
d i g i t a l i n v e s t i g a t i o n 5 ( 2 0 0 8 ) 6 0 – 7 0
ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ie r . com/ loca te /d i in
Impersonator identification through dynamic fingerprinting
Chad M.S. Steel*, Chang-Tien Lu

Computer Science Department, Virginia Polytechnic Institute, Haycock Road, Falls Church, VA 22043, USA
a r t i c l e i n f o

Article history:

Received 18 August 2006

Received in revised form

10 March 2008

Accepted 17 March 2008

Keywords:

Digital watermark

Phishing

Intellectual property

Forensics

Fingerprinting

Impersonation
* Corresponding author. Tel.: þ1 610 639 388
E-mail address: csteel13@vt.edu (C.M.S. S

1742-2876/$ – see front matter Published by
doi:10.1016/j.diin.2008.03.001
a b s t r a c t

Tracking the source of impersonation attacks is a difficult challenge for investigators. The

attacks are frequently launched from botnets comprised of infected, innocent users and

web servers compromised by malware. Current investigative techniques focus on tracking

these components. In this paper, we propose the Automated Impersonator Image Identifi-

cation System (AIIIS), which allows investigators to track images used in impersonation

attacks back to the original download from the source. AIIIS accomplishes this by digitally

encoding the IP address, server, and time of the image download into the image itself

through a digital watermark. AIIIS differs from other image fingerprinting techniques in

its combination of dynamic fingerprinting and spread spectrum data hiding. Additionally,

the intended goal of AIIIS is tracking impersonation attacks, where the image is a tool used,

whereas in most digital rights management techniques, the misuse of the content itself is

the primary concern. Our experiments show that the AIIIS system permits recovery even

after post-acquisition manipulation of the image, making it a significant addition to the

fight against impersonators. The deployment of a pilot of AIIIS was successful in identify-

ing the source of an impersonation attack, and further success is expected with full

deployment.

Published by Elsevier Ltd.
1. Introduction user is enticed to click on a link in the email. The link takes the
Phishing schemes and online trademark infringement are

both on-the-rise crimes which rely on impersonation. Phish-

ing attacks hit one in four Internet users each month (AOL/

NCSA, 2005), and annual losses due to phishing are projected

to be anywhere from US$100 Million to US$1 Billion (Goth,

2005), and are expected to continue to increase. Online trade-

mark infringement is used to lure unsuspecting users to buy

from less than reputable sources. An example trademark

infringement incident may involve an attacker who uses

Viagra branding and images to lure an individual into

purchasing stolen or counterfeit pharmaceutical products.

A typical impersonation attack uses two components – an

email message sent to a large number of users and a website

those users are encouraged to visit. Through obfuscation of

the URL and basic social engineering tactics, an unsuspecting
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user to a look-alike site, where their username and password

(or other personally identifiable information) are captured for

malicious use or they are tricked into purchasing goods from

a shady source. Typical targets include large financial institu-

tions, pharmaceutical companies, and online merchants, e.g.,

Citibank, Bank of America, Pfizer, and eBay.

The value of the Automated Impersonator Image Identifi-

cation System (AIIIS) is based on the methods used in many

impersonation schemes. The emails sent are frequently trans-

mitted from infected zombie machines, making tracking

ineffective. Likewise, many schemes now use infected web

servers not directly tied to the attackers as well. The construc-

tion of the emails and sites, however, involves the acquisition

of the original site graphics and layout to be able to fool the

unsuspecting victims. Frequently, the site is visited from the

origin machine of the phishing attacks – since the visit is not
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malicious, server-based analysis isn’t likely to pick up the first

visit as suspicious (or later identify it as such) using existing

techniques. A review of 148 phishing sites listed on millersmi-

les.co.uk revealed 42 sites active and viewable over the course

of three weeks. Of the active phishing sites, 23 of the 42 (55%)

used local copies of images that were verified to be exact

matches to those on the corresponding real sites. The other

19 active phishing sites linked directly to images on the

corresponding real sites (Millersmiles, 2006).

To-date, most impersonation defense mechanisms are

provided through prevention and/or detection controls.

Products like AntiPhish, which comprises a browser extension

that warns users when visiting untrusted sites (Kirda and

Kruegel, 2005), fall into the prevention category (as do anti-

phishing toolbars (Netcraft Inc., 2006), image-based authenti-

cation (Topkara et al., 2005), and two-factor authentication

(Geer, 2005)). Techniques like Dynamic Security Skins,

a method of user image comparison for authentication

(Dhamija and Tygar, 2005), fall primarily into the detection

category (as do server-log analysis tools like Corillian and

chat monitoring from MarkMonitor (Geer, 2005)). Limited

work has been done in relation to response controls – those

which allow after-the-fact investigation of activity.

