Optimizing Join Index Based Spatial-Join Processing;:

A Graph Partitioning Approach

Shashi Shekhar, Chang-tien Lu, Sivakumar Ravada
Computer Science Department, University of Minnesota
200 Union Street SE, Minneapolis, MN-55455

[shekhar, ctlu, siva, chawla]@cs.umn.edu TEL:(612) 6248307 FAX:(612)6250572

http://www.cs.umn.edu/Research/shashi-group
June 1, 1999

Abstract

A Join Index is a data structure that optimizes the join query processing in spatial databases.
Join indices use pre-computation techniques to speed up online query processing and are useful for
applications which require low update rates. The cost of spatial join computation using a join-index
with limited buffer space depends primarily on the page access sequence used to fetch the pages of the
base relations. Given the join-index, we introduce a suite of methods based on spatial-clustering to
compute the spatial-join. The spatial clustering we employ is based on graph partitioning techniques.
For all the methods we derive upper-bounds on the lengths of the page-access sequence. Experimental
results with Sequoia 2000 data sets, on a sequential system, show that spatial clustering method
outperforms the existing methods based on sorting and online clustering heuristics.

Acronym Full form Definition section/page
AGP Asymmetric Graph Partitioning based heuristic Section 3
SGP Symmetric Graph Partitioning Based heuristic Section 5
FP Fotouhi and Pramanik’s heuristic Section 2
OM Omiecinski’s heuristic Section 2
Chan Chan’s heuristic Section 2
Sorting Sorting heuristic Section 2
OPAS-FB Optimal Page Access Sequence with Fixed Buffer | Section 1
PCG Page Connectivity Graph Section 1
B-diagonal matrix M | M[i,j]=1=|i—j| < |Z] Section 5

Table 1: Table of Acronym

Keywords: Data Clustering, Join Index, Partitioning, Hyper Graph, Query Processing, Spatial Join.

1 Introduction

The join operation is a fundamental operation in databases, and it has been a subject of intense scrutiny
by leading database researchers. Much work has been done in optimizing join operation [13, 26]. A join
index [2, 8, 20, 24, 30, 33] is a data structure that facilitates rapid join-query processing. For data
sets which are updated infrequently and use pre-computation and materialization techniques to speed
up online query processing, the join index can be particularly useful. A fully materialized relationship
keeps the complete result of a likely query as a separate relation. Then when a query requests the stored
relationship, the result is immediately sent out, resulting in a very fast response time. But the fully
materialized relationship has high storage overhead, while a partially materialized relationship (e.g. a
join index) stores part of the result to reduce storage overhead, and then requires more processing during
the query processing step.

The join-index is typically represented as a bi-partite graph between the pages of encumbent relations
or their surrogates to compute the join. When the number of buffer pages is fixed, the join-computation
problem is transformed into determining an optimal page access sequence such that the join can be
computed with the minimum number of redundant page accesses. This problem has been shown to
be NP-hard for the case when the buffer size is equal to two pages [25, 28], and consequently, it is
unlikely that a polynomial time solution exists for this problem. Solutions in literature use a global
clustering method to group pages in one or both tables involved in join to reduce total page access.
Available heuristics either group pages of a single table via global sorting [33] or use incremental clustering
methods [6, 9, 27]. We introduce two new heuristics for this problem. One heuristic uses global clustering
method to group pages in both tables. The other one uses global clustering for pages of a single table
using join-index information. Both methods use min-cut graph partitioning! as clustering algorithm.
The former outperforms the incremental clustering methods while the latter outperforms global sorting
heuristics for spatial join. .

1.1 Basic concept of a Join Index

Consider a database with two relations Facility and Forest Stand. Facility has a point attribute repre-
senting its location, and Forest Stand has a rectangle attributes representing bounding box of its extend.
The polygon representing its extend may be stored separately. A point consists of the x and y coordi-
nates on the map. A rectangle consists of two points, which are the bottom left and top right corners of
the rectangle region on a map.

In Figure 1(a), points al, a2, a3, b1, b2 represent facility locations and polygons A1, A2, B1, B2, C1,(C2
represent the bounding boxes of the boundary of forest boundaries of forest stands. The circle around
each location shows the area within distance D from a facility. The rectangle around each forest bound-
ary represents Minimal Orthogonal Bounding Rectangle(MOBR) for each forest stand. Figure 1(b)
shows two relations R and S for this data set. Relation R represents facilities via attributes of unique id,
R.ID, the location (x,y coordinates), and other non-spatial attributes. Relation S represents the forest
stands via unique identifier, S.I D, the MOBR and non-spatial attributes. MOBR(X.r, Y, Xvur, Yur),

TRecent advances have provided scalable graph-partitioning software such as Metis [19], which can handle large graphs
relevant to database in relative reasonable response time, e.g. few seconds. We have had good experiment using it for
database problems [22, 31]

is represented via the coordinates of lower-left corner point(Xrr,Yrr) and the upper right corner
point(Xyr, Yur).
Now, consider the following query:
Q: "Find all forest stands which are within a distance D from a facility”.
This query will require a join on the Facility and Forest Stand relations based on their spatial attributes,
Spatial join algorithm [1, 4, 5, 14, 23] may be used to find the pairs (Facility, Forest-stand) which
satisfy the query Q. Alternatively, a join-index may be used to materialize a subset of result to speed
up processing for future occurrence of Q if there are few updates to spatial data and the query Q is
frequently requested. Figure 1(b) shows a join index with two columns. Each tuple in the join index
represents a tuple in the table JOIN (R, S, distance(R.Location,S.MOBR) < D). In general, the tuples
in the join index may also contain pointers to the pages of R and S where the relevant tuples of R and
S reside. We omit the pointer information to simplify the diagrams in this paper.

R Relation S Relation Join Index
(Facility Location) (Forest-Stand Boundary)
Location Non-Spatial| |p MOBR Non-Spatial | |RID S.ID
(X,Y) Data KLY XuwRwR Data al Al
(7916.7) (..) Al (312.2,66,16) (..) al Bl
(34114) () ||a2 (1347.7,19510) (.) || @ C1
(195131) (.
Bl (7.6,12.7,155.2) (..) a3 B2
18.7,6.4
2957 1)) E ; B2 (1551520419 (.) || P1 A2
e Cl (518991109 (.) || P2 ©CI
b2 C2
D =radius of circle C2 (75297151 (..)
(a) Spatial Attribute of R and S (b) R and S Relation Table and Join Index

Figure 1: Construct Join Index from two relations

1.2 Join Index, Page Connectivity Graph, Join Processing

A join index describes a relationship between the objects of two relations. Assume that each tuple of
a relation has a surrogate which uniquely identifies that tuple. A join index is a sequence of pairs of
surrogates, where each pair of surrogates identifies the result-tuple of a join. The tuples participating
in the join result are given by their surrogates. Formally, let R and S be two relations. Then consider
the join of R and S on attributes A of R and B of S. Then the join index is an abstraction of the
join of the relations. If F' defines the join predicate, then the join index is given by the set JI =
{(ri,s;)|F(ri.A, s;.B) is true for r; € R and s; € S}, where r; and s; are surrogates of the ith tuple in
R and the jth tuple in S, respectively. For example, consider the Facility and Forest Stand relational
tables shown in Figure 1. The Facility relation is joined with the Forest Stand relation on their spatial
attribute. The join-index for this join contains the tuple IDs which match the spatial join predicate.

A join index can be described by a bipartite graph G = (V4, Vs, E), where Vi contains the tuple
IDs of relation R, and V5 contains the tuple IDs of relation S. Edge set E contains an edge (v, v,) for

vy € R and vs € S, if there is a tuple corresponding to (v, vs) in the join index. The bipartite graph
models all of the related tuples as connected vertices in the graph. In a graph, the edges connected to
a node are called the incident edges of that node, and the number of edges incident on a node is called
the degree of that node. The average degree of all the nodes depends on the join selectivity: the higher
the degree, the higher the join selectivity.

When the join relationship between two relations is described at the page level, we get a page-
connectivity graph. A Page-Connectivity Graph (PCG) [25] Bg = (V1, Vs, E) is a bipartite graph where
vertices V; represent the pages from the first relation, and vertices V. represent the pages from the
second relation. The set of edges is constructed as follows: an edge is added between page (node) vi
and page (node) v}, iff there is at least one pair of objects (ri,s;) in the join index such that r; € vi
and s; € v%. Figure 2 shows a page-connectivity graph for a join index where nodes a, b represent the
pages of relation R, and nodes A, B, C represent the pages of relation S. An edge represents a page-join
between a pair of pages. A page-join represents the corresponding join between the tuples in the two
pages.

