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GLIP: A Concurrency Control Protocol
for Clipping Indexing
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Abstract—Multidimensional databases are beginning to be used in a wide range of applications. To meet this fast-growing demand,
the R-tree family is being applied to support fast access to multidimensional data, for which the R+-tree exhibits outstanding search
performance. In order to support efficient concurrent access in multiuser environments, concurrency control mechanisms for
multidimensional indexing have been proposed. However, these mechanisms cannot be directly applied to the R+-tree because an
object in the R+-tree may be indexed in multiple leaves. This paper proposes a concurrency control protocol for R-tree variants with
object clipping, namely, Granular Locking for clIPping indexing (GLIP). GLIP is the first concurrency control approach specifically
designed for the R+-tree and its variants, and it supports efficient concurrent operations with serializable isolation, consistency, and
deadlock-free. Experimental tests on both real and synthetic data sets validated the effectiveness and efficiency of the proposed

concurrent access framework.

Index Terms—Concurrency, indexing methods, spatial databases.

1 INTRODUCTION

N recent years, multidimensional databases have begun to

be used for a wide range of applications, including
geographical information systems (GIS), computer-aided
design (CAD), and computer-aided medical diagnosis
applications. As a result of this fast-growing demand for
these emerging applications, the development of efficient
access methods for multidimensional data has become
a crucial aspect of database research. Many indexing
structures (e.g., the R-tree [10] family, Generalized Search
Trees (GiSTs) [11], grid files [20], and z-ordering [21]) have
been proposed to support fast access to multidimensional
data in relational databases. Among these indexing struc-
tures, the R-tree family has attracted significant attention as
the tree structure is regarded as one of the most prominent
indexing structures for relational databases. On the other
hand, as an important issue related to indexing, concurrency
control methods that support concurrent access in traditional
databases are no longer adequate for today’s multidimen-
sional indexing structures due to the lack of a total order
among key values. In order to support concurrency control in
R-tree structures, several approaches have been proposed,
such as Partial Locking Coupling (PLC) [25], and granular
locking approaches for R-trees and GiSTs [4], [5].

In multidimensional indexing trees, the overlapping of

nodes will tend to degrade query performance, as one
single point query may need to traverse multiple branches
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of the tree if the query point is in an overlapped area. The
R+-tree [23] has been proposed based on modifications of
the R-tree to avoid overlaps between regions at the same
level, using object clipping to ensure that point queries can
follow only one single search path. The R+-tree exhibits
better search performance, making it suitable for applica-
tions where search is the predominant operation. For these
applications, even a marginal improvement in search
operations can result in significant benefits. Thus, the
increased cost of updates is an acceptable price to pay.
However, the R+-tree is not suitable for use with current
concurrency control methods because a single object in the
R+-tree may be indexed in different leaf nodes. Special
considerations are needed to support concurrent queries on
R-+-trees, while as far as we know, there is no concurrency
control approach that specifically supports R+-trees.
Furthermore, there are some limitations in the design of
the R+-tree, such as its failure to insert and split nodes in
some complex overlap or intersection cases [7]. This will be
discussed in Section 2.1.

This paper proposes a concurrency control protocol for
R-trees with object clipping, Granular Locking for clIPping
indexing (GLIP), to provide phantom update protection for
the R+-tree and its variants. We also introduce the Zero-
overlap R+-tree (ZR+-tree), which resolves the limitations of
the original R+-tree by eliminating the overlaps of leaf
nodes. GLIP, together with the ZR+-tree, constitutes an
efficient and sound concurrent access model for multi-
dimensional databases. The major contributions are as
follows:

e The concurrency control protocol, GLIP, provides
serializable isolation, consistency, and deadlock-free
operations for indexing trees with object clipping.

e The proposed multidimensional access method,
ZR+-tree, utilizes object clipping, optimized inser-
tion, and reinsert approaches to refine the indexing
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Fig. 1. Examples of R-tree and R+-tree. (a) An R-tree example. (b) An
R+-tree example.
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structure and remove limitations in constructing and
updating R+-trees.

e GLIP and the ZR+-tree enable an efficient and sound
concurrent framework to be constructed for multi-
dimensional databases.

e A set of extensive experiments on both real and
synthetic data sets validated the efficiency and
effectiveness of the proposed concurrent access
framework.

