
Efficient Join-Index-Based Spatial-Join
Processing: A Clustering Approach

Shashi Shekhar, Senior Member, IEEE, Chang-Tien Lu, Member, IEEE, Sanjay Chawla, and

Sivakumar Ravada

Abstract—A join-index is a data structure used for processing join queries in databases. Join-indices use precomputation techniques

to speed up online query processing and are useful for data sets which are updated infrequently. The I/O cost of join computation using

a join-index with limited buffer space depends primarily on the page-access sequence used to fetch the pages of the base relations.

Given a join-index, we introduce a suite of methods based on clustering to compute the joins. We derive upper bounds on the length of

the page-access sequences. Experimental results with Sequoia 2000 data sets show that the clustering method outperforms existing

methods based on sorting and online-clustering heuristics.

Index Terms—Optimal page access sequence, join index, join processing, spatial join.

æ

1 INTRODUCTION

THE join operation is a fundamental operation in
relational databases, and substantial work has been

done in optimizing join operations [15], [32]. A join-index
[35], [41] is a special data structure that facilitates rapid join-
query processing. For data sets which are updated infre-
quently, the join-index can be particularly useful.

The join-index is typically represented as a bipartite
graph between the pages of encumbent relations or their
surrogates. When the number of buffer pages is fixed, the
join-computation problem is transformed into determining
a page-access sequence such that the join can be computed
with the minimum number of redundant page accesses.
This problem has been shown to be NP-hard [31], [34] and,
consequently, it is unlikely that a polynomial time solution
exists for this problem. Solutions in the literature use a
clustering method that groups pages in one or both tables
involved in the join to reduce total page accesses. Available
heuristics either group the pages of a single table via sorting
[41] or use incremental clustering methods [7], [11], [33].

Our Contribution. We introduce two new heuristics for
this problem. One heuristic uses the clustering method to
group the pages in one table, generalizing the sorting-based
heuristic for joins. The other heuristic uses clustering for the
pages of both tables. The former generalizes and outper-
forms the sorting heuristic, while the latter generalizes and
outperforms the incremental clustering methods for joins.
We provide a formal characterization of an upper bound on

the number of redundant I/Os performed by our ap-
proaches. Experiments with the Sequoia 2000 [40] data set
show that both heuristics outperform other methods when
the memory size is relatively small. The proposed
approaches are useful for computing joins, given join-
indices for large database, where the size of memory is
small compared to the sizes of the individual data sets.

1.1 Join Index: Basic Concept

Consider a database with two relations, Facility and Forest
Stand. Facility has a point attribute representing its location
and Forest Stand has a rectangle attribute that represents its
extent by a bounding box. The polygon representing its
extent may be stored separately. A point is represented by
the x and y coordinates on the map. A rectangle is
represented by points that represent the bottom left and
top right corners.

In Fig. 1a, points a1; a2; a3; b1; b2 represent facility
locations and polygons A1; A2; B1; B2; C1; C2 are the
bounding boxes that represent the limits of the forest
stands. The circle around each location shows the area
within distance D from a facility. The rectangle around each
forest boundary represents the Minimal Orthogonal Bound-
ing Rectangle (MOBR) for each forest stand. Fig. 1b shows
two relations, R and S, for this data set. Relation R
represents facilities via the attributes of a unique identifier,
R:ID, the location (x, y coordinates), and other nonspatial
attributes. Relation S represents the forest stands via a
unique identifier, S:ID, the MOBR, and nonspatial attri-
butes. MOBR (XLL; YLL;XUR; YUR) is represented via the
coordinates of the lower-left corner point (XLL; YLL) and the
upper right corner point (XUR; YUR). Now, consider the
following query: Q: “Find all forest stands which are within
a distance D from any facility.” This query will require a
join on the Facility and Forest Stand relations based on their
spatial attributes. A spatial join is more complex than an
equi-join and is a special case of a �-join, where � is a
spatial predicate, e.g., touch, overlap, and cross. The
query Q is an example of a spatial join.

1400 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

. S. Shekhar is with the Computer Science Department, University of
Minnesota, 200 Union St. SE, Minneapolis, MN 55455.
E-mail: shekhar@cs.umn.edu.

. C.T. Lu is with the Department of Computer Science, Northern Virginia
Center, Virginia Teh, 7054 Haycock Rd., Falls Church, VA 22043.
E-mail: ctlu@nvu.cs.vt.edu.

. S. Chawla is with the School of Information Technologies, University of
Sydney, NSW, Australia 2006. E-mail: chawla@it.usyd.edu.au.

. S. Ravada is with the Spatial Data Product Division, One, Oracle Drive,
Nashua, NH 03062. E-mail: sravada@us.oracle.com.

Manuscript received 30 July 1999; revised 13 Oct. 2000; accepted 4 Jan. 2001.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 110335.

1041-4347/02/$17.00 ß 2002 IEEE

A spatial join algorithm [2], [5], [6], [16], [30] may be used
to find the pairs (Facility, Forest-stand) which satisfy
query Q. Alternatively, a join-index may be used to
materialize a subset of the result to speed up processing
for the future occurrence of Q, if there are few updates to
the spatial data. Fig. 1b shows a join-index with two
columns. Each tuple in the join-index represents a tuple in
the table

JOINðR;S; distanceðR:Location; S:MOBRÞ < DÞ:

In general, the tuples in a join-index may also contain
pointers to the pages of R and S, where the relevant tuples
of R and S reside. We omit the pointer information in this
paper to simplify the diagrams.

A join-index describes a relationship between the
objects of two relations. Assume that each tuple of a
relation has a surrogate (a system-defined identifier for
tuples, pages, etc.) which uniquely identifies that tuple. A
join-index is a sequence of pairs of surrogates in which
each pair of surrogates identifies the result-tuple of a join.
The tuples participating in the join result are given by
their surrogates. Formally, let R and S be two relations.
Then, consider the join of R and S on attributes A of R
and B of S. The join-index is thus an abstraction of the
join of the relations. If F defines the join predicate, then
the join-index is given by the set

JI ¼ fðri; sjÞjF ðri:A; sj:BÞ is true for ri 2 R and sj 2 Sg;

where ri and sj are surrogates of the ith tuple in R and the
jth tuple in S, respectively. For example, consider the

Facility and Forest Stand relational tables shown in Fig. 1.
The Facility relation is joined with the Forest Stand relation
on the spatial attributes of each relation. The join-index for
this join contains the tuple IDs which match the spatial join
predicate.

A join-index can be described by a bipartite graph
G ¼ ðV1; V2; EÞ, where V1 contains the tuple IDs of relation R
and V2 contains the tuple IDs of relation S. Edge set E
contains an edge ðvr; vsÞ for vr 2 R and vs 2 S if there is a
tuple corresponding to ðvr; vsÞ in the join-index. The
bipartite graph models all of the related tuples as connected
vertices in the graph. In a graph, the edges connected to a
node are called the incident edges of that node and the
number of edges incident on a node is called the degree of
that node.

We use Fig. 2 to illustrate one of the major differences
between tuple-level adjacency matrices of linear-key equi-
join and spatial join. Fig. 2a shows the adjacency matrix for
an equi-join. The horizontal-coordinate shows distinct
values of tuple-ids from one relation; the vertical-coordi-
nate shows distinct values of tuple-ids from the other
relation. Shaded areas are collections of dots representing
tuple-pairs satisfying the equi-join predicate from the set of
all tuple-pairs in the cross-product of two relations. White
space designates the tuple-pairs which do not satisfy the
equi-join predicate. Fig. 2b presents the same information
as Fig. 2a, where tuples in each relation are sorted by the
join attribute. Note that the shaded areas come close the
diagonal for linearly ordered join attributes. Join-proces-
sing algorithms (e.g., sort-merge) can take advantage of
this property. Fig. 2c shows adjacency matrix for a �-join,

SHEKHAR ET AL.: EFFICIENT JOIN-INDEX-BASED SPATIAL-JOIN PROCESSING: A CLUSTERING APPROACH 1401

Fig. 1. Constructing a join-index from two relations. (a) Spatial attribute of R and S. (b) R and S relation table and join-index.

Fig. 2. Comparison of tuple-level adjacency matrices for equi-join and spatial join. (a) and (b) Equi-join and (c) and (d) spatial join.

e.g., a spatial join. Note that the join attribute (e.g., spatial
location) may not be linear in general and may not have a
natural sort-order. However, one may reorder the rows
and columns of the adjacency matrix to bring in as many
dots (object-id pairs satisfying the spatial-join predicate)
near the diagonal as possible. We found that the result of
such efforts often yields an adjacency matrix similar to the
one shown in Fig. 2d, where a substantial number of
shaded areas remain away from the diagonal. Join-
processing algorithms for spatial-join need to account for
the off-diagonal shaded areas.

1.2 Page-Connectivity Graph, Page-Access
Sequence

When the join relationship between two relations is

described at the page level, we get a page-connectivity

graph. A Page-Connectivity Graph (PCG) [31] BG ¼
ðV1; V2; EÞ is a bipartite graph in which vertex set V1

represents the pages from the first relation and vertex set

V2 represents the pages from the second relation. The set

of edges is constructed as follows: An edge is added

between page (node) vi1 in V1 and page (node) vj2 in V2, if

and only if there is at least one pair of objects ðri; sjÞ in

the join-index such that ri 2 vi1 and sj 2 vj2. Fig. 3 shows a

page-connectivity graph for the join-index from Fig. 1b.

Nodes ða; bÞ represent the pages of relation R and nodes

ðA;B;CÞ represent the pages of relation S. A min-cut

node partition [17], [27] of graph BG ¼ ðV1; V2; EÞ parti-

tions the nodes in V into disjoint subsets while minimiz-

ing the number of edges whose incident nodes are in two

different partitions. The cut-set of a min-cut partition is

the set of edges whose incident nodes are in two different

partitions. Fast and efficient heuristic algorithms [24], [21]

for this problem have become available in recent years.

They can be used to cluster pages in a PCG.
A join-index helps speed up join processing since it

keeps track of all the pairs of tuples which satisfy the join
predicate. Given a join-index JI, one can use the derived
PCG to schedule an efficient page-access sequence to fetch
the data pages. The CPU cost is fixed since there is a fixed
cost associated with joining each pair of tuples and the
number of tuples to be joined is fixed. I/O cost, on the other
hand, depends on the sequence of pages accessed. When
there is limited buffer space in the memory, some of the
pages may have to be read multiple times from the disk.
The page-access sequence (and, in turn, the join-index
clustering and the clustering of the base relation) deter-
mines the I/O cost.