A min-cut node partition [15, 21] of graph G = (V, E) partitions the nodes in V into disjoint subsets
while minimizing the number of edges whose incident nodes are in two different partitions. The cut-set
of a min-cut partition is the set of edges whose incident nodes are in two different partitions. Fast and
efficient heuristic algorithms [19, 17] for this problem have become available in recent years. They can
be used to spatially cluster pages in PCG.

Page of relation R °
al a2 a3 bl b2

el
s NE g ool

14 = X X ¥\ e4
| BL B2 ~CLC2 | Cl1

=
R O B

Al A2

Page of relation S @ G a b

Join Index PCG Adjacency Matrix

Figure 2: Construction of a Page Connectivity Graph(PCQG) from a Join Index.

A join index helps speedup the join processing, as it keeps track of all of the pairs of tuples which
satisfy the join predicate. Given a join index JI, one can use the derived PCG to schedule an efficient
page access sequence to fetch the data pages. The CPU cost is fixed, as there is a fixed cost associated
with joining each pair of tuples, and the number of tuples to be joined is fixed. I/O cost, on the other
hand, depends on the sequence of pages accessed. When there is limited buffer space in the memory,
some of the pages may have to be read multiple times from the disk. The page-access sequence(and in
turn the join-index clustering and the clustering of the base relation) determines the I/O cost.

Example: We illustrates the dependency between the I/O cost of a join and the order in which
the data pages are accessed with the help of an example, using the page-connectivity graph shown in
Figure 2. Assume that the buffer space is limited to allow at most two pages of the relations in memory,
after caching the whole page-connectivity graph in memory. Consider the two-page access sequences:
(i) (a, A, b, B, a, C, b) and (ii) (a, A, b, C, a, B). Each sequence allows the computation of join results

using a limited buffer of two pages. However, in the first case, there are a total of seven page accesses,
and in the second case there are a total of six page accesses. Note that the lower bound on the number
of page accesses is five, as there are five distinct pages in the PCG. However, with two buffer spaces,
there is no page-access sequence which will result in five page accesses. In Figure 2, with three buffer
spaces, (a, B, A, C, b) is a page-access sequence which has five page accesses. This is because the cycle
(a, A, b, C, a) requires that at least three pages be in memory to avoid redundant page accesses.

1.3 Problem Definition, Scope, Outline

Given that the I/O cost depends on the page sequence, the following optimization problem is defined
for join processing, using join-index in sequential systems. The objective is to determine an ordered list
of page accesses which minimize the total page accesses, given a buffer of size B. Here it is important
to guarantee that there will never be more than B pages in main memory. We call this the Optimal
Page Access Sequence with a Fixed Buffer (OPAS-FB) problem [25]. This problem is formally defined
as follows.

OPAS-FB Problem

Given: A page-connectivity graph PCG = (V, E), representing the join index, and a buffer of size
B<|V|.

Find: A page-access sequence.

Objective: To minimize the number of page accesses.

Constraint: Such that the number of pages in the buffer is never more than B.

For example, the optimal page-access sequence for the PCG in Figure 2 for B=21is (a, A, b, C, a,
B), which results in six page accesses.

Scope: In this paper, we focus on the OPAS-FB problem. We do not address the update problems
associated with managing join indices. For example, a join index may have to change if the underlying
base relations change. Also, the the clustering of base relations and tuple-level join-index optimization
are out of the scope of this paper.

Outline: The rest of the paper is organized as follows. In Section 2, we describe the related work and
our contributions. In Section 3, we propose our first approach, Asymmetric Graph Partitioning based
heuristic(AGP). In Section 4, AGP is evaluated and compared with Sorting heuristic. In Section 5, the
second approach, Symmetric Graph Partitioning based heuristic(SGP), is proposed, along with some
refinement techniques. In Section 6, we experimentally evaluate the second approach and its refinement
techniques vis-a-vis each other. In Section 7, we compare our algorithms, AGP and SGP, with other
known algorithms for the OPAS-FB problem. In Section 8, we conclude with a summary and future
directions.

2 Related Work and Our Contributions

The OPAS-FB problem is known to be NP-hard [25, 28], and heuristic solutions have been proposed
in the literature for solving this problem. The heuristics in literature can be broadly divided into two

groups, namely asymmetric single table clustering and symmetric two-table on-line clustering. The
main approach within asymmetric single table clustering is based on sorting one of the tables on
the join key. In the following discussion, let R and S be the two relations, with JI being the join index.
A sorting-based asymmetric heuristic presented in [33] reads in as much of the join index (JI) and
one relevant relation (R semi-join JI) into memory as possible. Here JI is assumed to be clustered on
relation R. Access to S is clustered by sorting the list of all the surrogates from S that are related to
the subset of the join-index in memory to reduce redundant accesses to S. This heuristic is economical,
and it ensures that no redundant accesses are performed on relation R, but it may incur redundant
accesses to the second relation. Sorting-based heuristic assumes totally ordered join-keys. We extend
sorting-based method to spatial domain where the keys (e.g. coordinates in multi-dimensional space) are
not totally ordered, by proposing AGP. It uses min-cut graph partitioning of the asymmetric hypergraph
representing the join-index. Nodes in this graph represent pages of one table(R). A hyper edge represents
a page connection of the other table(S). A hyperedge connects are pages of R with edge to a single page
of S. AGP clusters pages of R based on their interaction with pages of S to reduce redundant I/O of
pages in S.

The main approach in symmetric two-table clustering are based on either Traveling Salesman
Problem heuristics or selecting next page or next set of pages to be fetched into memory given the pages
in buffer and remaining edges to be processed in the bi-partite page-connectivity graph. The selection
is often based on the number of neighbors in memory buffers and number of neighbors on the disk.
Details of actual heuristics follow. A traveling salesperson-(TSP) based heuristic [12] uses a complete
graph constructed by taking the nodes of one relation as the nodes of the graph. The weight on an
edge between nodes a and b denotes the number of page-accesses required to fetch all of the neighbors
of b, given that all of the neighbors of a are in memory. This method requires a large memory, as the
complete graph grows quadratically with the number of nodes in the smaller of the relations.

Symmetric Heuristic: FP, proposed by Fotouhi and Pramanik [9], is designed for general join
graphs. The buffer is initialized with a node which has the smallest degree in the page-connectivity
graph. The memory buffer is added with the largest resident degree node. The resident degree of a node
A is the number of nodes which are connected to A and are in memory. If there is more than one node
with the largest resident degree , the algorithm chooses the one with the smallest non-resident degree.
The non-resident degree of a node A is equal to total_degree(A) — resident_degree(A). When the buffer
is full, a node with the smallest number of edges with the nodes on the disk can be swapped out.

Symmetric Heuristic: OM, developed by Omiecinski [27], is designed specifically for bipartite
join graphs. Initially, choose an R and S node from the page-connectivity graph, e.g., r; and s;, to load
in the buffer such that (a) (r;, s;) is connected. (b)The sum of the degree of r; and s; is minimal. The
buffer is added with the new node, call it p, using the following strategy: (a)find a node q in the buffer
such that the node is connected to the fewest number of nodes outside the buffer, and (b) find the node
p, such that (q,p) is connected, and such that the number of edges connecting p to a node not in the
buffer is minimal. If a node in the buffer has to be replaced to make room for the new node, then choose
the node that (a) is connected to the fewest number of nodes outside the buffer, and (b) is not connected
to the new node.

Symmetric Heuristic: Chan [6] first, a SelectSegment heuristic selects the minimal segment
that has the shortest non-resident length. From this minimal segment, a SelectPage heuristic chooses

the page that has the largest resident degree from this segment. For the selection of victim pages for
replacement when buffer is full, the Select Victim heuristic selects the page with the smallest nonresident
degree.

Other heuristics are also proposed for the case with two buffers [25]. A graph-based heuristic is
presented in [25] for the case of two buffers. The optimum solution for the case of two buffers is shown
to be NP-hard when it is reduced the problem to that of finding a Hamiltonian path problem. Also, a
heuristic method is presented by transforming the Hamiltonian-path problem to a Euler path problem.

We propose an off-line clustering approach based on min-cut graph partitioning of bi-partite page
connectivity graph(PCQG) for the join-index. The idea is to find clusters of pages in PCG in the hope of
minimizing redundant I/O as shown in Figure 3. If the node clusters are edge disjoint as in Figure 3(A),
i.e. there are no edge between node-clusters, this method will minimize redundant I/O assuming that
each node-cluster can fit main memory. SGP is likely to be a stronger clustering methods than on-line
heuristics proposed in literature since it uses a global partitioning algorithm based on min-cut graph-
partitioning. Our experiments show this trend.

