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Semi-Supervised learning

e Typical case : Having a labeled set of data (xi, yi) and a set of

unlabeled data (xi*), predict the label of unlabeled data.
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Semi-Supervised learning

e  Why semi-supervised learning ?
Supervised data is expensive : manual text categorization, finding 3D protein
structure, recorded behavior of individuals in social networlk, ...
Unlabelled data is easier to obtain : text, primary structure protein, individual

link, ...

e How does unlabelled data help ?

They give link and feature information to the labeled data




Classification in graphs

 Objective: Given a graph with some nodes being labeled, we want to
predict/classify the missing node labels

e Real-world applications :

— Linked document categorization

— Classification of individuals and social behavior in social network

— Protein function prediction

— Semi-supervised classification from a neighboring graph in a feature space
e The method should be able to:

— handle very large graphs

— handle a wide variety of graphs
* directed or not
* connected or not
* with positive edge weight

— give good predictive results
— be very fast



Some related approaches
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Random walk preliminaries

e We define a random walk model on the graph which can be modeled by a
discrete-time Markov chain :
— Each node is associated to a state of the Markov chain
— The random variable X represents the state of the Markov model at time step ¢
— The random walk is defined by the transition probability matrix
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Classic data to graph

How can a vectorial dataset be seen as a graph ?
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General Idea
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e Consider the classification of the node marked with « ? »




General Idea
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A D-walk always starts and ends in nodes belonging to the same class




General Idea

Za \’A‘

e A D-walks can start from a node an come back to the same node




General Idea
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e A D-walks can start from a node an come back to the same node




General Idea
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e A D-walks can cross unlabeled nodes




General Idea
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e A D-walk can cross unlabeled nodes




General Idea
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e A D-walks can cross nodes from other classes




General Idea
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e A D-walks can pass several time on the same node




General Idea
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e Example of a GREEN D-walks




D-walks definitions

e Based on the defined Markov chain model, we defined :

A D-walk DY is a random walk starting in a labeled node and ending
when any node having the same label is reached for the first time

A D-walk betweenness B(q, y) is the expected passage time on an
unlabeled node for each class




Computing the D-Walks betweenness

e D-Walk betweenness :

B(q,y) = E [pt(q) | DY]

where pt the number of passage in node g

e Passage times on a node :
pt(q) = > X =g}
t=1

Practical computation relies on
absorbing Markov chain
techniques



Computing the D-Walks betweenness

e
e Passage times on a node : pt(g) = Z KX, = q}
t=1
Suppose P is the Interest class nodes are
transition probability ——=)> replicated as starting
matrix nodes and absorbing

nodes @ @

(3

E [pt(q) | y] = — Z [I+yPT+yP%+yP§i+...}q,-q
Y qfefoy ‘gvst_eé m l3EYst_e’p

Because of the matrix inversion,
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Computing the D-Walks betweenness

e The bounded D-walks approach constrains to perform walks up to a
prescribed length

Br(q,y) = E [pt(q) | DL,]

where D%L refers to all bounded D-walks up
to a given length L

It has three major benefits:
1. Better classification results
2. Betweenness measure can be computed very efficiently
3. Unbounded-betweenness can be approximated by considering large but finite L

— Efficient betweenness computation can be achieved using forward
and backward variables (similar to those used in the Baum-Welch algorithm for HMM)



Computing the D-Walks betweenness

Forward

(caset=1) o¥(q,1) =2 ,cp, niyquq

(case t >2)  a¥(q,t) =X yenne, @¥(dt—1)pg

| | Compute the probability to reach state g after t steps
without passing through node in class y

and Backward recurrence !

(caset=1) p¥(q,1) = Zq’eﬁy Pqq’

(caset > 2) p[Y(q,t) = que_;\f\ﬁy ﬁy(q!a t —1) peg’

| | Compute the probability that state g is reached by the process t
steps before reaching any node labeled y for the first time




Computing the D-Walks betweenness

To compute Br,(q,y)

1. Compute the mean passage time in a node q during ’D? walks

(-1 I—1 B y
E [pt(q) | D] = ZP[_Xt —q|DY] = Z P[ti_[pqu? D;]

[—
_ t:i a¥ (Q: t)ﬁy (q, [ — t)
— } . !’l
Recurrences help to ZQ‘ Eﬁy e (q ) I]

compute the mean

passage time in a Probability to start in any node of class y,
node q for a certain to reach node g at time t and
D-walk to complete the walk I-t steps later

Probability to perform a D-walk




Computing the D-Walks betweenness

2. Finally, the betweenness measure based on walk up to length L is obtained as an
expectation of the betweenness for all length 1 <[ < L

L

BL(g,y) = ) P[g‘?] E [pt(q) | D}]

=1 where Z is normalization

constant




Computing the D-Walks betweenness

* Node are classifiedusing a maximum a posteriori decision rule from the
betweenness of each class :

BL(Q& y)
nyEy BL(Q? y”)

ﬂ

Jq, = argmax Plq | y] Ply]
yey

Plg|y) =




Experiments

e Datasets characteristics:

Max degree 181



Experiments

Classification rate on the imdb_all_ dataset Classification rate on the cora_cite_ dataset
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Good predictive performance



Experiments

Classification rate on the Cora dataset
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L is tuned by
cross-validation

Best walk length for
the CORA dataset is 6 !

Higher than 6 the
results are worse

Low optimal walk length
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Experiments
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Conclusion

e Unlabeled nodes are classified under the class for which the betweenness

D-walks define a node betweenness measure for each class

is the biggest.

 Bounding the walk length

— Provides better classification results, outperforming kernel based approaches

— Allows to algorithm to be very fast (linear time computation)

e Possibility to deal with very large graphs



Possible extensions

 Node features incorporation like

text and numerical attributes to

improve classification

e Derive a kernel from D-Walks to
be used in kernel methods like

SVM

 Define a collaborative
recommendation system based

on bounded random walks
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