To address the response gap, AIIIS provides a mechanism

by which images can be tracked from the point of origin (the

website being spoofed in an impersonation attack) through

the insertion of unique watermarks for every download. By

generating a string containing details from each image

request, including server name, requesting IP address, and

date/time of the initial request, a unique token is created

which can be correlated with entries in the web server log.

This unique token is dynamically embedded in each individ-

ual image download as a symmetrically encrypted and hidden

watermark for later recovery from spoofed sites. In addition to

the challenges that watermarking focuses on, AIIIS has

a similar purpose to steganography in that both the image

and the covert channel information need to be transmitted

and reconstructable, and that the uncovering and altering of

the covert channel information is an undesirable event

(Wang and Wang, 2004).

AIIIS is novel in that it differs from prior art both in its

execution and its intent. In its execution, AIIIS uses overinser-

tion, the practice of inserting multiple copies of the message,

to provide further resilience to alteration over single-insertion

techniques. Additionally, AIIIS applies transform-based inser-

tion over the entirety of an image instead of on a block-basis.

For intent, AIIIS is designed to investigate attacks after-

the-fact and dynamically embed user data in the image at

the time of request, instead of static strings identifying the

copyright holder. Finally, to protect the string from disclosure

or effective alteration, AIIIS uses simple symmetric encryp-

tion with Advanced Encryption Standard (AES) (National

Institute of Standards and Technology, 2001) and/or the Data

Encryption Standard (DES) (National Institute of Standards

and Technology, 1993) and a server-specific key.

This paper details how AIIIS applies spread-spectrum tech-

niques and dynamic fingerprinting to contribute a robust

solution to track impersonators. In Section 2, a pilot implemen-

tation is used to illustrate the use of the system. In Section 3, the

four major approaches to investigate impersonation schemes
are outlined and the applications of prior art to the schemes

are defined. Section 4 introduces the AIIIS system and details

the processes for string extraction and insertion. An error rate

analysis is also provided which mathematically quantifies the

resiliency of the system against individual bit error probabili-

ties. In Section 5, the experimental results of image recovery

are provided for an array of image sizes and three key

operations – scaling, compression, and cropping. Finally, a com-

parison of single-insertion, block-based spread spectrum

recovery likelihood is compared with that of AIIIS. Section 6

discusses the results and applicability to other areas, and

Section 7 provides concluding remarks.
2. In practice

AIIIS was used successfully by a major retailer to track down

the source of a counterfeit operation. AIIIS was deployed by

the retailer as a pilot project, and had success within the first

two months in thwarting a sophisticated attack.
2.1. Background

The retailer in question was subject to frequent phishing

attacks, with an additional problem of having counterfeit

goods sold using their branding. As such, the retailer was look-

ing for solutions to track down the counterfeiters and piloted

AIIIS as one of the tools in their suite. As the impersonation

attacks became more sophisticated, simple monitoring of

brand misuse online was insufficient. Shutting down rogue

websites as they appeared became a fruitless exercise, and

the company decided it needed to pursue the individuals

perpetrating the attacks. The details of one attack and its

investigation are noted below.
2.2. Attack methodology

The attack in this case consisted of several different ‘‘compa-

nies’’ setup with the same basic website template, but slightly

different company names and text. The websites were all

hosted on what appeared to be hijacked machines, primarily

in Southeast Asia. Similarly, the DNS entries for the company

were numerous and appeared to be registered through a series

of hacked accounts. The websites used the branding and logos

of the original retailer to give the appearance of being autho-

rized merchants, but in reality were counterfeiters using the

brand recognition to push their product. Purchases had their

credit cards charged from one of several China-based

businesses, and received forgeries of the real product which

looked similar but did not meet the quality standards of the

originals.
2.3. Investigation

The impersonating sites began coming to the attention of the

retailer after consumer complaints about substandard goods.

The goods were purchased online, and the individuals who

complained provided the names of the sites where the

purchases occurred.
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The first investigative step taken was an attempt to

identify all of the domain names associated with the counter-

feiters. Because the impersonator’s web design team had

stolen the source code from an obscure bulletin board

software package as part of its deployment (copyright

infringement!), there was a unique search term that could

be run against the major search engines to identify similar

pages. In total, 20 separate domain names were identified

which were related to the counterfeiting operation.

The next step was identifying the locations and registration

information for the 20 domain names. A review of DNS entries

showed a wide variety of registering individuals, mostly using

second and third tier registrars. By doing a correlation of these

entities, we were able to identify an additional 20 domain

names associated with the counterfeiters. Because unwitting

individuals had their registrar accounts hijacked, there was

no easy way to trace the registrations back to the offenders.

Identifying the locations of the web servers hosting the

sites proved equally challenging. Each of the domain names

resolved to an IP address which appeared to change every

15 min. Working with one of administrators on one of the

DNS servers of record, we were able to determine the server

IP was changing every 15 min. All of the servers were running

Windows XP, but with what appeared to be different configu-

rations (based on versions, ports open, and other responses to

queries). The majority of the servers appeared to be located on

residential IP address blocks in the Philippines and other

locations. After contacting several ISPs, we were able to

determine the servers were part of a botnet and belonged to

unsuspecting users.