[

[—

L

Join-key(S)

Need not be totally ordered
Join-key(S)

Need not be totally ordered

| [|
L — L
Join-key(R) Join-key(R)
Need not be totally ordered Need not be totally ordered
(A) (B)

Figure 3: Example of Key-distribution for Join Keys

Our Contributions

In this paper we propose a suite of spatial clustering methods for join processing using the join-index.
These methods: AGP, SGP with refinements, are all based on the min-cut graph partitioning techniques.
We propose these methods as a new heuristic for solving the OPAS-FB problem in sequential systems.
We also derive upper bounds on the number of page accesses needed to compute the spatial-join. We show
that the length of the page-access sequence is bounded by the sum of the sizes of the base relations and
the size of the cut-set of the page-connectivity graph. Since min-cut graph-partitioning aims to minimize
the size of the cut-set, the proposed heuristic is a direct method. We performed our experiments on
the Sequoia 2000[13] data set, a popular benchmark data set for spatial databases. Our experiments
reveal that in situations of small buffer and high join-selectivity the AGP, which is exclusively base
on hypergraph partitioning, often outperforms all other methods. For small buffer size and low join-
selectivity, the SGP too outperforms the known competitors.

We also provide three refinements to SGP. First, we experiment with using the hypergraph parti-
tioning algorithm, instead of the simple graph partitioning algorithm to partition the page connectivity

graph. Second, we reduce the redundant I/O by properly processing the cut edges between partitions.
Finally, we characterize an optimal sequence for loading partitions into the buffer.

3 Proposed Approach 1: Asymmetric Spatial Clustering

3.1 Basic Idea Behind AGP

Sorting-based heuristic ensures that no redundant accesses on the primary relation, but it may incur
redundant accesses to the second relation, particularly when the join-key is not totally ordered, e.g. in
spatial databases. In such domains, the notion of sorting can be generalized to spatial clustering. AGP
clusters page of one table R based on their interaction with pages of S table. Redundant I/O of a page
p of S is reduced if many of pages of R with edge connecting to p can be in memory when p is brought
to memory.

3.2 Proposed Spatial Clustering Method

Spatial clustering of the tuples in a join index can be viewed as grouping of edges and nodes of corre-
sponding page connectivity graph(PCG). In this section, we focus on asymmetric methods and postpone
discussion of symmetric methods to Section 5. The goal of asymmetric clustering methods is to cluster
pages of one relation given the join-index or its PCG. This can be formalized as a min-cut hypergraph
partitioning problem. The pages of a relation will form nodes of the hypergraph. Each page p of the
other relation will form a hyperedge, covering all pages of the first relation connected to p in PCG. Par-
titioning of nodes in this hypergraph will form group of pages of the first relation to be loaded together.
Goal of minimizing cut hyperedges during partitioning is to reduce the number of page of the second
relation that needs to come to memory multiple times.

Consider the example spatial-join problem depicted in Figure 4(a) with two point data-sets, (a,b,c,d)
and (A,B,C,D). Assume blocking factor of 1 to simplify the example. The PCG of the join-index for
Distance(i, j) < % is shown in Figure 4(c) using the overlay and distance buffer information. The
nodes of hypergraph shown in Figure 4(d) consist of nodes of relation R, i.e. (a,b,c,d). The hyperedges
represent nodes (A,B,C,D) of S. The hyperedge corresponding to A connects a and ¢ since (A,a) and
(A c) satisfy the join predicate. The partition ((a,c),(b,d)) has no cut hyperedges, and computing join
using it will have no redundant I/O if 3 buffers are available to hold pages of two relations. In contrast,
the partition ((a,b),(c,d)) cuts all four hyperedges and computing join will yield four redundant I/Os if
only 3 buffers are available to hold pages of two relations.

We formally describe AGP now via following pseudo-code.

AGP Algorithm

Input: G = (V;,Vs, E) is a page connectivity graph
Output: S =< Py, Py, ..., P, > is a page access sequence with 7 > |V;| + |V;|.(P;s need not be distinct)

assert(|Vr| < [Vs);
assert(B > 2); /* number of buffers */
HG,(V,,HE,) = DeriveHypergraph(G); /* HG, is a hypergraph, |HE,| = |V5| */

1 L | L | A B A B
a b .
¢ ®® L . @b g d
2 & 2 & I
C D |c D C D c B \“'\D
(a) Dataset R (b) Dataset S (c) Overlay and Join (d) Graph PCG (d) Hypergraph model

distance<L/V2 (one object)/page

Figure 4: Construction of a one-side hyper graph from the data set

/* For each node in |Vs|, build a hyperedge to encompass all of its corresponding nodes in V. */
PSet, = hMetis-Partition(HG,, B — 1) /* Minimize the number of hyperedge-cut set */
i=0;
while ((P;, =SelectUnprossedPartition(PSet,))!=NULL) /* Select the un-processed partition */
{
AddPageSequence(S, P;,);/* Add all the pages in P;, into the loading sequence */
P;, = Sort-Eliminate-Dup(G, F;,.);
/* Sort and eliminate the duplicated pages in Vs of G which connect to P;, */
AddPageSequence(S, P;,);/* Add all the pages in P;_ into the loading sequence */
P;, .flag = "processed”; /* Mark this partition as ”processed” */

i++;

The procedure DeriveHypergraph(G) works as follows. Nodes of the first relation R form the nodes
of the hypergraph. For each node v of the second relation, it builds a hyperedge to encompass a set
of nodes on the first relation(R) connected to v in G. We partition this hyper-graph using the min-
cut hyper-graph partitioning algorithm, hMetis [17, 18], which is a multi-level hypergraph partitioning
algorithm that has been shown to produce high quality bi-sections on a wide range of problems arising
in scientific and VLST applications. hMetis minimizes the (weighted) hyper cut, and thus tends to create
partitions in which connectivity among the vertices in each partition is high, resulting in good clusters.
Finally, we load each partition in the primary relation and its connected nodes in the second relation,
one by one, to compute the join. The I/O cost of AGP can be characterized via the following lemma:

Lemma 1 Given a partition {V;,,V,,,..., V., } of V. from the page-connectivity graph PCG =
(Vr, Vs, E), there is a page-access sequence of length K = V.| + 3, . f(v) to process the join, where

f () denotes number of partitions of V. that have an edge to node v in V.

Proof: Each node v in V; is connected to f(v) partitions of V,.. Therefore, each node v in V; has to be
loaded f(v) times into the buffer to do the join. Total number of redundant 1/0 is -, cy. (f(v) — 1).
Total 1/O cost = |Vo| + |Vs| + 32 ey, (F(v) = 1) = (Vo[+ Vs + 20y, F(0) = [Vs| = [Ve + 2 ey, f(v) B

We note that min-cut hypergraph partitioning algorithm, e.g. hMetis, minimizes the number of
hyperedge connecting nodes across clusters. It does not distinguish between a hyperedge spanning four

clusters or two clusters. While AGP outperforms sorting based heuristic already, the performance of
AGP will improve when better algorithm for hypergraph partitioning are available which minimizes total
number of cuts on cut-hyperedges. We plan to explore this in future work.

4 Comparing of Asymmetric Approaches: Sorting and AGP

4.1 Experiment Design

We now compare the performance of Sorting heuristic and AGP. For the evaluation we use a join
index derived from spatial data derived from the Sequoia 2000 [32] dataset. We selected two data
sets as our base relations: the Points, containing 62,584 California place names with their associated
locations(Longitude and Latitude), extracted from the US Geological Survey’s Geographic Names In-
formation System(GNIS); and the Polygons with 4388 records, representing the Cropland and Pasture
landuse in California. Throughout Section 4 and 8, the Point and Polygon relations will be referenced
as R and S, respectively. The point are buffered to be a rectangle for adjusting the edge ratio [6]. Give
a join graph G = (Vg, Vs, E), the edge ratio of G, denoted by O, is defined as the ratio of the total
number of edges in G to the maximum possible number of edges in G if it is a fully connected graph; i.e.,
0= % The edge ratio provides a measure of the page-level join selectivity. We plot a small but
representative portion of the data set as in Figure 5. The join of these two relations with the ”overlap”

predicate produces a join index.

o HT \ﬁﬁo [iy O
i BTy T e T O

~ n% D .

9 Q% D D D Square-side

size

@\éa i v\ e
LS ENplon

I 0
D=7 7 N_AQ
g& DYJ D =) - D D D
(a) Polygons for Lan- (b) Buffer of GNIS
duse Points

Figure 5: Example of the Sequoia 2000 data set

The variable parameters are the Buffer size, Page size and Edge ratio. The metric of evaluation is
the number of page accesses required by each algorithm to implement the join.