Example. We illustrate the dependency between the I/O
cost of a join and the order in which the data pages are
accessed with the help of an example using the page-
connectivity graph shown in Fig. 3. Assume that the
buffer space is limited to allow at most two pages of the
relations in memory after caching the whole page-
connectivity graph in memory. Consider the two-page
access sequences: 1) (a, A, b, B, a, C, b) and 2) (a, A, b, C,
a, B). Each sequence allows the computation of join
results using a limited buffer of two pages. However, in
the first case, there are a total of seven page accesses and,
in the second case, there are a total of six page accesses.
Note that the lower bound on the number of page
accesses is five since there are five distinct pages in the
PCG. However, with two buffer spaces, there is no page-
access sequence which will result in five page accesses.
This is because the cycle (a, A, b, C, a) requires that at
least three pages be in memory to avoid redundant page
accesses. With three buffer spaces, (a, B, A, C, b) is a
page-access sequence which results in five page accesses.

1.3 Problem Definition, Scope, Outline

Given that the I/O cost depends on the page-access
sequence, the following optimization problem characterizes
the problem of designing efficient algorithms for processing
joins, given a join-index and a fixed buffer size. This
problem, called the Optimal Page-Access Sequence with a
Fixed Buffer (OPAS-FB) problem [31], is formally defined as
follows:

OPAS-FB Problem

Given: A page-connectivity graph PCG ¼ ðV ;EÞ; repre-

senting the join-index and a buffer of size B � jV j.
Find: A page-access sequence.

Objective: To minimize the number of page accesses.

Constraint: Such that the number of pages in the buffer
is never more than B.

For example, the optimal page-access sequence for the
PCG in Fig. 3 for B ¼ 2 is (a, A, b, C, a, B), which results in
six page accesses.

The OPAS-FB problem1 is known to be NP-hard [31], [34]
and heuristic solutions have been proposed in the literature
for solving this problem. These heuristics can be broadly
divided into two groups, namely asymmetric single-table
clustering and symmetric two-table online clustering. We

1402 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

1. The OPAS-FB problem is a special case of buffer pool management
problems for databases. Prior work [36], [8], [39] has examined access
patterns for index traversal, scan, and nested-loop join. They have not
explored buffer management for join computation given a join-index, which
is the focus of various solutions to the OPAS-FB problem.

Fig. 3. Construction of a Page-Connectivity Graph (PCG) from a join index.

describe the relevant literature and our contribution in
Sections 2 and 3.

Scope. In this paper, we focus on the OPAS-FB problem.
We do not address the update problems associated with
managing a join-index. Base-relation clustering and tuple-
level join-index optimization are also beyond the scope of
this paper. Readers interested in the update problem of join-
indices or in a comparison of join-indices with other join-
strategies are referred to [41]. Our focus is on join
processing algorithms given a join-index.

Outline. The rest of the paper is organized as follows: In
Section 2, we discuss asymmetric single-table clustering
methods, propose our first approach, Asymmetric Cluster-
ing (AC), and evaluate its performance with that of the
Sorting-based heuristic. Section 3 reviews the literature on
two-table online clustering and provides an illustrative
example. We propose Symmetric Clustering (SC) in
Section 4. Section 5 compares the proposed methods, AC
and SC, with traditional algorithms for the OPAS-FB
problem. We summarize our work and discuss future
research directions in Section 6. Frequently used acronyms
are summarized in Table 1.

2 ASYMMETRIC METHODS

The main approach in asymmetric single-table clustering is
based on sorting the join-index on one of the join keys. In
the following discussion, let R and S be the two relations,
with JI being the join-index. The Sorting-based asymmetric
heuristic presented in [41] reads as much as possible of the
join-index (JI) and one relevant relation (R semi-join JI) into

memory. Here, JI is assumed to be sorted on relation R:ID.
To reduce redundant accesses to S, access to S is clustered
by sorting the list of all the surrogates from S that are
related to the subset of the join-index in memory. This
heuristic ensures that no redundant accesses are performed
on relation R, but it may incur redundant accesses to the
second relation. The Sorting-based heuristic is most suited
to applications that have totally ordered join-keys. Rigor-
ously speaking, the sorting-based heuristic sorts the
surrogates (e.g., system-defined identifiers for pages) rather
than the join-key attributes. If tables are sorted by the
respective join-keys, then surrogates for the pages in a table
may be ordered by the lowest key-value for any tuple in the
page. This reduces redundant page I/O in computing joins
using a join-index for join-keys with totally ordered
domains. Since multidimensional domains, such as spatial
data types, do not have natural total-order, sorting
surrogates may not be as effective for computing spatial-
joins using join-indices. We propose Asymmetric Clustering
(AC) to address this problem. Asymmetric clustering uses
the entries in a join-index for grouping pages of one
relation, say R, based on their interaction with the pages in
the other relation, say S. If the join-index (see Fig. 1b)
represents the summary of a spatial join, then the pages of
R are clustered using their spatial relationship with the
pages of S and the proposed method is called Asymmetric
Spatial Clustering.

2.1 Basic Idea Behind Asymmetric Clustering (AC)

The example in Fig. 4 highlights the different approaches
of AC and the Sorting-based heuristic. Fig. 4a shows a

SHEKHAR ET AL.: EFFICIENT JOIN-INDEX-BASED SPATIAL-JOIN PROCESSING: A CLUSTERING APPROACH 1403

Fig. 4. Example of the AC and Sorting heuristic. (a) Original graph, (b) sorting, and (c) AC.

TABLE 1
Table of Acronyms

49-node PCG, with numbers 1-24 and letters A-Y
corresponding to the surrogates of the two page-level
relations. The figure can represent a spatial-join computa-
tion between two layers of geographic data consisting of
small polygons. The pages from each relation may overlap
pages from the other. Consider a memory with seven
pages for buffering the pages of R and S relations. There
may be additional buffering pages for managing the
result, index, etc. AC uses a different clustering of pages
of the first relation compared to the Sorting-based
approach. Figs. 4b and 4c show the clusters of pages of
the first relation that are used by AC and the sorting-
based method. The pages of R are numbered 1-24 and,
within a cluster, are annotated by a common symbol. For
example, nodes 1, 2, 3, 4, 5, and 6 in Fig. 4b are all circled,
denoting that these are loaded together by sorting.
Similarly, nodes 7, 8, 9, 10, 11, and 12 are annotated with
a hexagon, and so on. Visually, one can verify that the
clusters used by AC are spatially cohesive. The pages of
the second relation which have edges to multiple clusters
of pages in the first relation yield redundant I/Os. One
may consider using space-filling curves, such as Z-order
or Hilbert, to improve the performance of the sorting-
based method. However, min-cut graph partitioning, the
method used by AC, outperforms space-filling curves in
the clustering of nonuniformly distributed spatial data, as
shown in our previous work [37], [38].

The Sorting-based heuristic clusters the nodes of the first
page-level relation and then loads the pages in the sorted
order. The loading sequence for the example in Fig. 4 is
shown in Table 2. With a buffer size of seven, the sorting
heuristic will load pages f1; 2; 3; 4; 5; 6g from the first relation
in the first six buffers and then will load one page at a time
from the set of pages fA;B;C;D;E; F;G;H; Ig in the seventh
buffer. For the next round, it loads f7; 8; 9; 10; 11; 12g in the
first six buffers and then fE;F ;G;H; I; J;K; L;M;N;O; Pg,
one at a time, in the seventh buffer, and so on, as shown in
Table 2. The sorting heuristic results in 17 redundant I/Os,
with a total of 66 I/Os.

AC clusters the nodes of the first page-level relation
according to their connections with the second relation. As
shown in Fig. 4c, clustering with a buffer size of seven
provides four clusters. Note that these clusters are different
from the page-clusters used in sorting. AC loads pages
f1; 2; 4; 5; 9; 10g of the first relation in the first six buffers
and then, one by one, loads fA;B;C;D; F;G;H;L;M;Ng in
the seventh buffer. In the next round, it loads
f3; 7; 8; 13; 14; 19g together into the first six buffers and then
fB;E; F ; J;K;L;Q;R; V g, one at a time, into the seventh
buffer. Table 2 shows the total loading sequence. AC results

in 13 redundant I/Os, with a total of 62 I/Os. The difference
of four I/Os out of 66 in this example may not look large.
However, the relative difference in I/Os using the sorting
and clustering methods will increase as the data set size
increases. This linear characteristic of sorting yields poor
clustering and limits the savings in redundant I/Os.

2.2 Description of the Asymmetric Clustering
Method

The goal of asymmetric clustering methods is to cluster the

pages of one relation, given the join-index or its PCG. This

can be formalized as a min-cut hypergraph-partitioning

problem.2 The pages of a relation will form the nodes of the

hypergraph. Each page p of the other relation will form a

hyperedge, covering all pages of the first relation connected

to p in the PCG. Partitioning the nodes in this hypergraph

will form a group of pages of the first relation that can be

loaded together. Minimizing cut hyperedges during parti-

tioning reduces the number of pages of the second relation

that will be loaded into memory multiple times.

Consider the example spatial-join problem depicted in

Figs. 5a and 5b with two point data sets, (a, b, c, d) and (A,

B, C, D). To simplify the example, we assume a unit

blocking factor, i.e., one point object per disk page. The PCG

of the join-index for Distanceði; jÞ < Lffiffi
2
p is shown in Fig. 5c

using overlay and distance buffer information.3 Fig. 5d

consists of the nodes of relation R, i.e., (a,b,c,d). The

hyperedges represent nodes (A, B, C, D) of S. The

hyperedge corresponding to A connects a and c, since (A,

a) and (A ,c) satisfy the join predicate. The partition ((a,

c),(b, d)) has no cut hyperedges, and using it to perform the

join results in no redundant I/O with loading sequence (a,

c, A, C, b, d, B, D) if three buffers are available to hold the

pages of the two relations. In contrast, the partition ((a, b),(c,

d)) cuts all four hyperedges and computing this join will

yield four redundant I/Os with loading sequence (a, b, A,

C, B, D, c, d, A, C, B, D), if only three buffers are available to

hold the pages of the two relations.