One commonality amongst the servers was the branding

images. We evaluated the branding images, and found that

all of the branding images for a particular product came

from a pilot website running AIIIS. Additionally, all of the

images were the same download by the same user. This IP

address was linked to a single broadband connection in

Poland.

After identifying the common site, we worked with law

enforcement in-country as well as law enforcement at the

target location. The suspect who was linked to the IP address

was questioned and admitted to creating the websites for

another party he believed to be located in China. The Chinese

government was engaged for investigation in-country, and

that investigation is progressing. As of this writing, the others

involved in the impersonation scheme are still under

investigation.
Fig. 1 – Investigation points in a phishing attack.
3. Prior work

Prior work relevant to AIIIS can be divided into two categories

– investigative techniques for impersonation attacks and

approaches to fingerprinting images. The investigation of

impersonation attacks is a relatively new area of interest,

and no work has been done to provide a taxonomy of

impersonation investigations based on the current, accepted

investigation techniques. We provide a classification of

investigation techniques from prior work based on the target

of the initial investigation. Image fingerprinting is a more

mature field, and we present several techniques currently
used to protect copyrighted information, as well as spread-

spectrum techniques to embed data in a way that preserves

the fingerprint integrity even after image alteration.
3.1. Impersonation investigation taxonomy

From an investigative standpoint, there are four key points at

which an investigation into impersonation schemes can be

launched – during the withdrawal of stolen funds, from the

website hosting the impersonation pages, from the email

source, or from the initial site construction, as shown in

Fig. 1. The solid arrows indicate direct connections, while the

dotted arrows indicate connections through proxies or other

intermediaries. Each connection point is detailed as follows:

Withdrawal point. Withdrawal is the final step in the phishing

chain. The traditional law enforcement approach to imper-

sonation focuses on catching perpetrators when they retrieve

the money (after the fraud). This is frequently accomplished

by tracking the accounts used for money transfers (Cumming,

2004) or through involvement in other criminal enterprises

(Pallack, 2005). This approach is becoming less successful as

attackers have adapted their methods to avoid directly

handling money and have even used e-mules as intermediar-

ies (Peachey, 2005).

Fake site web servers. Tracking the web servers used in imper-

sonation attacks is rarely fruitful. The servers are frequently

compromised machines, are transient in nature, and often

reside in countries with a poor track record in prosecuting

cybercrime (Anti-Phishing Working Group, 2005).

Infected mail servers. Almost all email sources for impersona-

tion attempts come from Botnets – groups of compromised

machines that are used exclusively for spam (CMP TechWeb,

2005). Success in this form of tracking relies on the imperson-

ator being careless as opposed to the investigator being clever

(Weiss, 2006).
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Real site web servers. AIIIS addresses tracking from the real

site’s web servers, which has not been used regularly to-date

as an investigative technique. Tracking from the originating

web server of the images has the advantage of being more

likely to come from the actual source of the attacks – web

design is more likely to occur on a local machine instead of

a distant ‘‘owned’’ machine. Also, there is a lower likelihood

of needing to go through multiple hops or proxies to get to

a real point of origin instead of a proxy. These images are

tracked through an image fingerprinting process.
Fig. 2 – Insertion of a dynamic watermark into an image on

a web server.
3.2. Fingerprinting

Fingerprinting images involves placing a unique digital water-

mark into the image content (Cox et al., 1997; Brassil et al.,

1994; Soriano et al., 2005). This can be a hidden watermark,

or a visible watermark, and is frequently used for purposes

of copyright protection. Prior work on fingerprinting can be

further divided into two areas – insertion techniques and

applications.

3.2.1. Insertion techniques
The primary method for inserting fingerprints in AIIIS builds

on prior art in the area of spread spectrum insertion. Previous

work has covered inserting both static and dynamic contents,

but not using the techniques outlined in AIIIS and not for the

purpose of impersonation investigation.

Bansal et al. (2003) took a similar approach algorithmically

to the techniques described for AIIIS – they dynamically

encrypt a unique identifier into images but have the viewer

and image itself bundled. They utilized basic techniques for

encrypting the data with public key technology proposed by

Harn (1991). The decryption is done offline on an as-needed

basis (non-blind).

Zheng et al. (2005) applied an approach to video fingerprint-

ing using two transform operations. Gaussian models have

been used by Zhao et al. (2005) as well in general multimedia

fingerprinting, though hiding the data in the image in AIIIS

uses spread-spectrum techniques from Cox et al. (1997) to

reduce the impact of image changes.

3.2.2. Applications
Practical implementations of fingerprinting to-date have been

implemented for copyright protection purposes. The two

largest implementations are by the Motion Picture Association

of America (MPAA) to detect movie theft (Van Tassel, 2006)

and the Recording Industry Association of America (RIAA) to

track file sharing (Boutin, 2001).