Figure 6 summarizes the experiment steps. Derived data-sets consist of squares with different side-
lengths, e.g. 3km, 6km, 8km, 18km. Joining these square data-sets with polygon yields join-index which
are converted to equivalent page connectivity graphs. These page connectivity graphs are input to ”Page
Access Sequence Generator”, which simulate behavior of sort based and AGP algorithm for given buffer
size. The page access sequence and total page I/O are tracked for each combination of join algorithm,
page size, buffer size, and edge ratio to derive the experiment results.

Square side size
Square Join
Points Square dataset (5) Join
I ——= Data-set ' Indices (5)
Generator Index
Polygons Generator
Buffer OPAS-FB Page
size (4) methods (2) size (4)
Page
160 Page
of Page Access # g:qm PCG (20) Connectivity
uence
Graph
Page Access Sequence Generator e ezperaxor

Figure 6: Experimental setup and design.

4.2 Experiment results

Figure 7 shows the comparison between the AGP and Sorting heuristic. The AGP method is uniformly
better than the Sorting heuristic. Figure 7(a) shows the impact of the page size, varying from 2 kbytes
to 8 kbytes, the difference between AGP and Sorting decreases as the page size increases. The reason is
that when the page size increases, the number of pages decreases, and clustering efficiency improves for
all methods, reducing the gap between performance.

Figure 7(b) shows the effect of buffer size (as a fraction of the size of the smaller relation) on the the
I/O performance of AGP and sorting based method. The performance gap between the two methods
goes up and down. As long as the buffer is smaller than the smaller of the two relations involved in
join, both AGP and sort-based approach uses most of the buffers to load pages of only one relation.
This leads to poor buffer utilization for both. The difference in performance comes from the difference
in clustering ability.

Figure 7(c) shows the effect of edge ratio. AGP outperforms Sorting-based approach uniformly in
our experiments. The gap between the performance of two methods does not show any trend.

Sorting heuristic can be considered to be a special case of spatial clustering. In addition, pre-
processing step of Sorting is cheaper than spatial clustering, thus there is a trade off between join
performance and pre-processing cost. The proposed AGP is useful when there are few updates and
preprocessing can be done once, and multiple join requests follow.

5 Proposed Approach 2: Symmetric Spatial Clustering

5.1 Motivation

While AGP is an improvement over Sorting based method, it has a few drawbacks. Its buffer utilization
can be poor particularly for relatively large buffer size since it gives almost the entire buffer space to
one relation. Secondly, the choice of the favored relation is not trivial in many situations. We illustrate

10

34000

34000 — T T T T T T T T 85000

32000 32000

30000 30000 80000 -
28000
26000

24000

28000
26000
24000

75000 -

70000 -
22000 22000

20000 20000

65000 -

Number of page access
Number of page access
Number of page access

18000 18000

16000 16000

60000 -

¢

14000 14000

12000 - - - - - - - 12000
1

:
Sort -—
AGP -+

4 5 6 7
Page size (Kbytes) Percentage of R pages Edge Ratio

(a) Page size: 2K - 8K, Buffer size: (b) Buffer size: 5% - 20% of the R (c) Edge ratio: 0.02794 - 0.09638,
5% of the R relation, Edge ratio: relation, Page size: 2K, Edge ratio: Buffer size: 5% of R relation, Page
0.00669 0.00669 size: 2K

Figure 7: Effect of Page size, Buffer size, Edge ratio on AGP and Sorting heuristic

S
16|5/0/0/0/0|1]1 0/0/0/0[1]1
11,15 4/0]0]0[1|1]1 o/o]o[1[1]/
102430/ 0[1]1]1]|0 0|0 11|1]0
59/2/0/1/1]|1/0|0 0/1]1]1[0/0
4,8/ 1/1]1]1]0]0]o0 {2l2[1[0]0]0
3 |ol/1]/1]0]0]0]0O 1]1(0]/0/0/0
012 345R 012 345R
(1] 2[6[7][1213 (1] 4[6[8[1012
(8) Spatial Join (b)Sorting/AGP (c)Symmetric method

Figure 8: Comparison of symmetric and asymmetric methods

these with the help of a spatial join problem shown in Figure 8. Figure 8(a) shows a polygon set with
6 polygons RO..R5 and a point data set with 6 points. The adjacency matrix Mpcog representation of
join-index is shown in Figure 8(b) along with the page access sequence for sorting based algorithm with
three memory buffer. Sorting requires 15 I/O including 3 redundant I/Os on S1, S2, and S3. Figure 8(c)
shows a different page access sequence exploiting the symmetry of this problem. The symmetric method
alternates between pages of the two relations to compute join with 12 I/O (i.e. no redundant I/O). This
property can be generalized to other B-diagonal adjacency matrix where {Mpog[i,j] = 1} = {|i — j| <
|B/2|}. B is the number of buffers available for pages of R and S. Symmetric method can process B-
diagonal adjacency matrix with no redundant I/O given B buffers for R and S. symmetric methods, e.g.
FP [9],0M [27],Chan [6], can address these deficiencies. However, most symmetric methods proposed in
literature are incremental, considering local information in PCG. We now propose a symmetric spatial
clustering method, SGP, which exploit global information across entire PCG.

11

. 55000
8 9 4 6 8 10 12 14 16 18 20 22 002 003 004 005 006 007 008 009 01

5.2 Framework

Symmetric spatial clustering approach to minimize redundant I/O can be described in terms of the
following problem statement:

Given: A page connectivity graph in adjacency matrix Mpcog form and buffer size B to hold pages
of R and S.

Find: A permutation of rows and a permutation of columns of Mpcog.

Objective:

number of outside B — diagonal edges incident on V,.l
B
(1)

Minimize Z [

Vi€(vertz cover of outside B diagonal edges)

Where outside B-diagonal edge (M[i,j]) = 1iff i — j| > [£]
Constraint: Memory buffer < B

The redundant I/Os in this approach are due to the edge(i.e. non-zero matrix elements) outside
B diagonal of a spatially clustered adjacency-matrix representation of join-index. These outside
B-diagonal edge are grouped via a vertex cover to determine the set of page requiring redundant I/0.
A minimum vertex cover of outside B-diagonal edge determines the redundant I/O if degree of these
pages are smaller than the number of buffers available to cache page of R and S. Otherwise, some of
these pages lead to redundant I/O as captured by the objective function.

This problem formalization provides a conceptual framework around B-diagonalization and vertex
cover of off B-diagonal edges. This problem is computationally difficult due to its reliance on NP-hard
sub-problem(e.g. minimal vertex cover). This is not a surprise in view of NP-hardness of OPAS-FB
problem. Clearly heuristic solutions are needed to control computational overhead. One may devise
a direct heuristic for this problem, e.g. as a search problem in the space of permutations of rows and
column of Mpcg. This will require careful engineering to ensure scalability since PCGs can be large. We
choose to take advantage of a well-engineered heuristic family, Metis [19], for a related problem, namely
min-cut graph partitioning. Metis uses a hierarchical approach using graph coarsening to scale up. It
can partition sparse graphs with millions of nodes within minutes providing fairly competent solutions
and thus is being used for clustering problem in databases [31], data mining, etc.

We augment Metis by other steps to capture other important properties of our problem formalization
as follows. A B-diagonal form is created via proper ordering of the partitions of PCG derived from Metis.
The ordering tries to bring as many cut edges inside B-diagonal as possible, as described in 5.6. A vertex
cover heuristic is used to group off B-diagonal edges into a small set of nodes, for reducing redundant I/O.
These nodes are scheduled with specific partitions to determined the page access sequence as described
in 5.5.

We use Figure 9 as an exmple to show the steps for deriving B-diagonal using graph partition
technique. Figure 9(a) is the original PCG relation, where R and S are two relations to be joined, and
each point in the graph denotes a edge connection between these two relations. We use Metis [19] to
partition this PCG, each partition has size (B — 1), where B is the number of buffer available. We show
the result after partition in Figure 9(b), the R and S relations are relabeled from the first partition to
the last partition. Finally, we re-order these partitions to bring as many points inside B-diagonal, as

12

shown in Figure 9(c). In Figure 9(b), there are 28 percent of points outside B-diagonal, after partition
reordering, we reduce these points to be 22 percent of the total points.

