 200 units for certain products, which
were considered excessive. To ensure a balanced dataset, we
removed these outlier transactions as well. From the transac-
tion data, we generated new columns to capture the minimum
and maximum prices of products for each daily transaction.
Additionally, we extracted features from the invoice date,
including columns for the day, day of the week, month, and
year.

B. Graph Generation

We conceptualize products as nodes within a network, with
their connections representing various interrelationships. To
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Fig. 1. Proposed Framework

get different understanding of data, we created three types
of graph. In the graph construction phase, we define three
distinct graph structures, denoted as Gm = (V,Em), where
m specifies the graph (a weekly sales similarity graph (G1),
a customer-based similarity graph (G2), and invoice-based
relationship graph (G3) and each graph contains a set of n
nodes V = {v1, v2, . . . , vn}. The adjacency matrix for each
graph is represented as Am ∈ Rn×n, and the node feature
matrix is indicated by X ∈ Rn×F , where F represents the
number of features for each node.

For weekly sales similarity graph, we counted how many
times two products are sold more than 50 in a week and
divided this to 54 (number of weeks in a year) to get edge
emij between nodes vi and vj and edge weights. In customer-
based graph, the nodes that are sold more than 5 times
together by a customer are connected to each other. For
invoice-based relationship graph, edges are determined if two
products are together in an invoice. The ultimate objective
is to use these graph structures to predict demand quantities
for different products, represented by Y = {Y1, Y2, . . . , Yt},
where t specifies day information. We decide thresholds to get
a connected graph.

C. Integration of LSTM and GCN

A sliding window approach is used to extract time-series
data of product purchases. Given the time-series data for n
products and t days, we use a sliding window of size w (e.g.,
15 days) with a stride s (e.g., 1 day) to create overlapping
windows of product features. This approach captures both
short-term and long-term demand fluctuations.

For each window, the product features are extracted from
the original dataset and additional features such as minimum
price, maximum price, and clustering coefficient that comes
from weekly sales similarity graph are included, resulting in
a rich feature set:

Xnew = Xquantity +XminPrice +XmaxPrice +Xcoefficient (1)

If a sliding window at the end of the dataset has fewer than
w time steps, zero-padding is applied to maintain consistency
in window size across the dataset. The input features X are
converted to tensors and paired with the edge index to create
a graph representation for each window.

We combined adjacency matrices by concatenating them to
get a unified matrix.The new adjacency matrix is updated as:

Anew = (A1 +A2 +A3) (2)

Given the merged graph G with node feature matrix Xnew ∈
Rn×(F ) and the combined adjacency matrix Anew, the GCN
operates as follows:

H = AnewXnewΘ (3)

where Ãnew is the normalized version of Anew, calculated by:

Ãnew = D− 1
2AnewD

− 1
2 + I (4)

with D representing the diagonal node degree matrix and I
the identity matrix. Each GCN layer i updates as:

Hi = ÃnewH
i−1Θ (5)

and the output from the final layer is computed by:

Hgraph = σ(H lΘ) (6)

Here, σ represents the ReLU activation function, Θ learnable
parameter, and l the number of hidden layers.

Once the GCN layer has processed the graph structure, we
keeped the output feature matrix Hgraph.

To capture temporal dependencies, the LSTM processes the
sequential information for each node as follows:
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For each time step t, the LSTM takes the hidden state ht−1,
cell state ct−1, and the input Ht from the beginning:

ft = σ(Wf · [ht−1, Ht] + bf )

it = σ(Wi · [ht−1, Ht] + bi)

c̃t = tanh(Wc · [ht−1, Ht] + bc)

ct = ft · ct−1 + it · c̃t
ot = σ(Wo · [ht−1, Ht] + bo)

ht = ot · tanh(ct)

(7)

Here:
• ft is the forget gate,
• it is the input gate,
• c̃t is the candidate cell state,
• ct is the updated cell state,
• ot is the output gate, and
• ht is the updated hidden state, which is passed to the next

time step.
After passing through all the time steps, the final hidden

state hT from the LSTM layer is the output. By taking average
the outputs from both GCN and LSTM layers, we derive the
final predictions Hfinal for demand prediction task, effectively
capturing both local and global structural information.