Recently, the Fraunhofer Institute, the developer of the

MP3 format, implemented an anti-piracy tool which hides

a unique hash value in downloaded music files. The details

provided by the Institute on the project are non-specific as

to hash insertion, but resiliency claims point toward the use

of a frequency domain technique (Blau, 2006). This implemen-

tation would potentially be the most similar to AIIIS, but

algorithm details are not provided and the target media are

audio content, not images.

The primary goal of all these systems is fighting piracy (as

opposed to fraud), and an excellent overview of anti-piracy
watermarking is provided in Barni and Bartolini (2004).

Additionally, these approaches are static and rely on manual

assignment mappings of a fingerprint to an individual. AIIIS

uses a dynamic implementation and the mappings need not

be stored a priori.
4. AIIIS methodology

AIIIS has two major components: string insertion and string

extraction. String insertion occurs in real-time on a standard

web server as requests are received. Extraction occurs only

after an attacker uses an image from the website. At that

point, the image is compared with an original and the details

of the download extracted from the image. For insertion,

a unique (for each web request) string is embedded into

each image downloaded with details on the request itself.

The embedding is done using spread-spectrum techniques

to prevent signal loss due to ex-post-facto image alteration

by the attacker. For extraction, the encrypted string is recov-

ered from the altered image through a comparison to the orig-

inal image. The string is then decrypted and the source of the

original download is identified by matching it with web server

logs. Each of the two operations is detailed as follows.
4.1. String insertion

The basic methodology for dynamically embedding data into

an image is shown in Fig. 2. Insertion consists of two stages –

insertion string generation, and image fingerprinting with

the encrypted string.
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4.1.1. String generation
An HTTP request is made from an end user. Ordinarily, an

image would be served using a standard HTML IMG tag. For

AIIIS, the image tag is replaced with a dynamic call to the

encoding program, written in C# using the ASP.Net frame-

work. The image itself is then dynamically generated from

an unwatermarked logo.bmp file (a decoder would require

potential additional processing) not directly accessible to the

requestor and inserted at runtime. Embedded in the bitmap

is a watermark that contains an encrypted version of the

unique information on the request which allows it to be

mapped to a specific web session. The string contains the

following information at a minimum:

� A unique identifier for the web server.

� The time and date stamp of the request.

� The IP address the request originated from.

The insertion process is space sensitive, so a minimal string

size is desirable. A reasonable string size of 9 bytes (72 bits) can

be achieved using 4 bytes each for the time (stored in Unix time

format) and IP address, with another byte for the web server,

which provides for a server pool of 256 systems.

The web session string information is concatenated and

encrypted using the AES or DES algorithms, which has a side

benefit of evening out the distribution of the string data. The

encryption is performed using a key file specific to the pool

of servers that house the image. An alternative approach

would be the generation of a random key which linked back

to a database containing the server information – this was

rejected as it required additional alterations on the web server

environment.

4.1.2. Image fingerprinting
The Discrete Cosine Transform (DCT) coefficients are altered

on the original image based on the individual bit contents of

the encrypted insertion string. The string is overinserted,

inserted c times into the image, to compensate for bit errors

generated during quantization rounding, malicious image

alteration, and/or format transitions.

The altered DCT is then transformed back into a bitmap, or

alternatively into another image format such as JPEG and sent

to the requestor.

The dynamically generated AES or DES encrypted string is

hidden in the source image through the use of spread spec-

trum techniques pioneered by Cox et al. Our approach differs

from Cox in that the string data are spread across the entire

image instead of being broken up into 8� 8 blocks, and the

string is inserted multiple times to provide additional

resilience to alteration.

Like traditional watermarking techniques, the insertion

must be resilient against both intentional alteration and

accidental alteration (through cropping, resizing, etc.). Unlike

traditional techniques (and closer to the requirements in

steganography), the exact AES or DES string must be recover-

able. Traditional watermarking techniques generally rely on

a similarity function, whereby the likelihood of a similar

random watermark is reduced to a statistical improbability.

In this particular application, there is a need for exact recovery

of the origin string – a probabilistic match isn’t enough.
Using the same notation as Cox, the encrypted string is

transformed into series of bits (bits were chosen instead of

a smaller amount of real numbers for their discrete nature –

remember the goal isn’t just a probabilistic match), X¼
x1,.,xn. To reduce the impact of individual value corruption,

the insertion string x is a concatenation of the original encryp-

tion string with itself c times.