This paper is organized as follows: Section 2 reviews
concurrency control methods and indexing structures in
multidimensional databases. Section 3 introduces the struc-
ture and characteristics of the proposed ZR+-tree. The
details of the concurrency control approaches are discussed
in Section 4. Experimental results for both real and synthetic
data are analyzed in Section 5. Final conclusions are drawn
and future directions are suggested in Section 6.

2 REeLATED RESEARCH AND MOTIVATION

In this section, we review the structure of the R-tree
family, discuss some limitations that affect R+-trees,
survey major concurrency control algorithms based on
B-trees and R-trees, and summarize the challenges
inherent in applying concurrency control to R+-trees.

2.1 The R-Tree Family

The R-tree, an extension of the B-tree, is a hierarchical,
height-balanced multidimensional indexing structure that
guarantees its space utilization is above a certain threshold.
In the R-tree, the root node has between 1 and M entries.
Every other node, either leaf or internal node, has between
m and M entries (1 <m=M). The leaf node holds
references to the actual data and the Minimum Bounding
Rectangle (MBR), which covers all the objects stored in that
node. The internal node holds references that point to its
children (leaf nodes or the next level of internal nodes), the
MBRs corresponding to its children, and its own MBR.
Unlike B-trees, the keys in R-trees are multidimensional
objects that are difficult to define in a linear order. The R-
tree is one of the most popular multidimensional index
structures as it provides a robust tradeoff between
performance and implementation complexity [8]. Many
variants based on the R-tree have been proposed to
construct optimized indices [28] or to manage spatiotem-
poral or high-dimensional data [1], [24]. However, as the R-
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Fig. 2. Limitations in R+-trees. (a) Unable to insert. (b) Unable to split.
(c) Different solutions to expand.

tree allows overlap in the same level nodes, in some cases,
the R-tree will have nodes with excessive space overlap and
“dead space.” This significantly degrades its search
performance, because for one search region, there might
be several MBRs in each level that need to be visited. To
optimize data retrieval performance, several variants have
been proposed. For example, the R*-tree [2] tries to
minimize overlap for internal nodes and minimize the
covered area for leaf nodes via forced reinsert.

The R+-tree was first proposed in [23]. The R+-tree uses a
clipping approach to avoid overlap between regions at the
same level [7]. As a result of this policy, a point query in
the R+-tree corresponds to a single path tree traversal from
the root to a single leaf. For search windows that are
completely covered by the MBR of a leaf node, the R+-tree
guarantees that only a single search path will be traversed.
Examples of the R-tree and R+-tree are givenin Fig. 1, where A
and B are leaf nodes, and C, D, E, and F are MBRs of objects.
Because objects D and E overlap with each other in the data
space, leaf nodes A and B have to overlap in the R-tree in
order to contain the objects. In contrast, in the R+-tree, leaf
nodes do not have to cover an entire object, so object D can be
included in both leaf nodes A and B. As a result, the R+-tree
clearly has a better search performance compared to the
R-tree. Experimental analyses of the relative performances of
R-trees and R+-trees indicate that R+-trees generally perform
better for search operations [8], [12], although this benefit
comes at the cost of higher complexity for insertions and
deletions. The performance gain for search operations makes
the R+-tree ideally suited for large spatial databases where
search is the predominant operation.