1404 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

TABLE 2
Loading Sequence of Sorting and AC for Fig. 4

2. A hypergraph G ¼ ðV ;EÞ is defined as a set of vertices V and a set of
hyperedges E, where each hyperedge is a subset of the vertex set [4]. The
min-cut hypergraph-partitioning problem is to partition the vertices of a
hypergraph into k roughly equal parts such that the number of hyperedges
spanning different partitions is minimized.

3. If we extend the join distance in Fig. 5c with the maximum distance,
the PCG will form a full-connected bipartite graph, which is not interesting
for join-indices. Join-indices are not useful for joins with selectivity = 1.

We formally describe AC now via the following

pseudocode:

AC Algorithm

Input: G ¼ ðVr; Vs; EÞ is a page connectivity graph

Output: S ¼< P1; P2; . . . ; Pr > is a page access sequence

with r � jVrj þ jVsj.(Pis need not be distinct)

assert(jVrj < jVsj);
assert(B � 2); /* number of buffers */

HGrðVr;HErÞ = DeriveHypergraphðGÞ; /* HGr is a

hypergraph, jHErj ¼ jVsj */

/* For each node in jVsj, build a hyperedge to encompass all of

its corresponding nodes in Vr */

PSetr = hMetis-PartitionðHGr;Bÿ 1Þ /* PSetr is the set of

partitions */

i=0;

while ((Pir=SelectUnprossedPartition(PSetr))!=NULL) /*

Select the unprocessed partition */

{

AddPageSequence(S; Pir);/* Add all the nodes in Pir
into the loading sequence */

Pis ¼ Sort-Eliminate-DupðG;PirÞ;
/* Sort and eliminate the duplicated nodes in Vs of G which

connect to nodes in Pir */

AddPageSequence(S; Pis);/* Add all the nodes in Pis
into the loading sequence */

Pir .flag = ”processed”; /* Mark this partition as

”processed” */
i++;

}

The first step of the AC algorithm, i.e., DeriveHyper-

graph(G), creates a hypergraph from a given page con-

nectivity graph G. Nodes of the first relation R form the

nodes of the hypergraph. For each node v of the second

relation, AC builds a hyperedge to encompass a set of nodes

on the first relation ðRÞ that are connected to v in G. Next,

AC partitions this hypergraph using the min-cut hyper-

graph partitioning algorithm, hMetis [21], [22], [23], which

is a multilevel hypergraph-partitioning algorithm that has

been shown to produce high-quality bisections on a wide

range of problems that arise in scientific and VLSI

applications. hMetis minimizes the (weighted) hypercut

and, thus, tends to create partitions in which connectivity

among the vertices in each partition is high, resulting in

good clusters. Finally, AC loads each partition in the

primary relation and its connected nodes in the second

relation, one by one, to compute the join. The I/O cost of
AC can be characterized via the following lemma:

Lemma 1. Given a partition fVr1
; Vr2

; . . . ; Vrpg of Vr, i.e.,

pages of relation R, from the page-connectivity graph

PCG ¼ ðVr; Vs; EÞ, there is a page-access sequence of length

K ¼ jVrj þ
P

v2Vs fðvÞ to process the spatial join, where

fðvÞ denotes the number of partitions of Vr that have an
edge to node v in Vs.

Proof. A node v in Vs is connected to fðvÞ partitions of Vr.
Therefore, the node v in Vs has to be loaded fðvÞ times
into the buffer to compute the spatial join. The total
number of redundant I/Os is

P
v2VsðfðvÞ ÿ 1Þ. The

total I=O cost ¼ jVrj þ jVsj þ
X
v2Vs
ðfðvÞ ÿ 1Þ

¼ jVrj þ jVsj þ
X
v2Vs

fðvÞ ÿ jVsj

¼ jVrj þ
X
v2Vs

fðvÞ:

ut

The computational complexity of AC is

OðjEjÞ þOðjVrj � logðjVrjÞ þ jVsj � logðjVsjÞÞ

þOðjEj � log jEj
P

� �
;

for a given bipartite page-connectivity graph G ¼ ðVr; Vs; EÞ
and a buffer size B. The DeriveHypergraph has computa-
tional complexity OðjEjÞ. The hMetis-Partition software we
used has computation complexity

Oðjvj � logðjvjÞ þ jej � logðjejÞÞ;

where jvj is the number of vertices and jej is the total number of

hyperedges. Since AC builds a hyperedge for each node in Vs
to encompass all of its corresponding nodes in Vr, jvj ¼ jVrj
and jej ¼ jVsj, theactualcomputationalcomplexityforhMetis-

Partition is OðjVrj � logðjVrjÞ þ jVsj � logðjVsjÞÞ. The while pro-

cedure executes P times, where P is the number of partitions

and P ¼ jVrj=ðBÿ 1Þ. The Sort-Eliminate-Dup step, with

computational complexity O jEj
P log

jEj
P

� �
, is the dominant cost

inside the while loop. The computational complexity of AC is:

OðjEjÞ þOðjVrj � logðjVrjÞ þ jVsj � logðjVsjÞÞ

þOðjEj � log jEj
P

� �
:

SHEKHAR ET AL.: EFFICIENT JOIN-INDEX-BASED SPATIAL-JOIN PROCESSING: A CLUSTERING APPROACH 1405

Fig. 5. Construction of one-sided hypergraph from the data set. (a) Data set R, (b) data set S, (c) overlay and join distance < L=
ffiffiffi
2
p

, (d) graph PCG

(one object)/page, and (d) hypergraph model.

2.2.1 Experiment Design

We now compare the performance of Sorting and AC, using
a join-index derived from the Sequoia 2000 [40] data set.
The Point table contains 62,584 California place names with
their associated locations (longitude and latitude), extracted
from the US Geological Survey’s Geographic Names
Information System (GNIS). The Polygon table contains
4,388 records, representing Cropland and Pasture land use
in California. Throughout Sections 2.3 and 5, the Point and
Polygon tables will be referenced as R and S, respectively.
We plot the point and polygon data sets of California
records as in Fig. 6.

Readers may note our use of real spatial data sets from
the Sequoia 2000 [40] benchmark due to the interest in
spatial join-indices in contrast to the use of synthetic data
sets, such as randomly generated graphs, in related work
[11], [7], [33]. We plan to use additional data sets, both real
and synthetic, to expand the experimental evaluation in
future work.

Now, consider the following queries:

1. Q.A. “For each place in the Point table, find N
nearest croplands from the Polygon table.”

2. Q.B. “For each place in the Point table, find all
croplands which are within a distance D.”

The spatial join of these two queries produces sets of join-

indices and such join-indices are of interest in spatial data

mining for neighborhood indexing [10]. The value of N and D

can be increased/decreased for adjusting the edge ratio [7].

Give a join graphG ¼ ðVR; VS; EÞ, the edge ratio ofG, denoted

by �, is defined as the ratio of the total number of edges inG to

the maximum possible number of edges in G if it is a fully

connected graph, i.e., � ¼ jEj
jVRjjVS j . The edge ratio provides a

measure of the page-level join selectivity.
The variable parameters are buffer size, page size, and

edge ratio. In future work, we plan to include additional
parameters, such as the size of join-indices, as well as
performance measures, such as the overhead of OPAS-FB
algorithms. The metric of evaluation is the number of page
accesses required by each algorithm to implement the join.
The edge ratio is controlled by N and D. The number of
nearest neighbors, N, is varied from one to five, yielding an
edge-ratio of 0.002 to 0.005. The side-size of range queries,
D, is varied from 400 to 4,800 units where the extent of
California is almost 1:2 � 106 units (North-South) x 0:8 � 106

units (East-West). This yields an edge-ratio of 0.002 to 0.003.
Page size represents the size of disk blocks and memory

pages. Different values of page sizes include 2, 4, 8, 16, 32, and
64 Kbytes. The size of the records in the point table is 64 bytes.
The blocking factor for the Point table is the ratio of page size
and record size. Point records are spatially clustered in the
pages of the point table. The records in the Polygon table are of
variable size. The size of a record in the Polygon table is 16 +
32*(# of Points in the Polygon) bytes. The number of points in a
polygon can vary from a dozen to a few thousand and a large
polygon may span multiple pages.

The buffer size represents the ratio of available memory
size as a fraction of the size of the Point table, which is the
smaller of the two tables. Memory buffer size varies from
4 percent to 20 percent of the size of the smaller table.

Fig. 7 shows various steps in the experiment. From the
base point and polygon tables, we derived families of join-
indices for queries Q.A. and Q.B. for different values of
edge ratio. Next, we generated page-connectivity graphs
(PCGs) from join-indices, given different values of page

1406 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

Fig. 6. Two examples of the Sequoia 2000 data sets. (a) Polygons for landuse and (b) GNIS points.

Fig. 7. Experiment setup and design.

size. The page-connectivity graphs were input into a “page-
Access-Sequence Generator” which simulated the behavior
of the OPAS-FB algorithms (i.e., Sorting and AC) for a given
buffer size. The page-access sequences and total page I/Os
were tracked for each combination of join algorithm, page
size, buffer size, and edge ratio.

Note that Queries Q.A. and Q.B. have parameters N and
D. It may not be realistic to use join-index for parametric
queries due to the requirement of the existence of many
spatial join-indices. A join-index is more likely to be used
for overlap, adjacent, cross, and other nonparametric spatial
predicates. We do not advocate the use of a spatial join-
index for parametric queries. Instead, parametric queries
were used to generate a set of join-indices to study the effect
of different values of edge-ratio parameter on relative
performance of OPAS-FB strategies.

2.2.2 Experiment Results

Figs. 8 and 9 show the comparison between AC and Sorting
for range-query join-indices and N-nearest-neighbor join-

indices, respectively. AC performed uniformly better than

Sorting.
Figs. 8a and 9a show the impact of page size, which we

varied from 2 Kbytes to 64 Kbytes. The page size and the

number of page accesses are shown in logarithm scale (base

two). As the page size increased, the number of pages
decreased and clustering efficiency improved for all
methods, reducing the performance gap between the two
methods.