The original image is stored as a 24-bit RGB image to allow

for quick DCT transformation (in practice, the source format is

irrelevant as the intermediary formats can be stored directly

in memory). First the image is padded to be N�N, where N

is the smallest multiple of 2 that is larger than the largest orig-

inal image dimension. The padded image is then converted to

a YCbCr format using a standard transformation equation

(Payette, 2002):

Yi ¼ 0:257 � Ri þ 0:504 � Gi þ 0:098 � Bi;

Cbi ¼ �0:148 � Ri � 0:291 � Gi þ 0:439 � Bi;

Cri ¼ 0:439 � Ri � 0:368 � Gi � 0:071 � Bi;

The luminance (Y ) component of the image is used in this

technique, though the chrominance (Cb, Cr) components

could similarly have been used.

An N�N DCT is performed on the Y components of the

image to generate a list of coefficient values, V¼ v1,.,vn. A

full transformation is done on the image as a whole to pre-

vent blocking effects generated when 8� 8 block coefficients

are individually altered, and to increase the survivability of x

when cropping occurs. The coefficients from V are then

sorted from the highest to the lowest absolute value as V*¼
v1*,.,vn*. The transformed coefficients are generated from

the list V* in order to facilitate the ease of future comparison

using a scaling function a, set to .1 for the purposes of this

system (though testing showed little difference in error rates

with other values of a, higher values produced noticeable

image degradation):

v0i ¼ v�i ð1� axiÞ

The scaling is inverted from the typical 1þ a to downscale

values instead of upscaling (or using of negative a values) –

this is done to decrease the range of values generated and to

reduce the number of values outside of the 0–255 range

when later YCbCr / RGB conversion is performed. Since the

largest absolute value coefficient is used, the equation

remains invertible as vi* s 0.

Once insertion is done, the image itself is outputted as

a standard JPEG image with a 100% (lossless) value. Pre-

compression of the initial bitmap can be done prior to inser-

tion to achieve optimal image size.
4.2. String recovery

If an image with embedded data is used at a later date as

part of a phishing scheme or trademark infringement case,

the reverse of the insertion steps can be performed to deter-

mine the point of origin for the image. The string recovery

process, as shown in Fig. 3, is the process of extracting

a string, X0, from an image V00 in an attempt to reconstruct

the server name, IP address, and download time. To recover



Fig. 3 – Extraction of a dynamic string from a recovered

image.
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the string, the original image prior to insertion is required, as

is the AES or DES encryption key used to encrypt the original

string. First the DCT coefficients of the original and altered

images are generated in the image preprocessing step. The

difference of the two is then compared against a threshold

value, and the original AES or DES bits recovered as part of

the string extraction. The encrypted string is then decoded

and the string can then be directly matched to server logs

for further investigation (and for evidence of the original

download for legal use).

4.2.1. Image preprocessing
V and V00 are both converted to YCbCr format using the same

equations in Section 4.1.2 above (V00 is preprocessed to make

the images the same size and fill in cropped areas with sim-

ilar areas from the original image, as well as convert to 24-bit

RGB format if needed). The DCT of both images is done to

generate V and V00, respectively. The highest absolute value

coefficients from the initial image V* are obtained, then

matched to the same coefficient locations in V00, represented

as V**¼ v1**,.,vn.
4.2.2. String extraction
Each value in the string X0 is recovered by comparing the

values in V* and V** as follows:

X0 ¼ T

0
@1� v00

i
v0

i

a

1
A

where T is a simple threshold function with the threshold

value set to .5 to allow X0 to be set to the nearest binary result.

Given the binary nature of the data inserted, T operates as

X0)
1; if > threshold
0; if < threshold

�

This is performed on all values to the length of the original

string X (the procedure assumes a uniform string length for

all insertions). To reduce the number of errors present, the c

overinserted values in X0 are compared with each other and

the mode taken of the values, specifically:

x0i ¼ x00i ¼
Pc

n¼1 x00ncþi

c

If c is an odd number, the same threshold value and function T

above can be applied to regenerate the likely original bit (with

no danger of bimodality). X can then be decrypted using the

known passphrase, and the resulting string is compared to

the weblogs to identify the source of the original image

download.

4.2.3. Recovery likelihood
Using the values above and an overinsertion of c¼ 1, the

probability of a single bit being wrong was measured to be

around .03 in a series of 128� 128 pixel images that were

quantized and compressed then recompared. For a 128 bit

string, this represents an average of 3.84 erroneous bits with

no overinsertion.

To achieve a more reasonable bit error rate, overinsertion

of the original string is performed. Since there is no correla-

tion between the coefficients in the location of the overin-

serted string value and the original location, they are

independent for the purposes of the bit error calculation,

though total string length does effect the error rates.

Overinsertion is used instead of traditional error correcting

codes for portability to other insertion methods – specifically

methods in the spatial domain which are susceptible to

cropping attacks. Ideally, both error correcting codes and

overinsertion could be used to reduce error rates.

The number of bits in the bitstream acts as a serial system

for the purposes of calculating the likelihood of the complete

string being recovered. For this reason, minimizing the length

of the string is valid. Specifically, with a probability R of a single

bit being good the probability of the string of length m bits be-

ing recovered correctly is Rm.