However, it is important to note the following limitations
of the original definition and the operations of the R+-tree.
First, some objects may not be inserted into an existing tree,
because of an extension conflict between several nodes on
the same level. Fig. 2a illustrates a 2D example of this
problem. In this case, when an object with MBR N is inserted
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into the tree, any one of nodes A, B, C, or D could be chosen
to extend to encompass the new object. The region NV thus
causes a deadlock in this scenario, because whichever node
is selected to include N will then overlap with another node.
For instance, A will be intersected if Bis extended, and B will
be overlapped if C is enlarged. According to the definition
and the insertion algorithm for the R+-tree, none of these
nodes is allowed to cover N while overlapping with other
nodes. Therefore, the new object cannot be inserted into the
R+-tree. This issue was raised in [7], but no modified
algorithm has been presented to resolve it. Second, in some
cases, it may not always be possible to split a node in a
manner that satisfies all the properties of the R+-tree. In an
obvious case, a split is not possible when M + 1 MBRs in a
node with a capacity of M have the property such that the
lower left corners (or upper right corners) of all the MBRs are
the same. Fig. 2b shows an example of this problem. Third,
the original R+-tree algorithm does not discuss how to clip
an inserted object that overlaps with multiple untouched
nodes. In the case of an insertion, the nodes that overlap with
the object should be enlarged to cover the whole space of
the object. As shown in Fig. 2¢, there could be multiple ways
to perform the node expansion, each leading to a different
tree structure. Of the two solutions shown in the figure,
solution b will generate a better indexing tree because nodes
A, B, and C cover less dead space than in solution a. The
proposed ZR+-tree is designed to resolve all these issues.

2.2 Concurrency Controls

Several concurrency control algorithms have been pro-
posed to support concurrent operations on multidimen-
sional index structures, and they can be categorized into
lock-coupling-based and link-based algorithms. The lock-
coupling-based algorithms [6], [19] release the lock on the
current node only when the next node to be visited has
been locked while processing search operations. During
node splitting and MBR updating, these approaches must
hold multiple locks on several nodes simultaneously,
which may deteriorate the system throughput.

The link-based algorithms [13], [14], [15], [16], [25] were
proposed to reduce the number of locks required by lock-
coupling-based algorithms. These methods lock one node
most of the time during search operations, only employing
lock coupling when splitting a node or propagating MBR
changes. The link-based approach requires all nodes at the
same level be linked together with right or bidirectional
links. This method reaches high concurrency by using only
one lock simultaneously for most operations on the B-tree.

The link-based approach cannot be used directly in
multidimensional data access methods as there is no linear
ordering for multidimensional objects. To overcome this
problem, a right-link style algorithm (R-link tree) [14] has
been proposed to provide high concurrency control by
assigning logical sequence numbers (LSNs) on R-trees.
However, when a node splitting propagates and its MBR
updates, this algorithm still applies lock coupling. Also, in
this algorithm, additional storage is required to retain extra
information for the LSNs of associated child nodes. To solve
this extra storage problem, Concurrency on Generalized
Search Tree (CGiST) [15] applies a global sequence number,
the Node Sequence Number (NSN). The counter for NSN is
incremented for each node split, with the original node
receiving the new value and the new sibling node inheriting

NO. 5, MAY 2009
the previous NSN and its right-link pointer. In order for the
algorithm to work correctly, multiple locks on two or more
levels must be held by a single insert operation, which
increases the blocking time for search operations.

Several mechanisms, such as top-down index region
modification (TDIM), copy-based concurrent update (CCU),
CCU with nonblocking queries (CCUNQ) [13], and partial
lock coupling (PLC) [25], have been proposed to improve
the concurrency based on the above linking techniques.
However, the link-based approach with these improve-
ments is still not sufficient to provide phantom update
protection.

Phantom updating refers to updates that occur before the
commitment, in the range of a search (or a following update),
and are not reflected in the results of that search (or the
following update). Concurrent data access through multi-
dimensional indexes introduces the problem of protecting a
query range from phantom updates. The dynamic granular
locking approach (DGL) has been proposed to provide
phantom update protection in the R-tree [4] and GiST [5].
The DGL method dynamically partitions an embedded space
into lockable granules that adapt to the distribution of objects.
The leaf nodes and external granules of internal nodes are
defined aslockable granules. External granules are additional
structures that partition the noncovered spacein each internal
node to provide protection. According to the principles of
granular locking, each operation requests locks on sufficient
granules such that any two conflicting operations will request
conflicting locks on at least one common granule. Although
the DGL approach provides phantom update protection for
multidimensional access methods and granular locks can be
efficiently implemented, the complexity of DGL may impact
the degree of concurrency.