Figs. 8b and 9b show the effect of buffer size (as a
fraction of the size of the smaller relation) on the I/O
performance of AC and Sorting. As long as the buffer size
was smaller than the smaller of the two relations involved
in the join, both AC and Sorting used most of the buffers to
load the pages of only one relation. The difference in
performance came from the difference in their clustering
abilities: AC generated a lower I/O cost than Sorting. Note
that, in Fig. 9b, the increase of buffer size from 15 percent to
20 percent of the smaller relation did not reduce the number
of page accesses for Sorting, an nonintuitive result similar to
Belady’s anomaly [3] for some page-replacement algorithms
used in managing virtual memory. Often, we assume that
allocating more buffer to load disk pages would reduce the
I/O cost. Our experiment result showed that this assump-
tion is not always true for Sorting.

Figs. 8c and 9c show the effect of the edge ratio. AC
uniformly outperformed Sorting. The gap between the
performance of the two methods did not show any trend.

We note that the min-cut hypergraph-partitioning meth-
od, hMetis, used in AC minimizes the number of hyperedges

SHEKHAR ET AL.: EFFICIENT JOIN-INDEX-BASED SPATIAL-JOIN PROCESSING: A CLUSTERING APPROACH 1407

Fig. 8. Range Query Join-index: The effect of page size, buffer size, and number of nearest neighbors on AC and Sorting. (a) Page size: 2K-64K,

Buffer size: 10 percent of the smaller relation, Range query size =3,800. (b) Buffer size: 5 percent-20 percent of the smaller relation, Page size: 2K,

Range query size = 3,800. (c) Range query size = 400 - 4,800(� ¼ 0:002ÿ 0:003), Buffer size: 10 percent of the smaller relation, Page size: 2K.

Fig. 9. Nearest Neighbor Join-index: The effect of page size, buffer size, and number of nearest neighbors on AC and Sorting. (a) Page size: 2K-

64K, Buffer size: 5 percent of the smaller relation, no. of nearest neighbors = 3. (b) Buffer size: 5 percent-20 percent of the smaller relation, Page

size: 2K, no. of nearest neighbors = 3. (c) No. of the nearest neighbors = 1 - 5(� ¼ 0:002ÿ 0:005), Buffer sze: 5 percent of the smaller relation, Page

size: 2K.

connecting nodes across clusters. This does not directly
minimize the redundant I/O cost,

P
v2VsðfðvÞ ÿ 1Þ, as defined

in Lemma 1, since it does not distinguish between a
hyperedge spanning four clusters and another spanning
two clusters. While AC outperforms the sorting-based
heuristic already, the performance of AC will improve when
better algorithms for hypergraph partitioning are available
which minimize the total number of cuts on cut-hyperedges.

3 SYMMETRIC METHODS

While AC is an improvement over Sorting for spatial joins,
it has a few drawbacks. For example, its buffer utilization
can be poor since it gives almost the entire buffer space to
one relation. We illustrate this with the help of the spatial
join problem shown in Fig. 10. Fig. 10a shows a polygon set
with six polygons, R0..R5, and a point data set with six
points. The adjacency matrix MPCG representation of a join-
index is shown in Fig. 10b, along with the page access
sequence for the sorting-based algorithm with three
memory buffers. Sorting requires 16 I/Os, including four
redundant I/Os on S1, S2, S3, and S4, using a page-access
sequence of

R0; R1; S0; S1; S2; R2; R3; S1; S2; S3; S4; R4; R5; S3; S4; S5:

A symmetric method may alternate between the pages of
the two relations, as shown in Fig. 10c, to compute the join
with 12 I/Os (i.e., no redundant I/O) using a page-access
sequence of

R0; S0; S1; R1; S2; R2; S3; R3; S4; R4; S5; R5:

This property can be generalized to other adjacency
matrices with only B-diagonal entries, where

fMPCG½i; j� ¼ 1g) fjiÿ jj � bB=2cg

and B is the number of buffers available for pages of R and
S. The indices i and j refer to the row-indices and column-
indices. The symmetric method can process the B-diagonal
entries of an adjacency matrix with no redundant I/Os,
given B buffers for R and S.

The main approaches in symmetric two-table clustering
are based on either the Traveling Salesman Problem
heuristic or on incremental clustering. The Traveling Sales-
man-based heuristic [14] uses a complete graph constructed
by taking the nodes of one relation as the nodes of the
graph. The weight on an edge between nodes a and b
denotes the number of page-accesses required to fetch all of

the neighbors of b, given that all of the neighbors of a are in
memory. This method requires a large amount of memory
since the complete graph grows quadratically with the
number of nodes in the smaller of the relations. Incremental
clustering is based on selecting the next page or the next set
of pages to be fetched into memory, given the pages in the
buffer and the remaining edges to be processed in the
bipartite page-connectivity graph. The selection is often
based on the number of neighbors in the memory buffers
and the number of neighbors on the disk. Details of the
actual heuristics follow:

Symmetric Heuristic. FP was proposed by Fotouhi and
Pramanik [11]. The buffer is initialized with a node which
has the smallest degree in the page-connectivity graph. The
memory buffer is added with the largest resident-degree
node. The resident degree of node A is the number of nodes
which are connected to A and are in memory buffers. If
more than one node has the largest resident degree, the
algorithm chooses the one with the smallest nonresident
degree. The nonresident degree of a node A is equal to
total degreeðAÞ ÿ resident degreeðAÞ. When the buffer is
full, the node that has the smallest number of edges with the
nodes on the disk can be swapped out. (Time complexity:
O(jV j2), where jV j is the number of vertices in the page-
connectivity graph).

Symmetric Heuristic. OM, developed by Omiecinski
[33], is designed specifically for bipartite join graphs
G ¼ ðVr; Vs; EÞ. Initially, a pair of nodes ðri; sjÞ is loaded,
where ri 2 Vr and sj 2 Vs, from the page-connectivity graph
in the memory buffers, such that 1) ðri; sjÞ is connected and
2) the sum of the degree of ri and sj is minimal. In each
iteration, an out-of-memory least-non-residential-degree
neighbor p of an in-memory lowest-non-residential-degree
node q is selected to be swapped in. If the memory buffers
are full, then the lowest-non-residential degree node r
which is not connected to p in PCG is swapped out. Node r
may come back to memory within the next few iterations.
(Time complexity is OðjVrj2 � jVsj2Þ, where jVrj and jVsj
denote the number of vertices for Vr and Vs, respectively).

Symmetric Heuristic. CO [7] generalizes the OM
heuristic by swapping in a set of nodes, i.e., segments, in
each iteration. The set of nodes selected for an iteration are
the unprocessed on-disk neighbors of the lowest-non-
residential degree node n, either in memory or on disk.
Node n can be processed and swapped out of the memory
buffers at the end of the current iteration. If the memory
buffers do not have enough empty space, then the page

1408 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

Fig. 10. Comparison of symmetric and asymmetric methods. (a) Spatial join, (b) sorting/AC, and (c) symmetric method.

with the lowest number of a nonresidential degree is
swapped out. (Time complexity: OðjV j2Þ, where jV j is the
number of vertices in the page-connectivity graph.)

Most symmetric methods proposed in the literature are
incremental, considering local information in the PCG. In
Section 4, we propose the Symmetric Clustering (SC)
method which exploits global information across the entire
PCG. The global information used in SC optimizes the page
access sequence in one step, while incremental methods,
such as FP, OM, and CO, iteratively use local information
and greedy strategies to reduce the number of page access
sequences. Global methods like Sorting, SC, and AC have
higher initial costs, particularly for join-indices with very
high join-selectivities. On the positive side, however, global
methods yield a reclustering of the join-index in addition to
the page-access-sequence. A reclustered join-index may be
reused across queries if updates are rare, allowing
amortization of the initial cost over multiple queries. This
may result in lower amortized costs for global methods in
environments with low update rates.

3.1 An Example

We use an example to illustrate the differences between the
various heuristics for computing joins, given a join-index.
Readers are warned that this example is a bit detailed to
bring out the differences between the various methods. On
the first reading, one may gloss over the details of Section 3.1
and simply look at Table 3 to get the summary. We have tried
hard to find an example which could explain our method,

symmetric clustering, and also explain the differences
between symmetric clustering and other methods. We have
not been able to find anything simpler. Fig. 11a shows the
polygon-clusters in theR and S relations with their overlays.
Some polygon-clusters have one polygon; others have two
polygons, for example, R0; R1; . . . ; R5; S1; S2; . . . ; S5, and
S8; S9; . . . ; S13. Polygon clusters are natural in geographic
data as well. For example, the boundary of the United States
will be represented by a collection of polygons representing
the Mainland, Alaska, Hawaii, etc.

The spatial-join relationship shown uses a geometric as
well as a topological representation. Fig. 11a shows an
overlay of the two data sets to provide a visual representa-
tion of the join relationships. Shaded areas are provided for
realism. One may imagine a beautiful city with many parks
and lakes (shaded areas) which break the continuity of the
streets (objects in R) and avenues (objects in S). Fig. 11b
provides an adjacency matrix representation of the page-
connectivity graph with one object per page. To simplify the
example, we assume one unit blocking factor, that is, one
polygon-cluster or road per disk page.

A summary of the behavior of the alternative methods is
shown in Fig. 12, which is divided into five different parts.
The adjacency matrix representation of the join-index is
reproduced from Fig. 11b to facilitate understanding. The
IDs of the polygon clusters in R and S appear immediately
to the left of and below the matrix. The two vectors to the
left of and below the node-identifiers list the degree of each
node in PCG. For example, the degree of R13 is 6. The nodes

SHEKHAR ET AL.: EFFICIENT JOIN-INDEX-BASED SPATIAL-JOIN PROCESSING: A CLUSTERING APPROACH 1409

TABLE 3
Summary of Page Accesses for Different Algorithms

Fig. 11. Connectivity graph of two relations. (a) Overlay of two relations. (b) Adjeacency matrix of PCG for Join-index of overlay(R,S). Dark regions =

edges within a partition. Lightly shaded region = edges within B-diagonal.

with the highest degree (13) are R5 and S8, followed by R12,
which has a degree of 12. Note that the available buffer size
in this example is 8, i.e., memory buffers can hold at most
eight disk pages at a time.

The remaining two parts of Fig. 12 present the summary
behavior of various algorithms in terms of page-access
sequence. These tables show the rank-order of the polygon-
clusters (i.e., pages assuming one unit blocking factor) from
R and S in their respective page-access sequences. For
example, the page access sequence for OM is R0, S0, S1, S2,
S8, R1, S3, R2, S4, R3, S5, R4, R5, R6, and so on. Multiple
ranks for a node indicate redundant I/Os. For example, OM
loads R4, R6, R7, R8, and S7 twice in memory with rankings
of (12, 30),(14, 31),(15, 24),(17, 32), and (25, 33). This
information is further summarized in Table 3, which shows
total I/Os, nodes with redundant I/Os, and min/max/
average degree of nodes with redundant I/Os. More details
are available in Appendix A.