Overinsertion assists in the reliability of string recovery by

introducing a K of N parallelism to each bit. Specifically, the

probability of a specific bit being accurate can be calculated as

Xn

k¼N DIV 2þ1

�
n!

k!ðn� kÞ!

�
ðRÞkð1� RÞn�k

Adding in the serial component, we achieve an overall

string recovery likelihood (probability) that can be calcu-

lated as
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 Xn

k¼N DIV 2þ1

�
n!

k!ðn� kÞ!

�
ðRÞkð1� RÞn�k

!m

Assuming coefficient independence on an arbitrary string of

128 bits, R¼ .95, and c¼ 3 results in an overall string recovery

likelihood of .394. At c¼ 5 the overall recovery likelihood is

.862, at c¼ 7 it is .976, and at c¼ 9 it is .996. The recovery likeli-

hood can be tweaked by reducing both the size of the input

string and the overinsertion value. By setting c¼ 25 and using

a string of 32 bits, a 99% recovery rate can occur with a single

bit accuracy as low as .8. The selected tolerance can be ad-

justed based on the image size and the specific application –

a larger c value is warranted if the image is likely to be greatly

altered.
5. Experimental results

The AIIIS system was tested by inserting strings into various

images, manipulating those images, then attempting to

recover the initial strings. First, the AIIIS system itself was

tested by varying the insertion string sizes and determining

the recovery likelihood given a series of image manipulations.

Next, testing the impact of image size and image composition

on the recovery likelihood was done. Finally, testing was done

against the parameters set forth in Cox to compare the value

of overinsertion and the use of full image transforms.
5.1. Experimental design

The overall experimental design is shown in Fig. 4. First, to test

resiliency to alteration, random strings of 32, 64, and 128 bits

were then inserted into the same 128� 128 image at overin-

sertions of 1, 5, 9, and 13 times. The resultant images were
Fig. 4 – Experime
then scaled, compressed, and cropped to varying degrees

and the likelihood of whole string recovery was provided.

Second, to measure the effect of image size, the same

image represented at sizes between 64� 64 and 512� 512

had the above alterations performed to show the effect of

image size on recovery likelihood.

Third, to test the effects of image composition on recovery

likelihood, three images of 128� 128 had the same string

inserted, and the resilience to alteration was measured. A

grayscale image, a logo, and a photograph were used as the

sample images.

Finally, a 512� 512 image size was examined using a pro-

duction version of AIIIS with an a value of .25. At an a of .25,

image quality reduction was sufficient for photo-type images

so as not to impair visual appeal. An actual server string

comprised of 9 bytes (72 bits) was dynamically inserted in

the image using an 8� 8 block size with no overinsertion as

noted in Cox, and the same insertion was then performed

using a 512� 512 block size and an overinsertion of 3 to test

the AIIIS settings. Both images were subjected to the

alterations above and the results provided (Cox et al., 1997).

For the test environment, a copy of AIIIS was installed on

a Windows 2003 web server running IIS, with version 2.0 of

the .Net framework. The base system was a 1 GHz Pentium 4

with 512 MB of RAM.

5.2. Image alteration

The image alteration tests used a single 128� 128 photo image

with significant color diversity. The AIIIS system was set to

a constant a value of .1 to reflect the settings present in Cox,

though visual degradation was not significant until higher

a values were used. On each experiment, the string size and

overinsertion values were the variables, with image size,

a value, and image composition remaining constant.
ntal design.
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Fig. 6 – Compressed image recovery.
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5.2.1. Scaling
The rescaling of an image is a common alteration for image

reuse in a website or email format. Rescaling consists of

changing the image size, with a resultant loss in pixels. To

simulate scaling, the output image was rescaled to 80, 60, 40,

and 20% of its original size. For recovery, the smaller images

were then rescaled to the original 128� 128 size, without the

use of a smoothing algorithm.

Scaling showed greater than 90% recovery at 80% scaling

with smaller overinsertion values (1� and 5�) and a smaller

string size. The detail present in the high-frequency compo-

nents was lost due to the scaling algorithm used in Corel

Photoshop – specifically, the high-frequency components are

removed due to smoothing and only the highest-magnitude

low frequency components remain. As a result, the available

space for insertion is greatly reduced and the string size needs

to be appropriately handled. If scaling is the primary concern,

a small insertion string with a minimal overinsertion (3�)

offers the best chances for recovery. Specific probabilities of

recovery after overinsertion are shown in Fig. 5. Larger overin-

sertion values resulted in string values which were placed in

coefficients that had a higher probability of being removed

during smoothing, showing a preference for minimizing

overall insertion length.

Though string recovery isn’t probable with extreme

scaling, a signal is still present. At 20% of its original size, an

individual bit probability of accuracy of .625 on a 32 bit string

was obtained with no overinsertion – indicating the presence

of a signal well above random noise.