2.3 Challenges of Applying Concurrency Control on
R+-Trees

Several efficient key value locking protocols to provide
phantom update protection in B-trees have been proposed
[3], [17], [18]. However, they cannot be directly applied to
multidimensional index structures such as R-trees, because
for multidimensional data, a total order of the key values on
which these protocols are based is undefined.

Granular locking protocols such as GL/R-tree [4], [5] for
multidimensional indices have been proposed, but none can
be directly applied to the R+-tree. An example will show why
the original GL/R-tree is not sufficient to provide phantom
update protection for the R+-tree. The GL/R-tree defines two
types of lockable granules: leaf granules that correspond to
the MBR for each leaf node and external granules that are
defined as ext(internal node) = (MBR for the internal node)
— (MBRs for each of its children). In Fig. 3, assuming A and
B are leaf nodes, the search window WS requires shared
locks to be placed on the lockable granules A, whereas the
update window WU requires exclusive locks to be placed on
B. However, as in an R+-tree, the object D is shared by both
leaf nodes and both locks only affect their own granules. In
this case, the GL/R-tree protocol does not provide sufficient
phantom update protection for the object D. One possible
solution to this problem would be to lock objects rather than
leaf granules. In this way, the objects’ MBRs can be viewed as
leaf granules, and the external granules would be defined
similarly for leaf nodes. Although this solution solves the
above problem for deletions (and updates), the object-level
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Fig. 3. Example operations for GL/R-tree on an R+-tree.

locking substantially increases the number of locks. For
example, if a search window were to return 10,000 objects,
this would require 10,000 object-level locks to be placed for
the duration of the search and then released at the time of
commitment. Using coarse leaf granules, as proposed in the
GL/R-tree, and assuming 100 maximum entries per node
and an average fill factor of 0.5, only 200 such locks would
need to be requested. Therefore, for applications where
selection is the predominant operation, locking at the object
level may not be a desirable solution, and a new locking
protocol is therefore required to provide phantom update
protection efficiently for indexing trees with object clipping.

3 DEeFINITION OF GLIP AND ZR+-TREE

Before proceeding to the details of the proposed concurrent
access framework, we first define the notations that will be
used throughout this paper.

3.1 Terms and Notations

The presence of a standard lock manager [15] is presumed
to support conditional and unconditional lock requests, as
well as instant, manual, and commit lock durations in GLIP.
A conditional lock request means that the requester will not
wait if the lock cannot be granted immediately; an
unconditional lock request means that the requester is
willing to wait until the lock becomes grantable. Instant
duration locks merely test whether a lock is grantable, and
no lock is actually placed. Manual duration locks can be
explicitly released before the transaction is completed. If
they are not released explicitly, they are automatically
released at the time of commit or rollback. Commit duration
locks are automatically released when the transaction ends.
Conventionally, five types of locks, namely, S (shared locks),
X (exclusive locks), 1X (Intention to set X locks), IS (Intention
to set S locks), and SIX (Union of S and 1.X locks) [6] are used.
In the proposed protocol, only S and X locks are used to
support concurrent operations with relatively simple main-
tenance processes.

The lock manager in GLIP is presumed to support the
acquisition of multiple locks as an atomic operation. If this
is not the case, such a procedure can be conveniently
implemented by acquiring the first lock in a list uncondi-
tionally and all subsequent locks conditionally, with the
procedure releasing all the acquired locks and restarting if
any of the conditional locks cannot be acquired. Further-
more, a transaction can place any number of locks on the
same granule as long as they are compatible. The lock
manager will place separate locks for each granule, and
each lock will be distinct even if the lock modes are the
same. When releasing manual duration locks, both the lock
granule and lock mode must be specified.