FP prefers to swap-in the nodes with the highest
residential degree and swap out the nodes with the lowest
nonresidential degree. In this example, these policies tend
to favor high degree nodes for buffering, leading to
redundant I/Os on low-to-medium degree nodes which
have been loaded into memory already. Note that nodes R5
and R12 have no redundant I/Os despite having a very
high degree, while R1, R2, and S0 have redundant I/Os
despite having a very low degree.

OM performs well overall with only five redundant I/Os.
However, the redundant I/Os occur with nodes of medium
degree, e.g., R4, R6, R7, R8, and S7 (degree 8.) The nodes with
a higher degree have no redundant I/O. This is due to the
swap-in and swap-out policies. The swap-in policy favors
low-residential degree neighbors of low nonresidential
degree in-memory nodes. The policy has the unintended
effect of pulling all of the neighbors (S0, S1, S2, S8) in order of
degree of the in-memory node with the lowest nonresiden-
tial degree, e.g., R0. If one of these neighbors (S8) has a very
high degree, it may stick around for a long time due to the

swap-out policy based on the lowest nonresidential degree.4

This favored treatment of high nonresidential degree nodes
in memory leads to increased redundant I/Os in this
example.

The CO method is a logical refinement of the OM
method. It tries to bring in all of the neighbors of node N
with the lowest nonresidential degree. This allows the
complete processing of all edges incident on N . The hope is
to reduce redundant I/O; however, the CO method leads to
an unintended side effect for spatial joins. After R0 comes
into the buffer, its neighbors (S0, S1, S2, S8) are brought in to
process it. After processing R0, the next node with the
lowest nonresidential degree is R1, which enters into
memory with its remaining neighbor S3. After R1 is
processed, R2 is selected and, soon, the nodes of R are
favored to be processed first since the first node to be
loaded was from R. This leads to excessive redundant
loading for nodes of S in this example.

4 PROPOSED SYMMETRIC CLUSTERING METHOD

In contrast to the incremental approaches of FP, OM, and
CO, Symmetric Clustering (SC) uses a global approach
based on band-diagonalization of the adjacency matrix
representation of PCG. The number of redundant I/Os
depends only on the edges outside of the B-diagonal and
can often be reduced via identifying a vertex cover.5

Recall that pure B-diagonal entries for a square matrix
are defined by fMPCG½i; j� ¼ 1g) fjiÿ jj � bB=2cg, where
B is the number of buffers available for pages R and S.

1410 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

4. It is nonintuitive. See the explanation from [33]: “If a node in the buffer
is going to be swapped out, then, in the worst-case, it could be brought in
one additional time for each page it is connected to outside the buffer,
assuming it were to be swapped out each time.” Thus, a swap-out kicks out
the node with the lowest nonresidential degree.

5. A vertex cover of an undirected graph G ¼ ðV ;EÞ is a subset
V 0 � V such that if ðu; vÞ 2 E, then either u 2 V 0 or v 2 V 0 (or both).
The vertex-cover problem is to find a vertex cover of minimum size in
a given graph [9].

Fig. 12. Comparison of different methods.

Band-diagonalization of a matrix rearranges the rows and
columns of the matrix to bring in as many nonzero entries
as possible within the B-diagonals. Thus, a matrix with only
B-diagonal elements is already band-diagonalized. How-
ever, a band-diagonalized matrix may have a few entries
outside the B-diagonal.

SC Algorithm

Input: G ¼ ðV ;EÞ is a page-connectivity graph; B is the

number of buffers.

Output: S ¼< P1; P2; . . . ; Pr > is a page-access sequence

with r � jV j.(Pis need not be distinct)

{Step 1}< GBD; Porder > = Band-diagonalization(G;B);/*

Get B-diagonal graph and ordered set of partitions*/
{Step 2}< GOBD > = Get-off-B-diagonal-entries(GBD);/*

Find all the off-B-diagonal edges and nodes

from GBD */

{Step 3}< VC > = Find-vertex-cover(GOBD); /*

Find the vertex cover V C for the Off-B-diagonal

cut-edge EOBE */

{Step 4}< S > = Access-sequence-generator

(Porder; GBD; V C); /* Generate the page access

sequence */

First, SC derives the Band-diagonalized matrix GBD by
permuting the rows and columns of the adjacency matrix
representation of PCG to bring in as many edges as possible
within the B-diagonal. Second, from GBD, SC gets the graph
GOBD for off-B-diagonal edges and their corresponding
nodes. Third, SC determines the vertex cover for GOBD.
Finally, SC generates the page-loading sequence based on
the band-diagonalized matrix, the vertex cover of the off-B-
diagonal edges, and the partition ordering.

4.1 Example Revisited

Consider the join-computation problem discussed in Figs. 11
and 12. The input to the SC algorithm is the page-
connectivity graph shown in Fig. 11b.

In Step 1, the nodes in the PCG of Fig. 11b are rearranged
to get as many edges within the B-diagonal as possible. The
lightly shaded area in Fig. 11b shows the B-diagonal. In this
example, input graph G and output graph GBD of Step 1 are
identical for simplicity. The nodes are partitioned in groups
of seven nodes, which is one less than the number of
memory buffers available for R and S. This reserved
memory buffer is used for processing the off B-diagonal
edges and the edges between the nodes in adjacent
partitions in the loading sequence. Partitions P1 = {R0-R4,
S0-S1}, P2 = {R5-R6, S2-S6}, P3 = {R7-R11, S7-S8}, and P4 =
{R12-R13, S9-S13} are used in this example, as shown in the
shaded rectangles in Fig. 11b. The partitions are loaded in
the order P1, P2, P3, and then P4. The edges between the
nodes within a common partition can be processed with no
redundant I/Os. The edges between the nodes that are in
adjacent partitions in the loading sequence and which fall
inside the B-diagonal can also be processed without any
redundant I/Os, due to the availability of one extra buffer.

The redundant I/Os for the remaining edges can be
reduced by computing the vertex cover via Steps 2 and 3.

There are 15 edges off the B-diagonal with the vertex cover
of {S8, R5, R12}. There are five edges between partitions P1
and P3 and they are all incident on node S8. They can be
processed with one extra I/O by bringing S8 into the last
buffer when the nodes of P1 are in the buffer. Similarly, the
10 edges between the nodes in P2 and P4 can be processed
in two I/Os. Since five of these are incident on R12 and R5,
bringing R12 with P2 and R5 with P4 will take care of all of
these edges. Thus, SC produces only three redundant I/Os,
which result from the vertex cover {S8, R12, R5} for the 15
off B-diagonal edges. Step 4 generates a page access
sequence using the execution trace from the previous steps.

In summary, compared with FP, OM, and CO, SC uses
a global clustering approach. SC uses symmetric cluster-
ing to permute the rows and columns of the adjacency
matrix representation of PCG to bring as many edges as
possible within the B-diagonal. All of the edges within
the B-diagonal can be processed without redundant I/Os.
The redundant I/Os for edges outside the B-diagonal are
minimized by computing the vertex cover. The nodes in
the vertex cover are scheduled with appropriate parti-
tions, and some of these vertices may yield multiple
redundant I/Os. Table 10 (Appendix B.5) provides a
detailed execution trace for interested readers.

4.2 I/O Cost of the SC Method

The symmetric clustering approach for minimizing redun-
dant I/Os can be described in terms of the following
problem statement:

Lemma 2. Given a loading ordered partition

fP1; P2; . . . ; Pi; Pj; . . . ; Pkg

of PCG ¼ ðV ;EÞ, there is a page access sequence of length
k ¼ jV j þ redundant-I/O to compute the spatial join where
the redundant-I/O is given by:X
Vi2ðvertx cover of outside Bÿdiagonal edgesÞ

Partitionÿ degreeðViÞ;

ð1Þ

where Partitionÿ degreeðViÞ is the number of distinct
partitions which contain nodes Vj outside of the B-diagonals.

Proof. All of the edges within the main B-diagonals can be
processed without redundant I/Os using a contour
diagonalization strategy, as illustrated in Fig. 10c. The
redundant I/Os for each node in the vertex cover are
limited by the number of partitions sharing an off-B-
diagonal edge. tu

4.3 A Heuristic for Band-Diagonalization

The first step of band-diagonalization can be based on
either specialized envelope-reduction algorithms [1], [13],
[28] or min-cut graph partition algorithms [24], [25]. We use
the latter in this paper and plan to explore the former in
future work. We describe the heuristic approach that we
currently use.

Band-diagonalization

Input: G is a page connectivity graph; B is the number

of buffers.

Output: GBD is the B-diagonal connectivity graph;

SHEKHAR ET AL.: EFFICIENT JOIN-INDEX-BASED SPATIAL-JOIN PROCESSING: A CLUSTERING APPROACH 1411

Porder is the partition order

PSetm = Graph-PartitionðG;Bÿ 1Þ; /* Using graph

partition software */

Porder = Order-Partition(PSetm); /* Order the partitions

using the greedy heuristic */

Graph-Partition. A min-cut partition algorithm, e.g., metis
[24], divides the nodes of the PCG into disjoint subsets while
minimizing the number of edges whose nodes are incident in
two different partitions. One memory buffer is reserved for
bringing in pages from the vertex cover of the off-B-diagonal
entries. For example, the min-cut partitioning of PCG for the
overlay(R, S) in Fig. 11 may yield four partitions for B ¼ 8. The
partitions shown in Fig. 11b are P1 ¼ fR0ÿ R4; S0ÿ S1g,
P2 ¼ fR5ÿR6; S2ÿ S6g, P3 ¼ fR7ÿ R11; S7ÿ S8g, a n d
P4 ¼ fR12ÿ R13; S9ÿ S13g, resulting in 69 edges whose
incident nodes are in two different partitions. The breakup of
these edges by pairs of partitions of incident nodes is shown in
Table 4. Formally, the min-cut graph-partitioning algorithm
addresses the following problem:

Given: A connectivity graph G ¼ ðV ;EÞ with jV j ¼ n, and
the number of buffers, B � 2.