5.2.2. JPEG compression
For email-based image reuse, further compression is a second-

ary alteration possibility to reduce image size. In its most

common form, the compression is JPEG-based. Testing was

performed with compressed versions of the altered image at

varying overinsertion levels to determine effect. Compression

was performed without smoothing using Photoshop.

By compressing the image with lossy JPEG compression

image recovery at up to 40% compression was determined to

be probable as indicated in Fig. 6. As with scaling, the amount

of data recovered was directly related to the overall string
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Fig. 5 – Scaled image recovery.
length. As a result, the impact of overinsertion was minimal

on the image size and string sizes selected, though its value

was not directly determinable for larger string sizes. As with

scaling, JPEG compression removes the values of some

coefficients through quantization – this was more likely to

happen to the smaller coefficients where longer string values

were more likely to be placed.

5.2.3. Cropping
To test the resilience to cropping, the original image was

cropped in 5% increments and cropped portions replaced

with the same sections on the original image. Cropping was

performed by removing the leftmost portions of the image in

Photoshop, then saving the results as bitmaps. With the

images used, the leftmost portion contained the most high-

frequency components and represented the worst case

scenario for cropping this particular image.

The cropped image represents the cutting of an image

portion for use in another image – common in trademark theft

cases. The cropping results showed promise for overinsertion.

With an overinsertion of 13� and a 32 bit insertion string,

probability of recovery was over .9, even with 15% of the image

removed. The recovery rates for cropped images are directly

proportional to the amount of original image remaining and

overinsertion amount and inversely proportional to the string

size, as shown in Fig. 7.
5.3. Image size

In addition to the basic alterations above, similar alterations

were made on different sized images ranging from 64� 64 to

512� 512 to gauge the impact of image size on the ability to

resist alteration. Each size had the same random, 64-bit string

inserted with an overinsertion value of 25. As with the alter-

ations, an a of .1 was used. The a values, string size, and over-

insertion rates remained constant in this experiment and the

image size was the variable. The results are shown in Fig. 8.

The image size highly effected both resizing and rescaling

operations – the more bits available to the image, the less

likely each operation would result in a reduction in recovery
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possible.
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likelihood. At the largest image size, greater than 95%

recovery likelihood was possible with both 50% scaled and

50% compressed images.

Cropping appeared to be largely unaffected by image size.

Given a cropped image size of 70%, a low recovery likelihood

was shown for all image sizes tested.

5.4. Image composition

The type of image used was varied in the fourth test to determine

the effect of composition on the recovery likelihood. Using the

same experimental setup as the first three experiments, the

same string was inserted into three different images of 128�
128 pixels. The first image was a complex color photograph, the

second was the same image in grayscale, and the third a 16 color

logo. All of the images were downloaded from the Bank of Amer-

ica website to simulate images from a frequent target of attacks.

Each of the above alterations – scaling, compression, and

cropping – was performed on the inserted images. The point

at which complete recovery was no longer possible was noted,
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Fig. 8 – Image size effect on recovery likelihood.
and is shown in Fig. 9. Smaller numbers reflect a greater

chance for fingerprint recovery.

As shown in Fig. 9, the more complex the image, the easier

it is to embed data. The photo was able to withstand the most

alteration, followed by the grayscale image and finally the

logo. The cropping resilience of the logo was noted as higher

due to the method used – the majority of the image informa-

tion present was in the center of the image and cropping

was done from the sides to simulate an actual cropping

operation by an impersonator.

5.5. Comparison to block techniques

For a head-to-head comparison we ran sample insertions

against the base algorithms from Cox and a production

version of AIIIS. A full production deployment was used to

test the feasibility from a time perspective as well as the

recovery likelihood with actual strings.

To perform the test, two different settings were altered.

First, block size was set to 8� 8 for the Cox algorithm and

512� 512 (the whole image) for the AIIIS algorithm. Second,

the Cox algorithm did not use overinsertion while the AIIIS

algorithm used an overinsertion value of 3. Both used an

a value of .25 (which was visually acceptable on the test

images). Images were generated with both algorithms, then

each of the above operations, scaling, compression and

cropping, was performed and the values at which recovery

failed were noted. The results are shown in Fig. 10. An 8� 8

block comparison of the original and altered images is shown

in Fig. 11. The comparison shows no visible change, and a min-

imal change to the low frequency areas.

Scaling. For scaling, neither performed remarkably well. The

string was recoverable in Cox when scaled to 96%, and in AIIIS

when scaled to 78% at the largest image size, showing a slight

advantage to the AIIIS settings. Scaling ability decreased as

image size decreased.

Compression. Performing compression, both algorithms showed

very good resilience with Cox allowing compression to 46% of
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Fig. 10 – Maximum alteration where recovery was still

possible.
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the original image size and AIIIS to a remarkable 4% of the total

image size at 512� 512. The results are likely due to the increased

a value, producing higher coefficient differentials. As with scal-

ing, the compression ability decreased with image size, to a max-

imum of 46% with AIIIS and 91% with Cox with a 64� 64 image.

