Semi-supervised Classification from Discriminative Random Walks

Jérôme Callut – UCL

Kevin Françoisse – UCL

Marco Saerens – UCL

Pierre Dupont – UCL

Overview

- Semi-supervised classification (in graphs)
- *D*-Walk approach presentation
- Experimental results
- Conclusion
- Extensions

Semi-Supervised learning

 Typical case: Having a labeled set of data (xi, yi) and a set of unlabeled data (xi*), predict the label of unlabeled data.

Semi-Supervised learning

Why semi-supervised learning?

```
Supervised data is expensive: manual text categorization, finding 3D protein structure, recorded behavior of individuals in social network, ...
```

Unlabelled data is easier to obtain: text, primary structure protein, individual link, ...

How does unlabelled data help?

They give link and feature information to the labeled data

Classification in graphs

- Objective: Given a graph with some nodes being labeled, we want to predict/classify the missing node labels
- Real-world applications :
 - Linked document categorization
 - Classification of individuals and social behavior in social network
 - Protein function prediction
 - Semi-supervised classification from a neighboring graph in a feature space
- The method should be able to:
 - handle very large graphs
 - handle a wide variety of graphs
 - directed or not
 - connected or not
 - with positive edge weight
 - give good predictive results
 - be very fast

Some related approaches

Random walk preliminaries

- We define a random walk model on the graph which can be modeled by a discrete-time Markov chain :
 - Each node is associated to a state of the Markov chain
 - The random variable X_t represents the state of the Markov model at time step $\,t\,$
 - The random walk is defined by the transition probability matrix

$$P[X_{t+1} = q' \mid X_t = q] = p_{qq'} \triangleq \frac{a_{qq'}}{\sum_{q' \in \mathcal{N}} a_{qq'}}$$

where A is the adjacency matrix possibly weighted

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Classic data to graph

How can a vectorial dataset be seen as a graph?

Consider the classification of the node marked with «?»

A D-walk always starts and ends in nodes belonging to the same class

A D-walks can start from a node an come back to the same node

A D-walks can start from a node an come back to the same node

A D-walks can cross unlabeled nodes

A D-walk can cross unlabeled nodes

• A D-walks can cross nodes from other classes

• A D-walks can pass several time on the same node

Example of a GREEN D-walks

D-walks definitions

Based on the defined Markov chain model, we defined :

A D-walk \mathcal{D}^y is a random walk starting in a labeled node and ending when any node having the same label is reached for the first time

A D-walk betweenness B(q,y) is the expected passage time on an unlabeled node for each class

D-Walk betweenness :

$$B(q, y) \triangleq \mathbb{E} \left[\operatorname{pt}(q) \mid \mathcal{D}^y \right]$$

where pt the number of *passage* in node q

Passage times on a node :

$$\operatorname{pt}(q) = \sum_{t=1}^{\infty} \mathbb{I}\{X_t = q\}$$

Practical computation relies on absorbing Markov chain techniques

Passage times on a node:

$$pt(q) = \sum_{t=1}^{\infty} \mathbb{I}\{X_t = q\}$$

Suppose P is the matrix

Interest class nodes are transition probability replicated as starting a nodes and absorbing nodes

$${}^{y}P = \left(\frac{{}^{y}P_{T}|R}{0|I}\right)$$

$$\mathbb{E}\left[\operatorname{pt}(q)\mid y\right] = \frac{1}{n_y} \sum_{q'\in\mathcal{L}_y} \left[I + {}^y\!P_T + {}^y\!P_T^2 + {}^y\!P_T^3 + \ldots\right]_{q'q}$$

$$= \frac{1}{n_y} \sum_{q' \in \mathcal{L}_y} (I - {}^{y}P_T)_{q'q}^{-1}$$

Because of the matrix inversion, the complexity is $\mathcal{O}(n^3)$

The bounded D-walks approach constrains to perform walks up to a prescribed length

$$B_L(q, y) \triangleq \mathbb{E} \left[\operatorname{pt}(q) \mid \mathcal{D}_{\leq L}^y \right]$$

where $\mathcal{D}^y_{\leq L}$ refers to all bounded D-walks up to a given length L