Find: A partition of V into p subsets, V1; V2; . . . ; Vp such that
Vi
T
Vj ¼ ; for i 6¼ j and

S
i Vi ¼ V .

Objective: Minimize the size of the set of edges EC � E
whose incident vertices belong to different subsets.

Constraint: jVij � ðBÿ 1Þ, and the number of partitions,
p ¼ djV j=ðBÿ 1Þe.
Recent advances have provided scalable graph-partition-

ing software, such as Metis [24], which can handle the large
graphs relevant to databases in a few seconds, a relatively
reasonable response time. We have had good results using
Metis for database problems [29], [38].

The extra memory buffer is reserved for processing
pages of the vertex cover of the off-B-diagonal entries. We
bring in these pages of vertex cover one page at a time since
this page will join with the pages of the current partition in
the memory. If we reserve a greater buffer size, say x, then
multiple pages within the vertex cover can be loaded at the
same time for computation of their join with each other.
However, with fixed buffer size B, the decrease of the
partition size from ðBÿ 1Þ to ðBÿ xÞ may cause more cut-
edges between partitions, thus generating more outside B-
diagonal entries and enlarging the size of the vertex cover.
This is a trade-off which we will explore in future work.

Order-Partition chooses a partition ordering, i.e., a
loading sequence, using a partition-interaction matrix M.
An entry M½Pi; Pj� lists the number of cut-edges between
the nodes in partitions Pi and Pj. An example partition-
interaction matrix for the join-index of Fig. 11 is shown in
Table 4. The procedure uses a simple heuristic to construct
the loading sequence. It sorts the entries in M½Pi; Pj� in
descending order and arbitrarily breaks the tie. It initially
chooses the entry with the largest value, arriving at a
loading sequence of length 2. Then, it extends the loading
on both sides in a greedy manner. For example, suppose
M½P3; P2� is selected first. Then, the loading sequence P2 ÿ
P3 can be extended to the right by choosing P4 and
extended to the left by choosing P1 from among the
remaining partitions. The choice is based on the highest
value of M½P2; Pi� and M½P3; Pj� in the partition-interaction
matrix. A better heuristic can be designed to select loading
sequences that have a higher number of cut-edges between
consecutive partitions. To improve the performance of the
proposed SC method, we will consider these heuristics in
future work.

We use Fig. 13 to illustrate the steps of band-
diagonalization using graph-partition and order-partition
techniques. Fig. 13a shows an example PCG. Fig. 13b
converts the original PCG into an adjacency matrix. Note
that the three edges (R4-S1), (R1-S4), and (R5-S0) are
outside the B-diagonal in the adjacency matrix, assuming
the buffer size is five. Metis [24] is used to partition this
PCG and each partition has size ðBÿ 1Þ, where B is the
number of buffers available. Fig. 13c shows the result after
graph-partition. The order-partition procedure uses the
partition-interaction matrix, i.e., Fig. 13d, and determines
the greedy loading sequence P1ÿ P2ÿ P3. The final
result, with only one edge (R5-S0) outside the B-diagonal,
is displayed in Fig. 13e.

1412 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

TABLE 4
Number of Cut-Edges between Parititions Pj and Pi

Fig. 13. An example for band-diagonalization. (a) Original PCG. (b) Adjacency matrix of the original PCG. (c) Applying graph partition (B = 5).

(d) Number of cut-edges between partitions Pi and Pj. (e) Adjacency matrix after graph partition with order P1! P2! P3.

Fig. 14 illustrates the effect of band-diagonalization on a
real data set. Fig. 14a is the original PCG relation, where R
and S are the two relations to be joined and where each
point in the picture denotes an edge connection between the
pages of the two relations. The result after the graph-
partition is shown in Fig. 14b: The pages from the R and S
relations are relabeled by their partitions. Finally, we order
these partitions to bring as many points as possible inside
the B-diagonal, as shown in Fig. 14c. In Fig. 14b, 28 percent
of the edges are outside the B-diagonal. After the order-
partition, the outside B-diagonal edges are reduced to
22 percent of the total edges. Edges outside of the
B-diagonal can be processed by using a vertex cover, as
discussed in the next section.

4.4 Vertex Cover Computation

The redundant I/Os in the SC approach are due to the
edges, that is, the nonzero matrix elements, outside the B-
diagonal of the clustered adjacency-matrix representation of
the join-index. These outside-B-diagonal edges are grouped
via a vertex-cover algorithm to determine a small set of
pages needing redundant I/Os. Determining the minimal
vertex cover for a general graph is NP-hard [12]. However,
polynomial time algorithms [18] are available for determin-
ing the minimal vertex cover for bipartite graphs, such as
the PCG for join-indices.

The Find-vertex-cover procedure determines the vertex
cover for all of the off-B-diagonal edges by a fast but greedy
heuristic described below. The heuristic sorts the nodes
related to the off-B-diagonal edges by their degree, that is,
the number of incident edges. The node with the highest
degree is added to the vertex cover and all of the edges
incident on this node are dropped. These steps are repeated
to cover all of the off-B-diagonal edges. In the future, we
plan to use better algorithms which are likely to improve
the performance of the proposed SC method.

Find-vertex-cover

Input: GOBD ¼ ðVOBD;EOBDÞ is the graph for

off-B-diagonal edges and corresponding

nodes

Output: V C is the vertex cover for GOBD

while(EOBD is not empty) {

Vhighest=Find_highest_degree_node(VOBD); /*

Node Vhighest has the highest degree */

V C ¼ V C
S
Vhighest; /* Add this node to the set of vertex

cover */

Update(GOBD); /* Update GOBD by removing node

Vhighest and its corresponding edges */

}

For example, Fig. 15 shows the off-B-diagonal edges and
their incident nodes derived from Fig. 11b with the loading
sequence P1 ÿ P2 ÿ P3 ÿ P4. By applying the Find-vertex-
cover procedure, the vertex cover for these 15 off-B-
diagonal edges are nodes R5, R12, and S8. Node R5 covers
edges (R5, S9), (R5, S10), (R5, S11), (R5, S12), and (R5, S13).
Node R12 covers edges (R12, S2), (R12, S3), (R12, S4), (R12,
S5), and (R12, S6). Node S8 covers edges (R0, S8), (R1, S8),
(R2, S8), (R3, S8), and (R4, S8).

4.5 Access Sequence Generation

The Access-sequence-generator procedure derives the page-
access sequence. It loads each partition in a predetermined
order. When transferring from one partition Pi to the next
scheduled partition Piþ1, the procedure orders the loading
sequence of the nodes using the contour-diagonalization
order shown in Fig. 10c. After loading a whole partition, we
find all of the off-B-diagonal vertex cover nodes which
connect to this partition and load these nodes, one by one,
to compute the join.

Access-sequence-generator

Input: Porder is the loading sequence of the partitions;

GBD is the B-diagonal connectivity graph;

V C is the vertex cover for all the Off-B-diagonal edges.

SHEKHAR ET AL.: EFFICIENT JOIN-INDEX-BASED SPATIAL-JOIN PROCESSING: A CLUSTERING APPROACH 1413

Fig. 14. Using graph partitioning to derive the B-diagonal. (a) The original PCG adjacency matrix from a spatial join-index for the Sequoia 2000 data

set. (b) After graph-partition, 28 percent of the edges are outside the B-diagonal (B = 100). (c) After order-partition, 22 percent of the edges are

outside the B-diagonal (B = 100).

Fig. 15. A vertex-cover example.

Output: S ¼< P1; P2; . . . ; Pr > is a page access

sequence.

for(i ¼ 1; i � jPorderj; iþþ){

Pi= GetPartition(Porder; i) /* Get the ith partition */

if(i==1) { AddPageSequence(S; Pi);/* Add all the

nodes within P1 into the loading sequence */ }

else { OrderAndAddPageSequence(S; Piÿ1; Pi);

/* Order and add the nodes within Pi into the

loading sequence by the following rules: */

/* 1. Add the node within Pi which has the highest

connectivity with Piÿ1 in B-diagonal */

/* 2. Replace the node within Piÿ1 which has

finished its join with the nodes in Pi */

}

PVC_Set = FindConnected_node_from_VC(Pi,V C);

/* Find if any Off-B-diagonal vertex cover which connects

to this partition */

AddPageSequence(S, PVC_Set); /* Add these nodes

into the loading sequence */

}

The computational complexity for SC is

OðjEjÞ þOðP � logðP ÞÞ þOðjVOBDj2Þ þOðjV j � logðBÿ 1ÞÞ;

given a page-connectivity graph G ¼ ðV ;EÞ and a buffer

size B. The first step, Band-diagonalization, includes two

procedures, namely, Graph-Partition and Order-Partition.

The Graph-Partition software we used has computational

complexity OðjEjÞ [26]; the Order-Partition procedure has

computational complexity OðP � logðP ÞÞ, where P is the

number of partitions, and P ¼ d jV jBÿ1e. The Find-vertex-cover

heuristic for the off-B-diagonal graph GOBD ¼ ðVOBD;EOBDÞ
has the worst-case computational complexity OðjVOBDj2Þ.
The for loop of the Access-sequence-generator executes P

times, and the OrderAndAddPageSequence step, with cost

OððBÿ 1Þ � logðBÿ 1ÞÞ, is the dominant cost inside the for

loop. The computational complexity for SC is

OðjEjÞ þOðP � logðP ÞÞ þOðjVOBDj2Þ þOðjV j � logðBÿ 1ÞÞ:

1414 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

Fig. 16. Nearest-neighbor query. The effect of page size, buffer size, and number of nearest neighbors for different OPAS-FB heuristics. (a) Page

size: 2K-64K, Buffer size: 5 percent of the smaller relation, and number of nearest neighbors = 3. (b) Buffer size = 5-20 percent of the smaller

relation, Page size: 2K, and number of nearest neighbors = 3(� ¼ 0:003). (c) Number of nearest neighbors =1-5(� ¼ 0:002ÿ 0:005Þ, Buffer size:

5 percent of the smaller relation, and page size: 2K.

Fig. 17. Range query. Effect of page size, buffer size, and number of nearest neighbors for different OPAS-FB heuristics. (a) Page size: 2K-64K,

Buffer size: 10 percent of the smaller relation, and range query = 3,800. (b) Buffer size = 5-20 percent of the smaller relation, page size: 2K, and

range query size = 3,800(� ¼ 0:003). (c) Range query size = 400 - 4,800(� ¼ 0:002ÿ 0:003Þ, buffer size: 10 percent of the smaller relation, and page

size: 2K.