5000 ™% uy 5000 Rjoin S 1 5000
i P - W
4000 | 4000 ¢ 4000
c c c s
2 2 : 2
3000 3000 - § 3000
g Rt B i 0 o
O 2000 | dE » 2000 | ® 2000 [
1000 t - 1000 F 4 1000
e ‘
o N == L 0 . - q - 0¥ e o .
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
R relation R relation R relation
(a) The original PCG connection (b) After graph partition (c) After graph partition and re-
ordering

Figure 9: Using graph partition to derive the B-diagonal

5.3 Basic Idea: Simple SGP

The SGP method clusters the nodes of the Page-Connectivity Graph(PCG) via min-cut graph partition-
ing software Metis. The adjective ”symmetric” refers to the fact that page clusters include pages from
both tables R and S with no preference to either table. The min-cut partition algorithm partitions the
nodes of the PCG into disjoint subsets, while minimizing the number of edges whose nodes are incident
in two different partitions. Since only the nodes that are incident on the edges belonging to the edge-cut
set can contribute to redundant I/0O, minimizing the size of the edge-cut set provides a tight bound on
the number of redundant I/O. We can formalize the properties of the SGP method as follows:

Symmetric Min-cut Graph Partitioning of the Page Connectivity Graph (SGP)

Given: A connectivity graph G = (V, E) with |V| = n, and the number of buffers, B > 2.
Find: A partition of V into p subsets, Vi, Va,..., V), such that V;(V; =0 fori # jand |J,V; = V.
Objective: Minimize the size of the set of edges Fc C E whose incident vertices belong to different
subsets.
Constraint: |V;| < (B — 1), and the number of partitions, p = [|V|/(B — 1)].

We now describe an algorithm, Simple SGP, for determining a page-access sequence, given a partition
of the page-connectivity graph. The pseudo-code is shown in the following SGP algorithm. In this
algorithm, each partition is loaded into memory to process all the joins completely within that partition.
Whenever a partition has an associated cut edge, one node of the edge is already in memory. Then we
only need to bring the other node that corresponds to the cut edge into memory. Due to the construction
of the partitions (the number of pages in each partition is less than the number of buffers in memory),
there is one buffer space available for bringing in one page to process a cut-edge. The cut edges associated

13

with the partition are processed one at a time by using the empty buffer space to store a page needed
to process the selected cut-edge.

For example, Figure 10 is an example of a partition of the PCG graph shown in Figure 2. Assuming
that the buffer size is 3, each partition V;, V5, and V3 can contain up to two nodes of the PCG. The
edge-cut set consists of the three edges {es, e3,e4}. The Simple SGP algorithm on this partition proceeds
as follows: We randomly load a partition into the buffer, say Vi, and first perform the join internal to
the partition, {a, A}. We then follow the edge-cut e, load page B in the spare buffer and materialize
the join {a, B}. We then follow the edge-cut ez, swap page B for C in the buffer and materialize the join
{a,C}. Finally, all joins emanating from V; are materialized by loading page b at the end of edge-cut
es. We then move on to the next randomly selected remaining partition until all are exhausted.

Figure 10: A min-cut partition of the graph

Lemma 2 Given a partition {V1,Va,...,V,} of the page-connectivity graph PCG = (V, E), there is a
page-access sequence of length at most K < |E¢|+ |V| to process the join, assuming |V;| is less than the
number of buffers. If Ec = 0, the algorithm Simple SGP is guaranteed to result in an optimal page-access
sequence.(Note that |V| = |V;| + |Vs| where V; and Vs are the nodes of relation R and S begin joined.)

Proof: The Simple SGP algorithm results in at most |V | + |Ec| page accesses. Since each cut-edge can
result in at most one extra page access, the total number of page accesses is bound by the total number
of pages in all of the partitions and the number of cut edges. Therefore, there exists a page-access
sequence of size at most K, where K < |V|+ |E¢c|. B

Simple SGP Algorithm

Input: G = (V, E) is a page connectivity graph.
Output: S =< Py, Py,...,P. > is a page access sequence with r > |V|.(P;s need not be distinct)

assert(B > 2); /* Number of buffer */

P_Set = Metis-Partition (G, B — 1) /* Minimize the number of edge-cut set */
i=1;

while ((P;=SelectUnprocessedPartition(P_Set))!=NULL)

/* Select the un-processed partition */

{

AddPageSequence(S, P;);/* Add all the nodes in P; into the loading sequence */

14

CP_Set = FindConnectPartition(P;)); /* Find all the partitions which connect with P; */
for(j = 155 < |CPSet|;j + +)
{
CP;=CP_Set[j]; /* Get the j-th connected partition */
if(CPj.flag = "processed”) /* This partition has not been processed */
{
Nodes=GetlIncidentNodes(P; ,CF;);/* Find all the nodes in CP; which connect to P; */
AddPageSequence(S, Nodes); /* Add all these nodes into the loading sequence*/

}

P; flag = "processed”; /* Mark this partition as ”processed” */

i++;

5.4 Refinement 1 for Simple SGP: Reducing Cut Edges

Instead of using a simple graph for determining PCG-node partition, we build a hyper-graph for the
PCG and partition this hyper graph.

We use the page-connectivity graph model of the join index to construct a hyper-graph from the join
index. The hyper-graph is derived from the original bipartite graph. To construct a pure hyperedge
graph, for each node in the bipartite graph, we build a hyperedge to encompass this node and its
connecting nodes in the other relation. To construct a hyper-edge graph, in addition to these pure
hyperedges, we add hyperedges for each edge in the original bipartite graph. Figure 11 illustrates this
construction with the help of an example.

A min-cut node partition [15, 21] of a hyper graph G partitions the nodes in V; and V3 into disjoint
subsets while minimizing the number of hyper edges whose incident nodes are in different partitions.
The h-cut-set of a min-cut partition is the set of hyper-edges whose incident nodes are in two different
partitions. Fast and efficient heuristic algorithms for this problem have become available in recent years.
In our experiment, we use hMETIS [17], which is a set of programs for partitioning hypergraphs.

Lemma 3 The savings in redundant I/0 for utilizing the hyper-graph partitioning algorithm instead of
simple graph partitioning is:

Savings = max(E. — Ey,0).
Proof: The hyper-graph partitioning algorithm results in a different edge-cut set, Ej, for the PCG. The

potential savings is E. — Ej, for the simple SGP algorithm. W

5.5 Refinement 2: Vertex Cover Strategy, Given loading sequence

The goal of this refinement is to reduce the redundant I/O by properly processing the cut edges between
partitions. The redundant I/O caused by the cut edges can be saved by using three ideas. First, knowing
the next partition P; to be loaded while processing a partition P; can eliminate redundant I/O for edges

15

Original bipartite graph Pure hyperedge graph Hyperedge graph

Figure 11: Construction of a hyper graph from the bipartite graph

between P; and P;. For example, in figure 12(a), if we load the partitions in this order {P1, P2, P3}, we
can always find a processed node to be replaced by a new node in the next partition, thus eliminate the
redundant I/0 for processing cut-edge between consecutive partitions. While transferring from partition
P; to P;, we delete the node in P; which is either not incident on an edge-cut to P;, or whose join across
the edge-cut to the P; has been materialized, and add the node in P; which has the highest connectivity
with the nodes in P;.

Lemma 4 Given a partition of the page-connectivity graph PCG = (V, E), and the loading sequence
of these partition is {V1,Va,..., Vi, Vj,..., Vo }. If the adjacent matriz of any two consecutive partitions
Vi, Vj can be permutated in the triangular form, the redundant I/O between the two partitions can be
saved.

Proof: All edges within the main B-diagonals can be processed without redundant I/0.
Corollary of Lemma Number of redundant I/O < Number of cut-edge outside B-diagonal.

Second, edges incident on a common page can be processed together. In figure 12(b), there are
four edge cut between P1 and P2. However, there are only two nodes in each partition involved in these
edge cut. The redundant I/0 is bounded by the distinct nodes involved in the edge-cut set.

Third, the cut-edges between partitions P; and P, are cheaper to process with partition P; in
memory, if the number of distinct pages of P; incident on the cut-edge is more than those of P;. For
example, in figure 12(c), it will be better if we process these edge-cut when P2 is in memory, with only
one redundant I/O. However, if we process these edge-cute when P1 is in memory, the redundant I/0O
cost will be four.

P1 P2 p1 P
P1 P2 NEa
St NP2
c=] © O]
O]

(b) ©

Figure 12: Examples of refinement 3

16

5.6 Refinement 3: Choose Proper Loading Sequence

If some pages of the current partition in memory are connected to pages in the next partition to be
loaded, then these pages need not be fetched again, as they are already in memory. Hence the order in
which different partitions are loaded into memory influences the number of page fetches in a page-access
sequence. In practice, a sequence of partitions which maximizes the number of connected pages between
consecutive partitions is desired because it reduces the length of the page access sequence. For this, the
following Longest Path heuristic can be used. Construct a complete graph G,(the Weighted Partition
Graph(WPG)) with one node for each of the partitions. The weight on each edge between the nodes
is the minimum of the number of distinct pages, connected between the partitions, that correspond
to the nodes. For example, Figure 13 is the WPG derived from Figure 10. The weight on the edge
connecting two nodes is equivalent to the number of pages that need not be fetched from disk when
one node(partition) is in memory and the other one is next on the loading schedule. Thus a partition
schedule corresponding to the Longest Path on the WPG leads to a minimum number of page accesses
to load the partitions that correspond to all the nodes of the WPG G,

Figure 13: The Weighted Partition Graph(WPG). {V», V1, V3} is an example of the Longest Path.