Hfinal =
hT +Hgraph

2
(8)

To train the model, L1 loss for Mean Absolute Error (MAE)
is defined as:

LMSE =
1

n

n∑
i=1

(yi −Hfinal,i)
2 (9)

where yi represents the true demand value for the i-th
sample, and Hfinal,i represents the predicted demand value for
the i-th sample.

IV. EXPERIMENTS

To assess the performance of our proposed model, LST-
MGraph, we conducted extensive experiments to validate its
effectiveness.

A. Dataset

In this study, we utilize a publicly available dataset [29]
from an online retail company, covering two-year period.
The dataset contains detailed records of customer transac-
tions, including the following attributes: invoice number, stock
code, product description, quantity purchased, invoice date,
unit price, customer ID, and the country of origin. This
comprehensive dataset provides a rich source of information
for analyzing purchase behavior and demand patterns across
different products and geographic regions as can be seen in
Table I. It comprises a total of 1,067,371 transactions, spread
across 53,628 unique invoices. These transactions involve
5,305 unique products, which are described by 5,698 unique
product descriptions. The dataset also includes records for
5,942 unique customers from 43 different countries. For each

TABLE I
DATASET DESCRIPTION

Features Details
Transactions 1067371

Unique Invoice 53628
Unique Products 5305

Unique Description 5698
Unique Customer ID 5942

Unique Country 43
Quantity Different for Each Transaction

Price Different for Each Transaction
InvoiceDate Includes Hour, Day, Month, Year Information

transaction, details such as quantity and price are provided,
which vary across different entries. Additionally, the invoice
date captures temporal aspects with information on the hour,
day, month, and year, allowing for in-depth temporal analysis
of purchasing behavior. This rich and diverse dataset provides
an extensive basis for studying transaction patterns, customer
behavior, and other significant insights within a global context.

B. Baselines

We compared our proposed method with 7 baselines that
can be categorized baselines into two groups: traditional time-
series and machine learning methods.

Traditional methods:
• Moving Average [30]: A simple method that smooths past

demand by averaging observations over a fixed number
of time steps.

• Exponential Moving Average [30]: A weighted moving
average that gives more importance to recent observations
to predict future demand.

• ARIMA [31]: A statistical model that uses past values
and errors in a linear manner to predict future points in
the time series.

Machine learning methods:
• Long Short-term Memory [32]: A type of recurrent neural

network designed to remember long-term dependencies.
• Gated Recurrent Units [33]: A type of recurrent neural

network (RNN) that simplifies the architecture of LSTM
by combining the forget and input gates.

• Graph Convolutional Network [34]: A type of graph
neural network that aggregates feature information from
a node’s local neighborhood to generate new node repre-
sentations, effectively capturing the structural information
of the graph.

• Graph Attention Network [35]: A type of graph neural
network that uses an attention mechanism to assign dif-
ferent importance levels to neighboring nodes, allowing
the network to focus on more relevant nodes during
aggregation.

C. Evaluation Metrics and Experiment Settings

LSTMGraph utilizes historical data from the previous 15
days to forecast product demand, employing a stride of 1
for the analysis. The dataset is split into training and testing
subsets, with 80% allocated for training and 20% reserved
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TABLE II
COMPARISON OF DIFFERENT METHODS AND THEIR CORRESPONDING

MEAN ABSOLUTE ERRORS (MAE).

Models Mean Absolute Error
(MAE)

Moving Average 12.7859
Exponential Moving Average 12.3466

ARIMA 13.9902
SARIMA 14.4505

GCN 12.3381
Graph Attention Network 12.2699

LSTM 12.2828
Gated Recurrent Units 13.1009

LSTMGraph 11.4776

for testing. To evaluate the performance of our model, we
employed the Mean Absolute Error (MAE) metric, which
provides a clear measure of the average prediction error.

V. RESULTS

A. Demand Prediction Results

The results of the experiments comparing various forecast-
ing methods are summarized in Table II, where each model’s
performance is evaluated based on the Mean Absolute Error
(MAE). Among the tested models, traditional statistical meth-
ods such as Moving Average and Exponential Moving Average
achieved MAEs of 12.7859 and 12.3466, respectively, showing
reasonable predictive capabilities. The ARIMA and SARIMA
models yielded higher MAEs of 13.9902 and 14.4505, indi-
cating their limitations in capturing complex dependencies in
the dataset.