5 COMPARATIVE EVALUATION OF SC, AC, AND

COMPETITORS

The experimental setup is shown in Fig. 7. We constructed

join-indices for N-nearest-neighbor (Q.A), as well as for

distance-based range queries (Q.B) from the Sequoia 2000

[40] data set. Variable parameters included buffer size, page

size, and edge ratio. Relation R refers to the GNIS Point table

and relation S refers to the Landuse Polygon table from the

Sequoia 2000 [40] data set. For the sake of brevity, we refer

readers to Section 2.3.1 for details of the experiment design.
Potential candidate methods for the OPAS-FB problem

included AC, SC, FP, OM, CO, and Sorting. However, we

did not include the Sorting method since it performed worse

than AC on I/O cost measures in our previous experiments.

5.1 Experiment Results

Figs. 16 and 17 compare all of the OPAS-FB heuristics for

N-nearest-neighbor join-indices and range-query join-in-

dices, respectively. For each experiment, we varied page

size, buffer size, and edge ratio.

5.1.1 Page Size

Page size affects both the clustering of the base relations and

the degree of the nodes in the PCG. We studied the effect of

page size on the performance of the OPAS-FB methods.

Figs. 16a and 17a show the effect of page size, which was

varied from 2 Kbytes to 64 Kbytes. The page size and the

number of page accesses are shown in the logarithmic form

of base two for easy comparison. In the N-nearest-neighbor

join-indices, SC and AC outperformed all the other methods

using different page sizes. In the Range-query join-indices,

SC and AC required fewer page accesses than all the other

methods. AC outperformed SC when page size was greater

than 64 Kbytes. The OM method performed well with the 4

and 8 Kbytes page size.

SHEKHAR ET AL.: EFFICIENT JOIN-INDEX-BASED SPATIAL-JOIN PROCESSING: A CLUSTERING APPROACH 1415

TABLE 5
Summary of Results for all Algorithms

(Buffer Size = 8, -: Swap Out, +: Add, =: Done).

5.1.2 Buffer Size

Buffer size determines the number of off-B-diagonal edges

in the SC method and the size of the partition in the PCG,

i.e., the number of disk-pages that can be bulk-loaded.

Larger number of buffers often decrease the number of page

accesses.

Figs. 16b and 17b show the effect of buffer size. We

varied the number of buffers as a percentage of the number

of pages of the smaller relation and changed the percen-

tages from 5 to 20. As can be seen, AC and SC performed

better than all the other methods when the buffer size was

relatively low, e.g., 5 to 10 percent. The CO and OM

methods did well with large buffer sizes.

Throughout our experiments, we repeatedly observed

that buffer size was the dominant factor determining the

relative performance of the AC and SC algorithms. In other

words, when the number of buffer size was relatively low,

our proposed algorithms tended to outperform other

competitors. One possible explanation is that, when buffer

size is relatively small, methods such as FP, OM, and CO

generate many extra page accesses for swapping in and out,

while our algorithms apply a global clustering approach to

group and load relevant pages together, thus reducing these

redundant I/O page accesses.

5.1.3 Edge Ratio

The edge ratio is a metric for page-level join selectivity

and the degree of connectivity of the bipartite PCG. A

high edge ratio graph has pages sharing edges with many

other pages, increasing the probability that some of the

neighbors are not in memory buffers, as well as the

likelihood of redundant I/Os.

In this experiment, we changed the edge ratio by both

increasing and decreasing the number of nearest neighbors

and the size of the range query. The results of the

experiment shown in Figs. 16c and 17c indicate that AC

and SC uniformly outperformed all other methods and that

SC required fewer page accesses than AC.
Notice that, in this experiment, the buffer size was set at

a relatively small number for both queries, i.e., 5 percent in

the nearest-neighbor query and 10 percent in the range

query. Under this given constraint, as previously stated, SC

and AC were expected to perform better than the other

methods, even though, for all the heuristics, the number of

page accesses rises as the edge ratio increases.

1416 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

TABLE 6
Example: The AC/Sorting-Based Method (Buffer Size = 8)

SHEKHAR ET AL.: EFFICIENT JOIN-INDEX-BASED SPATIAL-JOIN PROCESSING: A CLUSTERING APPROACH 1417

TABLE 7
Example: The CO’s Method (Buffer Size = 8)

TABLE 8
Example: The OM’s Method (Buffer Size = 8)

6 CONCLUSION AND FUTURE WORK

In this paper, we introduced two new algorithms for spatial

join computation, given a join-index and a fixed buffer size.

The key idea is to use spatial clustering. The proposed AC

and SC algorithms outperformed the traditional methods in

our experiments with the Sequoia 2000 [40] data set,

particularly when the size of the memory buffer was small

(< 10%), relative to the size of the spatial relations. We also

provided a formal characterization of an upper bound on

the number of redundant I/Os needed by AC and SC.
In the future, we would like to improve some of the

heuristics chosen in the implementation of AC and SC, as

discussed throughout this paper. We would also like to look

at related issues regarding maintenance of join-indices in

the face of updates and also the interaction of join-indices

with the join-computation algorithm. Finally, we are

interested in exploring the usefulness of AC and SC in

data warehouses [19], [20] (e.g., processing star-joins using

the STARindex [19]) and spatial data mining (e.g., neigh-

borhood index [10]).

APPENDIX A

SUMMARY TRACE FOR DIFFERENT ALGORITHMS IN

FIG. 12

Table 5 provides a summary trace of various heuristics.
Each row represents a new page being fetched into main
memory. Thus, the number of rows represents the total
number of pages fetched. For simplicity, the clustering of
I/O for multiple pages is not modeled. An entry ðþR0Þ
for Sorting in iteration 1 means that page R0 was fetched.
An entry ðþS1;¼ S1Þ for iteration 9 of Sorting implies that
S1 was fetched into memory (þS1) and that all edges
incident on S1 were processed with the pages available in
the buffer. The set of pages available in the buffer in this
iteration are fR0; R1; R2; . . . ; R6g since we have fetched
those in previous iterations. The buffer containing S1 can
be reused in the next iteration to bring in S2, as shown by
entry ðþS2Þ for Sorting in iteration 10. The next interest-
ing entry is ðÿS2;þS3Þ in iteration 11 for Sorting, where
the buffer containing S2 is overwritten by incoming page
S3, even though some edges (e.g., R7ÿ S2) incident
cannot be processed right away. This is due to a buffer

1418 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

TABLE 9
Example: The FP’s Method (Buffer Size = 8)

size fixed at eight. Note that S2 returns to memory in
iteration 29 to process the edge (R7ÿ S2). This leads to a

redundant I/O. Note that, because the graph is highly
connected in spatial order, AC does not recluster the R

relation and generates the same loading sequence as the
Sorting heuristic.

Traces of other algorithms are shown in other columns

using eight buffers. Note that the number of last rows with
a “þ” entry (page fetch) designates the total number of page

I/Os for an algorithm. In other words, the AC/Sorting-

based algorithm has 40 I/Os, CO’s heuristic has 35, OM has
33, FF has 45, and SC has 31, as shown in the last row

labeled I/O count.
Tables 6, 7, 8, 9, and 10 in Appendix B provide the

detailed execution traces for AC/Sorting-based, CO, OM,

FP, and SC, respectively, for interested readers.

APPENDIX B

TRACE FOR DIFFERENT ALGORITHMS IN FIG. 12

B.1 Execution Trace for AC/Sorting Method

Table 6 shows the behavior of the Sorting method for

computing a join, given the join-index of Fig. 11. Table 6 has
five columns. The first column shows the iteration number.

The second column shows the node swapped out in the
current iteration. The third column shows the node selected

and brought into the memory buffers. The fourth and fifth

columns show the pages of R and S in the main memory
buffer. The last column shows the nodes which have been

processed completely and need not come into the memory
buffer again.

B.2 Execution Trace for the CO’s Method

Table 7 shows the behavior of CO’s method for computing a
join, given the join-index of Fig. 11. Table 7 has five
columns. The first column shows the iteration number. The
second column shows the node swapped out in the current
iteration. The third column shows the node selected and
brought into the memory buffers. The fourth and fifth
columns show the pages of R and S in the main memory
buffer. The last column shows the nodes which have been
processed completely and need not come into the memory
buffer again.

B.3 Execution Trace for OM’s Method

Table 8 shows the behavior of OM’s method for computing
a join, given the join-index of Fig. 11. Table 8 has five
columns. The first column shows the iteration number. The
second column shows the node swapped out in the current
iteration. The third column shows the node selected and
brought into the memory buffers. The fourth and fifth
columns show the pages of R and S in the main memory
buffer. The last column shows the nodes which have been
processed completely and need not come into the memory
buffer again.

B.4 Execution Trace for FP’s Method

Table 9 shows the behavior of FP’s method for computing a
join, given the join-index of Fig. 11. Table 9 has five
columns. The first column shows the iteration number. The
second column shows the node swapped out in the current
iteration. The third column shows the node selected and
brought into the memory buffers. The fourth and fifth
columns show the pages of R and S in the main memory

SHEKHAR ET AL.: EFFICIENT JOIN-INDEX-BASED SPATIAL-JOIN PROCESSING: A CLUSTERING APPROACH 1419

TABLE 10
Example: The SC Method (Buffer Size = 8)

buffer. The last column shows the nodes which have been
processed completely and need not come into the memory
buffer again.

B.5 Execution Trace for SC

Table 10 shows the behavior of SC’s method for computing
a join, given the join-index of Fig. 11. Table 10 has five
columns. The first column shows the iteration number. The
second column shows the node swapped out in the current
iteration. The third column shows the node selected and
brought into the memory buffers. The fourth and fifth
columns show the pages of R and S in the main memory
buffer. The sixth column shows the nodes which have been
processed completely and need not come into the memory
buffer again. The last column shows the partition number.

ACKNOWLEDGMENTS

This work is sponsored in part by the US Army High
Performance Computing Research Center under the aus-
pices of the Department of the Army, Army Research
Laboratory cooperative agreement number DAAH04-95-2-
0003/contract number DAAH04-95-C-0008, the content of
which does not necessarily reflect the position or the policy
of the government and no official endorsement should be
inferred. This work was also supported in part by US
National Science Foundation grant #9631539. The authors
would like to thank Kim Koffolt for improving the
readability of this paper. We also would like to thank Xuan
Liu, Xinhong Tan, and Weili Wu for their technical
comments.