Besides, for cut edges between non-adjacent partitions in the sequence, the redundant I/O is not
bound by the number of cut edges. Rather, we choose the smaller distinct pages incident on the cut
edges between the pairs of partitions. This means we do the actual join by loading each page in the
smaller distinct pages of one partition to the one buffer space. We formalize the above observation in
the following lemma.

Lemma 5 Given o weighted partition graph W PG = (G, E,) derived from the partition {V1,Va,...,Vp}
of the page-connectivity graph PCG = (V, E) and a Longest Path on the WPG, there is a page-access
sequence of length K < |V |+ |TW| — |LP|, where |TW | is the total weight of the edges of W PG, and
|LP| is the weight of the Longest Path.

Proof: |TW]| is the actual redundant I/0O. As long as we can find a node of the current partition which
is either not incident on an edge-cut to the next scheduled partition, or whose join across the edge-cut
to the next scheduled partition in the buffer has been materialized, then we can replace this node with a
node from the next partition on the loading schedule to the buffer. This provides us with a cumulative
savings of |LP|, which can be subtracted from the redundant I/0. B

The Longest Circuit problem is known to be NP-Complete [11]. We describe two trivial heuristics in
Appendix A whose experimental evaluation vis-a-vis each other will be discussed in Section 6. There are
other, more sophisticated heuristics available, and those may improve the performance of our methods.
We plan to explore those in our future work.

17

5.7 Final Algorithm

The final algorithm, SGP, incorporates all three refinements. The algorithm first partitions the PCG
using hypergraph partitioning and simple graph partitioning. It chooses the one that results in a smaller
edge-cut set. Then, it orders the resulting partitions using the longest circuit heuristic. Finally, it loads
the partitions as dictated by the longest circuit. After loading each partition to the buffer, first, it
processes all the join within this partition, then, it processes the joins caused by the cut edges with
the connected partitions. For each partition in the connected partition set, it compares the number of
distinct pages incident on the cut edges between these two partitions, and chooses the cheaper one to
process. When transferring from the one partition P; to the next scheduled partition P; 1, it orders the
loading sequence of nodes using the following strategies: (a)Add the node within P;y; which has the
highest connectivity with P;. (b)Replace the node within P; which is either not incident on an edge-cut
to P;11, or whose join across the edge-cut to P;;; has been materialized. The pseudo-code and detailed
descriptions for SGP algorithm are shown in Appendix B.

6 Experimental Evaluation of Refinement

6.1 Experimental Design

We now evaluate the performance of refinement strategies 1, 2 and 3 and compared it with Simple SGP.

The fixed parameter for this experimental evaluation is the graph partitioning algorithm Metis [19]
and hypergraph partitioning algorithm hMetis [17]. The variable parameters are the Buffer size, Page
size and Edge Ratio. The metric of evaluation is the number of page accesses required by each algorithm
to implement the join. Figure 14 shows the various process steps of the experiment design.

Square side size
Square Join
Points Square dataset (7) Join
=] Datarset : Indices (7)
Generator Index
Polygons Generator
Buffer = OPASFB SGP Page
size(4) methods(5) Refinement (3) size (5)
Page
420+700 Page
of Page Access <() Access PCG (35) Connectivity
Page Access Sequence Sequence Graph
Generator Generator

Figure 14: Experimental setup and design.

18

6.2 Experiment Results on Effect of Refinements on SGP
6.2.1 Effect of Refinement 1: Does graph model matter?

We test the relative improvement of using different hyper-graph structure partitions(hMetis) [17], com-
pared with using the simple graph partition(Metis) [19]. All of the comparisons are done by using the
Simple SGP algorithm. For different experiments, we vary the buffer size, page size and square side size.

Effect of page size

With square-side size at 3000 meter, e.g. edge ratio at 0.00669, and buffer size fixed at five percent of
the number of pages of the R relation we vary the page size from 2k to 16k. The Hyper graph partition
results in fewer page accesses compared to the simple graph partitioning. The Pure hypergraph has the
lowest number of page accesses when the page size is greater than 8k. (Figure 15(a))

32000 32000

110000

Simple graph —<— Simple graph —<—

Lo Simple graph —~— %
0000 Hyper graph -~ 30000 [Hyper graph -~ 100000 Hyper graph -~ |
» 28000 Pure hyper graph = w 28000 - . Pure hyper graph e " -
g ' 8 : 8 90000
& | S 24000 | % 80000
Q22000 - Q o
5 5 22000 S 70000
3 20000 3 20000 | g
£ 18000 - £ £ 60000
Z 16000 | . Z 18000 | 2
14000 - o 16000 - 50000
12000 L L L L L L L 14000 L L L L L L L L in} 40000 L L L L L L L L L L
1 2 4 5 6 7 8 9 4 6 8 10 12 14 16 18 20 22 0.0150.020.0250.030.0350.040.0450.050.0550.060.0650.07
Page size (Kbytes) Percentage of R pages) Edge Ratio
(a) Page size: 2K - 16K, Buffer size: (b) Buffer size: 5% - 20% of the R (c) Edge ratio: 0.01812 - 0.06548,
5% of the R relation), Edge ratio: relation, Page size: 2K, Edge ratio: Buffer size: 5% of R relation, Page
0.00669 0.00669 size: 2K

Figure 15: Effect of page size, buffer size, and edge ratio with Refinement 1 for Simple SGP

Effect of buffer size

With edge ratio at 0.00669, and page size at 2k bytes, we increase the buffer size from 5 to 20 percent
of the number of pages of the R relation. The Hyper graph partition results in better performance,
compared to the the simple graph partition. The Pure hypergraph partition has the worst performance
when the buffer size is low. However, when the buffer size is larger than a threshold(15 percent), the
Pure hypergraph has the best performance, as shown in Figure 15(b).

Change the edge ratio

We fix the buffer size to 5 percent of the number of pages of the R relation, and page size at 2k bytes, then
we vary the edge ratio by extending the size of the square side in the point dataset. The Hyper graph
partition performs better than the Pure hypergraph and the simple graph as shown in Figure 15(c).

19

When the edge ratio is larger than a threshold (0.06), The Pure-hyper graph outperforms the simple
graph.

6.2.2 Effect of Refinement 2 and 3 on SGP: Does cut-set processing strategy matter?

Does loading Sequence matter?

In this experiment, we fix the edge ratio and page size, vary the buffer size and use different linearalization
algorithms . The result of algorithms is shown in Fig 16. As we can see from Fig 16, refinement 2,
the three ideas for proper cut set processing between partitions, does improves the performance under
different buffer sizes. The one-way greedy heuristic and the sorting heuristic in refinement 3 generate
nearly the same result, and all perform better than the simple SGP algorithm. The reason is that the
simple SGP randomly linearalizes the loading sequence of the partitions without doing any optimization.

48000 T T T

Simple SGP + Refinement 2, 3: One-way heuristic ~+—
§|mp|e SGP + Refinement 2, 3: Sorting heuristic -+--
46000 - Simple SGP + Refinement 2 -=-— 7

[}

Simple SGP -x
44000

42000 ¢

40000 -

38000 |

Number of page access

36000 |

34000
2 4 6 8 10
Buffer size as the percentage of R pages

Figure 16: Page access number using different linearalization algorithm for Simple SGP

7 Comparative Evaluation of SGP, AGP and Competitors

7.1 Experimental Design

The experimental setup is shown in Figure 14. The candidates for the OPAS-FB method are FP, OM,
Chan, Sort, SGP, and AGP algorithm. There are some basic constraints on the experiment which are
worth mentioning at the outset. These constraints are due to the properties of the data set at hand. If
the relationship type between the two relations is 1 : 1 or 1 : N, then the sorting and AGP algorithm
leads to the optimal page access sequence. Even in the situation where the relationship type is M : N,
the sorting and AGP algorithm can give a good performance, provided that sorting on one relation
can lead to a good clustering of pages in the other relation. We used a subset of the Sequoia data set
that consisted of two relations: Point and Polygon. We converted the Point dataset into an axis-parallel
rectangular dataset. The orientation of each rectangle was chosen at random. We used the intersection
binary relationship as the spatial join predicate. Converting the point data into a rectangular data set
transformed the N : 1 point-polygon relationship into an M : N rectangle-polygon relationship.