It has three major benefits:

- 1. Better classification results
- 2. Betweenness measure can be computed very efficiently
- 3. Unbounded-betweenness can be approximated by considering large but finite $oldsymbol{L}$

Efficient betweenness computation can be achieved using forward and backward variables (similar to those used in the Baum-Welch algorithm for HMM)

Forward

(case
$$t = 1$$
) $\alpha^y(q, 1) = \sum_{q' \in \mathcal{L}_y} \frac{1}{n_y} p_{q'q}$

(case
$$t \ge 2$$
) $\alpha^y(q, t) = \sum_{q' \in \mathcal{N} \setminus \mathcal{L}_y} \alpha^y(q', t - 1) p_{q'q}$

Compute the probability to reach state *q* after *t* steps without passing through node in class *y*

and Backward recurrence!

(case
$$t = 1$$
) $\beta^y(q, 1) = \sum_{q' \in \mathcal{L}_y} p_{qq'}$

(case
$$t \ge 2$$
) $\beta^y(q,t) = \sum_{q' \in \mathcal{N} \setminus \mathcal{L}_y} \beta^y(q',t-1) p_{qq'}$

Compute the probability that state *q* is reached by the process *t* steps before reaching any node labeled *y* for the first time

To compute $B_L(q,y)$

1. Compute the mean passage time in a node q during \mathcal{D}_l^y walks

$$\begin{split} \mathbb{E}\left[\operatorname{pt}(q) \mid \mathcal{D}_{l}^{y}\right] &= \sum_{t=1}^{l-1} P[X_{t} = q \mid \mathcal{D}_{l}^{y}] = \sum_{t=1}^{l-1} \frac{P[X_{t} = q \land \mathcal{D}_{l}^{y}]}{P[\mathcal{D}_{l}^{y}]} \\ &= \frac{\sum_{t=1}^{l-1} \alpha^{y}(q,t)\beta^{y}(q,l-t)}{\sum_{q' \in \mathcal{L}_{y}} \alpha^{y}(q',l)} \end{split}$$

compute the mean passage time in a node q for a certain D-walk

Probability to start in any node of class y, to reach node q at time t and to complete the walk l-t steps later

Probability to perform a D-walk

2. Finally, the betweenness measure based on walk up to length L is obtained as an expectation of the betweenness for all length $1 \le l \le L$

$$B_L(q,y) = \sum_{l=1}^L rac{P[\mathcal{D}_l^y]}{Z} \ \mathbb{E}\left[\operatorname{pt}(q) \mid \mathcal{D}_l^y
ight]$$
 where Z is normalization constant

 Node are classifiedusing a maximum a posteriori decision rule from the betweenness of each class :

$$P[q \mid y] \triangleq \frac{B_L(q, y)}{\sum_{y' \in \mathcal{Y}} B_L(q, y')}$$

$$\hat{y}_q = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} P[q \mid y] P[y]$$

Datasets characteristics:

	IMDB	Cora	WebKB-Texas	WebKB- Wisconsin
Nb Classes	2	7	6	6
Nb Nodes	1169	3583	334	348
Majority class acuracy	51.07%	29.7%	48.8%	44.5%
Nb Edges	40564	22516	32988	33250
Mean degree	36.02	6.28	98.77	95.55
Max degree	181	311	215	229
Min degree	1	1	1	1

Classification rate on the Cora dataset

L is tuned by cross-validation

Best walk length for the CORA dataset is 6!

Higher than 6 the results are worse

Low optimal walk length

Conclusion

- D-walks define a node betweenness measure for each class.
- Unlabeled nodes are classified under the class for which the betweenness is the biggest.
- Bounding the walk length
 - Provides better classification results, outperforming kernel based approaches
 - Allows to algorithm to be very fast (linear time computation)
- Possibility to deal with very large graphs

Possible extensions

 Node features incorporation like text and numerical attributes to improve classification

 Derive a kernel from D-Walks to be used in kernel methods like
 SVM

 Define a collaborative recommendation system based on bounded random walks