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High Dimensional Data

» Raw Format of Natural Data Is often high
dimensional.

» Curse of Dimensionality.
» Search for low dimensional structure and models.



Principal Components Analysis

Given x;,...,x, € RV
Find v1,...,y, € R such that

Yi =W X;

and

max Variance({y:}) Zyz —w (Z xpcf) W
)

w. = leading eigenvector of » ~z;z/
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Manifold Model

Suppose data does not lie on a linear subspace.

Yet data has inherently one degree of freedom.




An Acoustic Example




An Acoustic Example

One Dimensional Air Flow

A oP NOP _ _ p OV
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V (x,t) = volume velocity
P(x,t) = pressure
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Solutions

u(t) = > o7 4 an sin(nwot) € lo

s(t) = > 22 1 Bnsin(nwot) € lo



Acoustic Phonetics
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Vocal Tract modeled as a sequence of tubes.
(e.g. Stevens, 1998)



Vision Example

fiR?—[0,1]

F=lfy) =vle—ty—r);




Manifold Learning

Learning when data ~ M c RY

> Clustering: M — {1,... k}
connected components, min cut

» Classification: M — {—1,+1}
Pon M x {—-1,+1}

> Dimensionality Reduction: f: M — R" n << N

> M unknown: what can you learn about M from
data?

e.g. dimensionality, connected components
holes, handles, homology
curvature, geodesics



Dimensionality Reduction

Given z1,...,z, € M C RV,
Find y1,...,y, € R?where d << N
> ISOMAP (Tenenbaum, et al, 00)
> LLE (Roweis, Saul, 00)
> Laplacian Eigenmaps (Belkin, Niyogi, 01)
» Hessian Eigenmaps (Donoho, Grimes, 02)

» Diffusion Maps (Coifman, Lafon, et al, 04)



Algorithmic framework



Algorithmic framework



Algorithmic framework

Neighborhood graph common to all methods.



ISOMAP

1. Construct Neighborhood Graph.
2. Find shortest path distances.

Dij ISn X n

3. Embed using Multidimensional Scaling.



Multidimensional Scaling

Consider a positive definite matrix A.
Then A;; corresponds to inner products.

A= Zn: Xidid;
i=1

Thenforany x € {1,...,n}

(@) = (VAgi(@), ..., V Ak (@) € RF

approximates inner products and therefore distances.
Therefore find A such that

Az’z’ + Ajj — 2Aij ~ D’ij

Good Answer;

1 1
A= —EHDH where =7 — —117
mn




Laplacian Eigenmaps

Step 1 [Constructing the Graph]

e;; = 1 & x; “close to” x;

1. e-neighborhoods. [parameter ¢ € R] Nodes ¢ and j are connected by an edge if

i — x;* < e

2. n nearest neighbors. [parameter n € N] Nodes 7 and j are connected by an edge if ¢
IS among n nearest neighbors of j or j is among n nearest neighbors of .




Laplacian Eigenmaps

Step 2. [Choosing the weights].

1. Heat kernel. [parameter t € R]. If nodes ¢ and 5 are connected, put

2
g x5

Wij:e t

2. Simple-minded. [No parameters]. W;; = 1 if and only if vertices < and j are
connected by an edge.




Laplacian Eigenmaps

Step 3. [Eigenmaps] Compute eigenvalues and eigenvectors for the generalized
eigenvector problem:

Lf=A\Df

D is diagonal matrix where

Let fy, ..., fi,_1 be eigenvectors.
Leave out the eigenvector fy and use the next m lowest eigenvectors for embedding in

an m-dimensional Euclidean space.




Justification

Tries to preserve locality



A Fundamental Identity

But

N (yi —y;)* Wiy =y’ Ly
1,]

Z(yz’ —y;)*Wi; = Z(y? +y7 — 2uy;) Wi
'iaj 7’7-]

_ ZyzzDii 4+ Zy?Djj — QZyiijij
i J ,J



Embedding

min yTLy
yT1=0

LetY = [y1y2...Ym]
> |IYi = Y;[PWi; = trace(Y T LY)
1,J
subjectto YTY = 1.
Use eigenvectors of L to embed.



PCA versus Laplacian Eigenmaps

™
oL
—
>

:
. v ]
Qi oou be < mawe s’

O ©O© < N O «

20

30

40

40

20
nz=75

x10~°



On the Manifold

smoothmap f: M — R

/M IV s~ S Wis(fi — £)?

1~]

Recall standard gradient in R* of f(z1,..., z;)

V=




Curves on Manifolds

Consider a curve on M

fle@®)): (=1,1) = R

1£(0) = f(T)] £ da(p, )|V f(p)]



Stokes’ Theorem

A Basic Fact

[T WAPSY

Z Wi (f — fTLf

This is like

where
Ay f 1S the manifold Laplacian



Manifold Laplacian

Recall ordinary Laplacian in R”
This maps

k

82
f(x1,...,xk) — (Z (9$JQE>

1=1

Manifold Laplacian is the same on the tangent space.




Properties of Laplacian

Eigensystem
Amf = Aidi

N, > 0and )\, —

{¢;} form an orthonormal basis for L?(M)

/ IV meill? = A



The Circle: An Example

Tu Au where «(0) = u(2n)
——— = AU U — s
dt?

Eigenvalues are

Eigenfunctions are

sin(nt), cos(nt)



From graphs to manifolds

fM—-R zeM x,....,0, €M

Graph Laplacian:

Ly,(f)(z) = f(x) Ze St = Zf(:z:j)e Tt

Theorem 1 [pointwise convergence] t, =n *2¥«

k42
lim (Arrtn)” il

n— o0 n

Ly f(x) = Ly f(z)

Belkin 03, Belkin Niyogi 05 related work: Lafon Coifman 04, Hein et al 05



From graphs to manifolds

Theorem 2 [uniform convergence]

k+2

Arty)” 2
lim sup (4rrtn) Lirf(z) — Ly f(x)] =0
=X xeM, feB n

Theorem 3 [convergence of eigenfunctions]

Eig[Ly] — Eig[L ]

Belkin Niyogi 05 [in preparation]
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