REFERENCES

[1] S.T. Barnard, A. Pothen, and H.D. Simon, “A Spectral Algorithm
for Envelope Reduction of Sparse Matrices,” Numerical Linear
Algebra with Applications, vol. 2, no. 4, pp. 317-334, 1995.

[2] L. Becker, K. Hinrichs, and U. Finke, “A New Algorithm for
Computing Joins With Grid Files,” Proc. Int’l Conf. Data Eng., 1993.

[3] L. Belady, R. Nelson, and G. Shedler, “An Anomaly in the Space-
Time Characteristics of Certain Programs Running in Paging
Machines,” Comm. ACM, vol. 12, no. 6, pp. 349-353, June 1969.

[4] C. Berge, Graphs and Hypergraphs. New York: American Elsevier,
1976.

[5] T. Brinkhoff, H. Kriegel, R. Schneider, and B. Seeger, “Multi-Step
Processing of Spatial Joins,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, May 1994.

[6] T. Brinkhoff, H. Kriegel, and B. Seeger, “Efficient Processing of
Spatial Joins Using R-Trees,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, May 1993.

[7] C.Y. Chan and B.C. Ooi, “Efficient Scheduling of Page Access in
Index-Based Join Processing,” IEEE Trans. Knowledge and Data
Eng., vol. 9, no. 6, pp. 1005-1011, Nov./Dec. 1997.

[8] H.T. Chou and D.J. DeWitt, “An Evaluation of Buffer Manage-
ment Strategies for Relational Database Systems,” Proc. 11th Int’l
Conf. Very Large Data Bases, pp. 127-141, Aug. 1985.

[9] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms.
The MIT Press, 1991.

[10] M. Ester, J. Sander, S. Gundlach, and H. Kriegel, “Database
Primitives for Spatial Data Mining,” Proc. Int’l Conf. Databases in
Office, Eng. and Science, 1999.

[11] F. Fotouhi and S. Pramanik, “Optimal Secondary Storage Access
Sequence for Performing Relational Join,” IEEE Trans. Knowledge
and Data Eng., vol. 1, no. 3, pp. 318-328, Sept. 1989.

[12] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company,
1993.

[13] A. George and A. Pothen, “An Analysis of Spectral Envelope-
Reduction via Quadratic Assignment Problems,” SIAM J. Matrix
Analysis and Its Applications, vol. 18, no. 3, pp. 706-732, 1997.

[14] P. Goyal, H.F. Li, E. Regener, and F. Sadri, “Scheduling of Page
Fetches in Join Operation Using Bc-Trees,” Proc. Int’l Conf. Data
Eng., 1988.

[15] G. Graefe, “Query Evaluation Techniques for Large Databases,”
Computing Surveys, vol. 25, no. 2, pp. 73-170, 1993.

[16] O. Gunther, “Efficient Computation of Spatial Joins,” Proc. Int’l
Conf. Data Eng., 1993.

[17] L. Hagen, A. Kahng, “Fast Spectral Methods for Ratio Cut
Partitioning and Clustering,” Proc. IEEE Int’l Conf. Computer-Aided
Design, 1991.

[18] J.E. Hopcroft and R.M. Karp, “An n5=2 Algorithm for Maximum
Matching of Graphs,” SIAM J. Computing, vol. 2, no. 4, pp. 225-231,
1973.

[19] Informix, White Papers, http://www.informix.com/informix/
solutions/dw/redbrick/wpapers/star.html, 1999.

[20] W.H. Inmon, Building the Data Warehouse. John Wiley & Sons,
1992.

[21] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “hMetis
Home Page,” http://www-users.cs.umn.edu/~karypis/metis/
hmetis/main.html, 2002.

[22] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
Hypergraph Partitioning: Application in VLSI Domain,” Proc.
ACM/IEEE Design Automation Conf., 1997.

[23] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
Hypergraph Partitioning: Application in VLSI Domain,” IEEE
Trans. Very Large Scale Integration (VLSI) Systems, vol. 7, no. 1,
pp. 69-79, Mar. 1999.

[24] G. Karypis and V. Kumar, “Metis Home Page,” http://www-
users.cs.umn.edu/~karypis/metis/metis/main.html, 2002.

[25] G. Karypis and V. Kumar, “Parallel Multilevel Graph Partition-
ing,” Proc. Supercomputing, Nov. 1996.

[26] G. Karypis and V. Kumar, “Multilevel K-Way Partitioning Scheme
for Irregular Graphs,” J. Parallel and Distributed Computing, vol. 48,
no. 1, pp. 96-129, 1998.

[27] B.W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for
Partitioning Graphs,” The Bell System Technical J., 1970.

[28] G. Kumfert and A. Pothen, “Two Improved Algorithms for
Envelope and Wavefront Reduction,” BIT, vol. 37, no. 3, pp. 001-
032, 1997.

[29] D.R. Liu and S. Shekhar, “A Similarity Graph-Based Approach to
Declustering Problem and Its Applications Toward Parallelizing
Grid Files,” Proc. 11th IEEE Int’l Conf. Data Eng., pp. 373-381, Mar.
1995.

[30] M. Lo and C.V. Ravishankar, “Spatial Joins Using Seeded Trees,”
Proc. 1994 ACM SIGMOD Int’l Conf. Management of Data, pp. 209-
220, 1994.

[31] T. Merrett, Y. Kimbayasi, and H. Yasuura, “Scheduling of Page-
Fetches in Join Operations,” Proc. Seventh Int’l Conf. Very Large
Databases, 1981.

[32] P. Mishra and M.H. Eich, “Join Processing in Relational
Databases,” Computing Surveys, vol. 24, no. 1, pp. 63-113, 1992.

[33] E.R. Omiecinski, “Heuristics for Join Processing Using Nonclus-
tered Indexes,” IEEE Trans. Software Eng., vol. 15, no. 1, pp. 18-25,
Jan. 1989.

[34] S. Pramanik and D. Ittner, “Use of Graph Theoretic Models for
Optimal Relational Database Accesses to Perform Join,” ACM
Trans. Database Systems, vol. 10, no. 1, pp. 57-74, Mar. 1985.

[35] D. Rotem, “Spatial Join Indices,” Proc. Int’l Conf. Data Eng., 1991.
[36] G.M. Sacco and M. Schkolnick, “A Mechanism for Managing the

Buffer Pool in a Relational Database System Using the Hot Set
Model,” Proc. Eighth Int’l Conf. Very Large Data Bases, pp. 257-262,
Sept. 1982.

[37] S. Shekhar, S. Chawla, S. Ravada, A. Fetterer, X. Liu, and C.T. Lu,
“Spatial Databases: Accomplishments and Research Needs,” IEEE
Trans. Knowledge and Data Eng., vol. 11, no. 1, pp. 45-55, Jan./Feb.
1999.

[38] S. Shekhar and D.R. Liu, “CCAM: A Connectivity-Clustered
Access Method for Networks and Networks Computions,” IEEE
Trans. Knowledge and Data Eng., vol. 9, no. 1, Feb. 1997.

[39] M. Stonebraker, “Operating System Support for Database Man-
agement,” Comm. ACM, vol. 24, no. 7, pp. 412-418, July 1981.

[40] M. Stonebraker, J. Frew, and J. Dozier, “The Sequoia 2000 Project,”
Proc. Third Int’l Symp. Large Spatial Databases, 1993.

[41] P. Valduriez, “Join Indices,” ACM Trans. Database Systems, vol. 12,
no. 2, pp. 218-246, June 1987.

1420 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

Shashi Shekhar received the Btech degree in
computer science from the Indian Institute of
Technology, Kanpur, India, in 1985, the MS
degree in business administration and the PhD
degree in computer science from the University
of California, Berkeley, in 1989. He is currently a
professor in the Department of Computer
Science and an active member of the the Army
High Performance Computing Research Center
as well as the Center for Transportation Studies

at the University of Minnesota, Minneapolis. His research interests
include databases, geographic information systems (GIS), and intelli-
gent transportation systems. He is an editor of GeoInformatica: A
Journal on Advances in Computer Science for Geographic Information
Systems. He coauthored a textbook titled Spatial Databases: A Tour
(ISBN 013-017480-7, Prentice Hall, 2003). He has published more than
100 research papers in refereed journals, conferences, workshops, and
edited books. He served as an editorial board member of the IEEE
Transactions on Knowledge and Data Engineering (1996-2000), and of
the IEEE-Computer-Society Computer Science & Engineering Practice
Board (1996-98). He was a program cochair of the ACM International
Workshop on Advances in GIS (1996), ARL/AHPCRC Workshop on
Real-Time GIS and Battlefield Visualization (2000), and IMA Workshop
on Digital Libraries (2001). Dr. Shekhar is a senior member of the IEEE,
and a member of the ACM and the AAAI.

Chang-Tien Lu received the BS degree in
computer science and engineering from the
Tatung Institute of Technology, Taipei, Taiwan,
in 1991, the MS degree in computer science from
the Georgia Institute of Technology, Atlanta, in
1996, and the PhD degree in computer science
from the University of Minnesota, Minneapolis, in
2001. He is currently an assistant professor in the
Department of Computer Science at Virginia
Polytechnic Institute and State University. His

research interests include spatial databases, spatial query processing,
data mining, data warehousing, and geographic information systems. He
is a member of the IEEE.

Sanjay Chawla received the PhD degree in
mathematics from the University of Tennessee,
Knoxville, in 1995. He is a senior lecturer in the
School of Information Technologies at the
University of Sydney. His research interests
include spatial database management systems
and data mining.

Sivakumar Ravada received the PhD degree in
computer science from the University of Minne-
sota. Dr. Ravada is the project lead for the
spatial database product at Oracle Corporation.
His main research interests are the design and
analysis of algorithms for query processing in
spatial databases. He has authored more than a
dozen articles published in various journals and
conference proceedings. He was a keynote
speaker at the Eighth ACM GIS Conference in

1999. Recently, he was the program committe chair for the Eighth ACM
GIS Symposium held in Washington, D.C.

For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

SHEKHAR ET AL.: EFFICIENT JOIN-INDEX-BASED SPATIAL-JOIN PROCESSING: A CLUSTERING APPROACH 1421

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