20

7.2 Experiment results
7.2.1 Page size

Page size affects the clustering of the base relations and also the degree of the nodes in the PCGs. We
study the effect of page size on the performance of the OPAS-FB methods. We fixed the buffer space
at five percent of the number of pages of relation R, and edge ratio at 0.00669. We varied the page size
from 2k to 32k. Figure 17(a) shows the result of this experiment. The SGP method outperforms the
other methods for most values of page size. It comes second to FF for a few page size.

35000 ; ; ; . ‘ ; 32000 11— 350000
FP —~—
30000 |
L OM -+
30000 Chan - 28000 - 300000
§ e § 8 250000
SGP -+-- L
8 25000 4} g 2600 g
24000 | o
% % & 200000
S 20000 S 22000 g
5 5 B 150000
3 15000 3 20000 g
§ § 18000 | § 100000
10000 16000 1 50000
14000 -
5000 L L L L L -\>\W--x 12000 L L L L L L L L L 0 L L L L L L L L L
5 10 15 20 25 30 4 6 8 10 12 14 16 18 20 22 0 0.010.020.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Page size (Kbytes) Percentage of R pages Edge Ratio
(a) Page size: 2K - 32K, Buffer size: (b) Buffer size: 5% - 20% of the R (c) Edge ratio: 0.00669 - 0.09638,
5% of the R relation), Edge ratio: relation, Page size: 2K, Edge ratio: Buffer size: 5% of R relation, Page
0.00669 0.00669 size: 2K

Figure 17: Effect of Page Size, Buffer Size, and Edge Ratio for different OPAS-FB heuristics

7.2.2 Buffer size

In this experiment, we fixed the edge ratio at 0.00669, and the page size at 2k. We varied the number
of buffers as a percentage of the number of pages of relation R. The percentage is changed from 5 to 20.
Fig 17(b) shows the number of page accesses recorded by each of the six methods. A large buffer size
improves the performance of each method, while the AGP heuristic overall has the best performance,
even though SGP and OM do well at some places.

7.2.3 Edge Ratio

In this experiment, we buffer size set at 5 percent and page size set at 2K. We changed the edge ratio
by increasing/decreasing the size of the square side of relation R. The result of the experiment shows in
Figure 17(c). The SGP method results in a lower number of page accesses than the other methods for
lower edge ratio, and AGP does best for higher values of edge ratio.

The example for the effect of Edge Ratio

We use an example to illustrate the effect of the characteristic of the PCG for suitability of asymmetric
and symmetric methods for join processing given a join index. The buffer size is fixed at five for this exam-

21

R R R R R
7/0/0/0/0{0/0/0|1] 7/0|0/0|0|0]2]|21/2} 7/0/0/0|0|0O]2|1)2} 7|0/0/0|0f2|2)1]2} 7{2j2|2)1/2[1)2)2
6/0/0/0/0/0{0[1/0] 6/0/0/0/0|2]1/2]1 6|0/0/0|0f1]2|1]2] 6/0/0/0J1|2]1)2(2] 6/2[2(2]2]1]2]2)1
5/0/0/0/0/0/21|0/0| 5[0/0/0/1]2]2/1/1] 5|0/0/0j1}2]1/2]1] 5/0/0[1/2]2/1/2]1} 5|1|1)1/1]1/1]2]1
4/0/0/0/0/1/0|0|0, 4|0/0J1|1}2/2|1/0] 4/0/0]|1]2j2/2}2)2] 4|0j2|2j2)2)|1)2)2] 4|2)1|1)2]|2]1|2]1
3/0/0/0/1/0/0/0/0| 3[{0j1}2|1}2]|2/0/0] 3|0f2|2)1}2]1/2/0] 3|1j2[1j2]2/1]2]|0f 3|2|2j1)2]1/2]2]1
2/0/0/1/0/0{0(0/0] 2[1]21]1)1]1]|0/0/0f 2|2]1/21]1|1]1|0|0] 2|1|21}1)1]2]1/0]/0| 2|2[2|1]2|1]2}2)1
1/0/10/0/0/0/0/0O] 1/2|1/1|21/0/0/0/0] 1}2]|1j2|1/1]/0/0/0] 2}2/1]2|1/2|0/0/0] 21|1j2]1)1/2]|1/1]1
0/1/0/0/0/0/0/0OJO] O|1)1]21]/0/0/0]/0/O] O0|2][1/1/1]/0/0/0/0] 0|2)1]2]1/0/0/0/0] O[1/2]1f2]2|1]2]1
01234567S 01234567S 01234567S 01234567S 012345678
() Thickness=1 (b)Thickness=5 (c)Thickness=6 (c)Thickness=7 (c)Thickness=15
Figure 18: Table for different edge ratio
Class 1:1 M:N M:N M:N | M:N
Edge Ratio | 8/64 | 34/64 | 39/64 | 44/64 1
AGP/Sorting 16 20 21 22 24
oM 16 16 18 21 35
FP 16 16 23 26 32
Chan 16 16 18 23 35
SGP 16 16 21 26 34

Table 2: I/O count for different methods

ple. The thickness of the diagonal increases from one to fifteen, e.g. from sparse matrix to full connected
graph, as shown in Figure 18. Table 2 shows the number of I/O needed by symmetric and asymmetric
method to compute join. When the thickness of diagonal is small, e.g. 1, all methods have the same
I/O count, and the sorting heuristic is the cheapest to find the page access sequence. As the diagonal-
thickness increase, the performance of sorting deteriorate, and symmetric methods(OM,FP,Chan,SGP)
outperform asymmetric heuristics, e.g. AGP, Sorting. Finally, as the graph gets closer to being fully
connected, the thickness of the diagonal is greater than B, asymmetric methods outperform symmetric
methods. We summarize our experience with various kinds of join problem toward choosing a method
to compute join using join-index as in Table 3.

8 Conclusion and Future Work

In this paper, we introduce spatial clustering methods for minimizing redundant I/O, given a fixed
buffer. We also propose three refinements which further improve the performance of the basic algorithm.
The proposed AGP and SGP heuristic usually outperform the Sort-based heuristic and Graph-based
heuristics. In the future, we would like to explore algorithms for multi-way join-indexes using the base
data sets consisting of point, line and polygon data types. We also plan to do experiments with different
spatial predicates like direction and distance. Finally, we would also like to investigate the relationship
between a multi-way join and the hyper-graph partitioning model, and to establish upper bounds for
the page-access schedule on the multi-way join.

The min-cut hypergraph partitioning package(hMetis) we use in our experiment minimizes the num-

22

Domain
One- No method No symmetric Small vertex Asymmetric
dimension has redundant method has re- cover for off B methods have
Cheapest=Sorting dundant 1/0 diagonal edges = less redundant
Cheapest=FP SGP, I/O. Cheapest =
Sorting.
Multi- No method but Some cases, AGP has least
dimension sorting has re- OM,FP, or Chan I/0
dundant I/0 may be slightly
Cheapest = AGP better.
Relationship 1:1 M:N
Cardinality 1:N
Thickness of | 1 B, but few entries | Fully connected
diagonal outside B diagonal

Table 3: Summary

ber of hyperedge connecting nodes across clusters. However, it does not distinguish a hypergraph cutting
by four clusters or two clusters. While our experiment shows that AGP outperforms Sorting based heuris-
tic already, the performance of AGP will be improved when better algorithm for hypergraph partitioning
are available which minimizes total number of cuts on cut-hyperedges.

We used two trivial heuristics to solve the Longest Circuit problem in Refinement 3 for SGP. There
are other more sophisticated heuristic available [29], and they may improve the performance of our
methods. We plan to test these heuristic.

Data Warehouses [3, 16] process large volumes of data obtained from operational and legacy systems.
Data warehouses clean and transform the data so that changes can trends can be inferred from the data.
The volume of data in these data warehouses is very large and the data is updated infrequently, due
to the historical nature of the data. Data warehouses often use pre computation and materalization
techniques like STARindex [3] to speedup online query processing. We would like to apply our graph
partitioning approach as in Join Index to STARindex.

The data sets used in our experiments are Point(California place names) and Polygon(Cropland
and Pasture landuse in CA) data, derived from Sequoia 2000 [32] benchmarks data sets. There are
other data set in this benchmark that can be used in our experiments for performance analysis. For
example, the Streams data contains 201,659 stream segments, extracted from the the US Geological
Survey’s Digital Line Graph hydrography data for California. For polygon data, there are Agricultural
Land, Forest Land, Wetland, Rangeland, Barren Land, etc. The Streams layer data can do the map
overlay operations(union, intersection, identity) [7, 10], with the Polygon layers, and the Join Index can
be precomputed for processing later spatial join requests.