Cropping. Cropping yielded similar results to scaling, with AIIIS

having a slight advantage. With Cox, the removal of a single

key block was enough to make recovery impossible, leading to

a maximum cropped size of 98% of the original image at

512� 512. With AIIIS, the image could have 85% removed and

recovery was still possible. Surprisingly, a larger percentage of

the image couldbe successfully cropped as image size decreased,

resulting in 70% of the image remaining with AIIIS and 89% with

Cox on a successful recovery from a 64� 64 pixel image, indicat-

ing that cropping resilience is due to an absolute loss in pixels

rather than a relative percentage of the image.

Though the results are positive for AIIIS, the actual dynamic

image generation at 512� 512 was too slow to be practical on
Fig. 11 – Visual differences in an 8 3 8 s
current machines – taking 2 min to perform. Cox performed the

same image generation in well under 1 s with an unoptimized

8� 8 block size. The 256� 256, 128� 128, and 64� 64 pixel

images were adequately rapid under both methods.
6. Discussion

The capability of both altered and unaltered recovery of the im-

ages was determined to be significant through basic testing. Re-

covery is highly probable for unaltered images as long as there

are sufficient image coefficients to support the length of the

inserted bit string. The maximum coefficients available are

Length�Width� 1 (DC coefficients) in the proposed method

(if the Cb and Cr coefficients are used this is increased three-

fold). Therefore, an 8� 8 image would not support insertion of

more than 63 bits – since recovery is binary (either the string

is recovered or it isn’t because of the encryption). The recovery

likelihood scales linearly with image size, corresponding to a lin-

ear increase in the number of available insertion coefficients.

The results obtained are in-line with those identified in Cox

et al. (1997), though the goal of recovery was different – Cox

required showing a signal that was significantly more proba-

ble than random as opposed to all-or-nothing string recovery.

Because of this, direct comparison to Cox’s signal strength

results isn’t possible, but using the same settings as noted in

Cox, AIIIS showed a higher resilience to alteration, due to

the non-localization of values to a specific block in AIIIS. The

results are significant enough for implementation in practice

with the appropriate application-specific tweaking. The use

of the entire image for insertion showed a larger tolerance

for high a values due to the lack of a blocking effect, and

overinsertion provided extra promise against cropping-based

alterations (though it showed to be outweighed by overall

string size in both scaling and compression operations).

The dynamic embedding techniques presented are subject to

the same attacks as most DCT-based watermarking for the jam-

ming of the inserted signal, but the intentional alteration of the

signal to correspond to an accurate, reversible AES or DES string

that matches a web log entry is minimal. Minimization of the
ection – before and after insertion.
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impact from multi-image attacks can be achieved by random

insertion of values to other string images if such an attack is

expected.

The same dynamic techniques can be applied to Least Sig-

nificant Bit (LSB) based alterations as well, without the requi-

site resilience. Depending on the attack scenarios expected,

alteration of the dynamically watermarked images may not

be a high probability, and the speed of LSB-based methods

over transforms provide a viable alternative for production

implementations. Additionally, the use of smaller block sizes

(e.g., 8� 8 or 16� 16) allows for optimized implementations of

the DCT, which can provide major improvements in large im-

age insertion with a requisite tradeoff in recovery likelihood.

Because string length is a key factor in recovery likelihood,

smaller insertion strings can be utilized with some basic

tradeoffs. The string size can be compressed by eliminating

the server byte and using a different encryption key for each

server, though this requires trying each individual key in

a recovery. Additional savings can be achieved by changing

the time resolution and starting point, since historical times

before the current date are not relevant to this application,

and individual requests mapped within a minute’s resolution

may be applicable to lower traffic servers.

Optimization of the code for production use, specifically

speed enhancements to the DCT and inverse DCT operations,

will need to occur for high volume usage. Pregeneration and

caching of the original (before insertion) coefficient array

would provide further improvement.
7. Conclusions

The presented results show that AIIIS permits recovery even

after post-acquisition manipulation of the image, providing

another tool in anti-phishing efforts. The spread spectrum

dynamic insertion techniques outlined are feasible for

tracking of image origin when unaltered images or further-

compressed images are recovered in attempted phishing

schemes. Resilience to rescaling, compression, and cropping

shows promise with the addition of error correcting code

and/or the tweaking of the insertion algorithms.

Future work needs to be done to determine the optimal

application-specific insertion algorithm. In addition to the

applicability to general web-based phishing investigations, the

AIIIS system is directly applicable to both trademark and Digital

Rights Management (DRM) protection as well. Applications of

the technique could be used by a music or movie download

service, for example, to uniquely watermark each individual

download dynamically with an encrypted version of the down-

loader’s information – if that watermark later appeared on

a peer-to-peer client, the source could be identified.
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