Deep learning models demonstrated improved perfor-
mance compared to statistical methods. The Graph Convo-
lutional Network (GCN) and Graph Attention Network (GAT)
achieved MAEs of 12.3381 and 12.2699, respectively, reflect-
ing their ability to leverage graph structures effectively. LSTM
and Gated Recurrent Units (GRU) also performed well, with
MAEs of 12.2828 and 13.1009, suggesting their strengths
in capturing temporal patterns. However, the LSTMGraph
model, which integrates both temporal and graph-based fea-
tures, achieved the lowest MAE of 11.4776, demonstrating
its superior efficacy in combining sequential and structural
information for improved predictive accuracy.

These results highlight the efficacy of the LSTMGraph
model in providing more accurate predictions compared to
both traditional statistical models and other deep learning
approaches. The significantly lower MAE indicates that LST-
MGraph successfully captures both temporal dependencies and
graph-based relationships, outperforming existing methods in
the context of this task.

B. Ablation for Graph Types

The ablation study results, presented in Table III, provide
insights into the impact of different graph structures on the
performance of the LSTMGraph model, evaluated using Mean

TABLE III
COMPARISON OF DIFFERENT GRAPH STRUCTURES AND THEIR

CORRESPONDING MEAN ABSOLUTE ERRORS (MAE).

G1 G2 G3 Mean Absolute Error
(MAE)

+ 11.6834
+ 12.3293

+ 11.8377
+ + 11.9633

+ + 11.9417
+ + 11.9802

Absolute Error (MAE). We considered three types of graph
structures: Weekly Sales Similarity Graph, Customer-based
Relationship Graph, and Invoice-based Similarity Graph. The
study systematically analyzes the performance with different
combinations of these graph structures, highlighting their
contributions to the overall predictive accuracy.

The Weekly Sales Similarity Graph alone resulted in the
lowest MAE of 11.6834, indicating that leveraging weekly
sales patterns is particularly effective for the task. When
using the Invoice-based Similarity Graph alone, the model
achieved an MAE of 11.8377, showing a strong but slightly
less effective contribution compared to the Weekly Sales
Similarity graph. The Customer-based Relationship Graph
alone produced a higher MAE of 12.3293, suggesting that
customer relationships, while useful, may not be as predictive
in isolation as the other graph types.

Combining different graphs provided mixed results. The
combination of Weekly Sales Similarity and Customer-based
Relationship Graphs led to an MAE of 11.9633, while com-
bining Customer-based Relationship with Invoice-based Sim-
ilarity Graphs resulted in an MAE of 11.9417. Additionally,
using both Weekly Sales Similarity and Invoice-based Simi-
larity Graphs produced an MAE of 11.9802. Notably, none
of these combinations outperformed the use of the Weekly
Sales Similarity Graph by itself, suggesting that the additional
information from other graphs may introduce redundancy or
noise.

Overall, the ablation study reveals that the Weekly Sales
Similarity Graph is the most influential graph structure for
minimizing prediction error. The results highlight the impor-
tance of carefully selecting graph structures, as incorporating
multiple graphs does not always lead to better performance.
The findings suggest that focusing on key structural relation-
ships, such as those represented by weekly sales similarity,
can be more effective for optimizing the model’s predictive
capability.

VI. CONCLUSION

In this paper, we proposed the LSTMGraph model, a novel
approach that integrates both temporal and structural graph
features for improved forecasting accuracy in dynamic graph-
based datasets. Our method effectively combines the strengths
of Long Short-Term Memory (LSTM) networks for capturing
temporal dependencies with graph-based techniques to exploit
relational structures inherent in the data. Through extensive
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experiments, we demonstrated the superiority of LSTMGraph
over traditional statistical methods and other deep learning
models, achieving the lowest Mean Absolute Error (MAE)
of 11.4776, indicating a significant improvement in predictive
performance.

The LSTMGraph model’s ability to handle both temporal
and structural components, combined with its scalability and
adaptability to different graph structures, makes it well-suited
for a wide range of real-world applications involving dynamic
and evolving graphs. Future work could explore further en-
hancements by incorporating more sophisticated graph aggre-
gation techniques or by extending the model to multi-task
learning scenarios where additional graph information could
be leveraged. Overall, the proposed LSTMGraph framework
offers a powerful and flexible solution for time-series fore-
casting tasks in graph-structured environments, achieving both
high accuracy and robustness.
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