Acknowledgements

This work is sponsored in part by the Army High Performance Computing Research Center under the auspices of the

Department of the Army, Army Research Laboratory cooperative agreement number DA AH04-95-2-0003/contract number

23

DAAHO04-95-C-0008, the content of which does not necessarily reflect the position or the policy of the government, and

no official endorsement should be inferred. This work was also supported in part by NSF grant #9631539. Thanks to

Christiane McCarthy for helping to improve the readability of the paper.

References
[1] L. Becker, K. Hinrichs, and U. Finke. A New Algorithm for Computing Joins With Grid Files. In Proceedings of
International Conference on Data Engineering, 1993.
[2] E. Bertino and W. Kim. Indexing Techniques for Queries on Nested Objects. IEEE Trans. Knowledge and Data
Eng., 1(2):196-214, June 1989.
[3] Red Brick. White Papers, hittp://www.redbrick.com.
[4] T. Brinkhoff, H. Kriegel, R. Schneider, and B. Seeger. Multi-Step Processing of Spatial Joins. In Proceedings of ACM
SIGMOD International Conference on Management of Data, May 1994.
[5] T. Brinkhoff, H. Kriegel, and B. Seeger. Efficient Processing of Spatial Joins Using R-trees. In Proceedings of ACM
SIGMOD International Conference on Management of Data, May 1990.
[6] Chee Yong Chan and Beng Chin Ooi. Efficient Scheduling of Page Access in Index-Based Join Processing. IEEE
Transactions on Knowledge and Data Engineering, November/December 1997.
[7] Yue-Hong Chou. Ezplorint Spatial Analysis in Geographic Information Systems. Onword Press, 1996.
[8] B.C. Desai. Perfromance of a Composite Attribute and Join Index. IEEE Trans. Software Eng., 15(2):142-152,
February 1989.
[9] F. Fotouhi and S. Pramanik. Optimal Secondary Storage Access Sequence for Performing Relational Join. IEEE
Transactions on Knowledge and Data Engineering, September 1989.
[10] A. Frank. Overlay processing in spatial information systems. Computer-Assisted Cartography, 1988.
ichael R. Garey and David S. Johnson. Computers and Intractability: uide to the Theory o -Completeness.

11] Michael R. G d David S. Joh C t d Intractability: A Guide to the Th NP-C let
W. H. Freeman and Company, 1993.

[12] P. Goyal, H.F. Li, E. Regener, and F. Sadri. Scheduling of Page Fetches in Join Operation Using Bc-Trees. In
Proceedings of International Conference on Data Engineering, 1988.

[13] G. Graefe. Query Evaluation Techniques for Large Databases. Computing Surveys, 25(2):73-170, 1993.

[14] O. Gunther, L. Becker, K. Hinrichs, and U. Finke. Efficient Computation of Spatial Joins. In Proceedings of Interna-
tional Conference on Data Engineering, 1993.

[15] L. Hagen and A. Kahng. Fast Spectral Methods for Ratio Cut Partitioning and Clustering. In Proceedings of IEEE
International Conference on Computer Aided Design, 1991.

. H. Inmon. Building the Data Warehouse. John Wiley ons Inc, .

16] W. H. I Building the Data Wareh John Wiley & S Inc, 1992

[17] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. hMetis Home Page. hitp://www-
users.cs.umn.edu/karypis/metis/hmetis/main.html.

[18] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hpergraph partitioning: Application in VLSI domain.
Proceedings ACM/IEEE Design Automation Conference, 1997.

[19] G. Karypis and V. Kumar. Metis Home Page. http://www-users.cs.umn.edu/karypis/metis/metis/main.htmil.

[20] A. Kemper and G. Moerkotte. Access Support in Object Bases. In Proc. ACM SIGMOD, Atlantic City, N.J., pages
364-374, 1990.

[21] B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning Graphs. The Bell System Technical
Journal, 1970.

[22] D. R. Liu and S. Shekhar. A Similarity Graph-Based Approach to Declustering Problem and its Applications Toward
Parallelizing Grid Files. In Proceedings of the Eleventh International Conference on Data Engineering, IEEE, pages
373-381, March 1995.

[23] M. Lo and C. V. Ravishankar. Spatial Joins Using Seeded Trees. In Proceedings of the Fourth International Symposium
on Large Spatial Databases, 1995.

[24] H. Lu, R. Luo, and B.C. Ooi. Spatial Query Processing by Approximations. J. Australian Computer Science Comm.,
17(2):132-142, 1995.

.) .) - . - i i i .

[25] T. Merrett, Y. Kimbayasi, and H. Yasuura. Scheduling of Page-Fetches in Join Operations. In Proceedings of the 7th
International Conference on Very Large Databases, 1981.

[26] P. Mishra and M.H. Eich. Join Processing in Relational Databases. Computing Surveys, 24(1):63-113, 1992.

24

w

(32]

(33]

Edward R. Omiecinski. Heuristics for Join Processing Using Nonclustered Indexes. IEEE Transactions on Software
Engineering, 15, January 1989.

S. Pramanik and D. Ittner. Use of Graph Theoritic Models for Optimal Relational Database Accesses to Perform
Join. ACM Transactions on Database Systems, March 1985.

Gerhard Reinelt. The Traveling Salesman: Computatinal Solutins for TSP Applications. Springer-Verlag, 1994.
D. Rotem. Spatial Join Indices. In Proceedings of International Conference on Data Engineering, 1991.

S. Shekhar and D. R. Liu. CCAM: A Connectivity-Clustered Access Method for Networks and Networks Computions.
IEEE Trans. on Knowledge and Data Engineering, 9(1), January 1997.

M. Stonebraker, J. Frew, and J. Dozier. The Sequoia 2000 Project. In Proceedings of the Third International
Symposium on Large Spatial Databases, 1993.

P. Valduriez. Join Indices. ACM Transactions on Database Systems, pages 218-246, December 1987.

25

A Longest Circuit heuristic
One-way greedy heuristic

1. Choose the node Vp; connecting to the longest length edge as the start node.

2. For all of the nodes connected to Vp;, find the longest length edge with corresponding node Vp;;
set Vp; to Vp;.

3. repeat step 2.
Sorting heuristic
1. Sort the edges in graph Gp in descending order

2. Scan these edges; construct a set of (n-1) edges with linear property.

In this method, we initially choose the edge with longest length and two nodes associated with it.
Then, we do a greedy search on both sides and construct the linear order.

26

B SGP Algorithm

Input: G = (V, E) is a page connectivity graph.
Output: S =< Py, Py, ...,Pr > is a page access sequence with r > |V|.(P;s need not be distinct)

assert(B > 2); /* Number of buffer greater than two */
HG = ConstructHyperGraph(G); /* Construct Hypergraph HG from G */
PSet,, = Metis-Partition (G, B — 1); /* Simple graph partition, using Metis */
PSety, = hMetis-Partition (HG, B — 1); /* Hyper graph partition, using hMetis */
E,n = Edge-Cut-No(G, PSetm); /* Number of edge cut using Metis algorithm */
E}, = Edge-Cut-No(G, PSety,); /* Number of edge cut using hMetis algorithm */
(B < En){
/* Order the partitions using the one way greedy heuristic */
P,rder = One-Way-Longest-Circuit(PSetm); }
else { P,rg4er = One-Way-Longest-Circuit(PSety); }
/* Load the partition into buffer as determined by the longest circuit heuristic */
for(i = 13 < |Poraerlyi + +){
P;= GetPartition(Pyyger,t) /* Get the ith partition */
if(i==1) {
AddPageSequence(S, P;);/* Add all the nodes within P1 into the loading sequence */ }
else {
OrderAndAddPageSequence(S, P;_1, P;);
/* Order and add the nodes within P; into the loading sequence by the following rules: */
/* 1. Add the node within P; which has the highest connectivity with P;_1 */
/* 2. Replace the node within P;_1 which has finished its join with the nodes in P; */
}
CP_Set = FindConnectPartition(P;,GetPartition(Pyyger, ¢ + 1));
/* Find all the partitions which have cut-edge set with P;, except the nezt loading partition P11 */
for(j = 1;5 < |CP_Set[; 5 + +){
CP;=CP_Set[j]; /* Get the j-th connected partition */
Nodes[CP;,i]=GetIncidentNodes(CP; ,i);
/* Find all the distinct nodes in partition CP; which connect to partition i */
Nodesli, C P;]=GetIncidentNodes(i,C'P;);
/* Find all the distinct nodes in partition i which connect to partition CP; */
if((| Nodes[CPj,i]| < |Nodes[i, CP;]|)&&(Nodes[CP;,i]. flag! = "processed”)){
/* Refinement 2 */
AddPageSequence(S, Nodes[CP;,i]); /* Add these nodes into the loading sequence */
Nodes[CP;,i].flag = "processed”;
Nodes[i, CP;].flag = "processed”;

/* Mark the flag of the nodes between two partitions as “processed” */

27