The terms used to describe the ZR+-tree structure are listed
in Table 1. Suppose T’ denotes a ZR+-tree, then T".root refers to

TABLE 1

ZR+-Tree Node Attributes
Term Description
capacity maximum number of entries in the node
entries number of entries in the node
mbr minimum bounding rectangle of the node
level level of the node in the tree
child; it child of the node
rect; MBR of the im child of the node
isLeaf true for a leaf node

the root node of this tree. For each node P in T, P.isLeaf
indicates whether the node P is a leaf node or not, P.level
givesthelevelof Pin T, P.entries denotes the currentnumber
of entries in thenode, and P.capacityis the maximum number
of entries the node P can hold. P.mbr gives the MBR for the
node P and is defined as an empty rectangle when P is NIL.
For internal nodes, P.child; is an entry pointing to a node,
which is P’s ith child, and P.rect; gives the MBR of the ith
entry. For leaf nodes, P.child; gives the object pointed to by
the ith entry, and P.rect; refers to the MBR of this entry. For
each rectangle R, R.l denotes the lower left corner and R.h
denotes the upper right corner.

Similar to the R+-tree, the ZR+-tree is height balanced,
so for each P in T, where P.isLeaf is true, P.level is the
same. This also implies that if P is an internal node, then
for all P.child;, P.child;.isLeaf is false, or for all P.child;,
P.child;.isLeaf is true. As data objects in a ZR+-tree may
be clipped, for leaf nodes, P.rect; may only indicate part
of the MBR of a data object. Therefore, an object can be
exclusively covered by multiple nodes. Furthermore,
P.mbr must cover all the P.rect;, regardless of whether
P.child; is an internal node or not.

3.2 R+-Tree and ZR+-Tree

R+-trees can be viewed as an extension of K-D-B-trees [22] to
cover rectangles in addition to points. The original R+-tree
has the following properties [23]:

1. A leaf node has one or more entries of the form
(oid, RECT), where oid is an object identifier, and
RECT is the Minimum Bounding Rectangle (MBR)
of a data object.

2. An internal node has one or more entries of the form
(p, RECT), where p points to an R+-tree leaf or
internal node R, such that if R is an internal node,
then RECT is the MBR of all the (p;, RECT;) in R.
However, if R is a leaf node, for each (oid;, RECT;)
in R, RECT; does not need to be completely
enclosed by RECT; each RECT; simply needs to
overlap with RECT.

3. For any two entries (p;, RECT)) and (p2, RECT5) in
an internal node R, the overlap between RECT; and
RECT; is zero.

4. The root has at least two children unless it is a leaf.

5. All leaves are at the same level.

Some modifications can be made to the original R+-tree to
make it suitable for the situations mentioned in Section 2.1.
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Fig. 4. An example of ZR+-tree for the data in Fig. 1.

As the proposed tree structure eliminates overlaps even
among entries in different leaf nodes, it is named the Zero-
overlap R+-tree (ZR+-tree). The essential idea behind the
ZR+-treeis tologically clip the data objects to fit them into the
exclusive leaf nodes. There are two fundamental differences
between the clipping techniques applied in the ZR+-tree and
the R+-tree: 1) From the definition of the ZR+-tree, object
clipping in the ZR+-tree must differentiate the MBRs of the
segmented objects in leaf nodes (e.g., MBRs of D; and D, in
Fig. 4), while the clipping in the R+-tree retains the original
MBRs (e.g., MBRs of the two Ds in the leaf node A and leaf
node Bin Fig. 1b). 2) In the ZR+-tree, each entry in a leaf node
is a list of segmented objects that share the same MBR, while
each leaf node entry in the R+-tree contains exactly one
object. For example, in Fig. 5b, the first entry in the leaf node
A contains segmented objects O, P, @1, and R;, with the
same MBR, and the second entry in the leaf node A contains
segmented objects P, ()2, and Ry, with the same MBR. These
segmented objects with the same MBR are combined into a
single entry. These two features in the ZR+-tree can help to
resolve the unable-to-split problem illustrated in Fig. 2b, as
well as to reduce the number of leaf nodes after clipping
objects. As the proposed object clipping ensures zero overlap
in the entire search tree, the structure and the operations
become more orthogonal. Furthermore, this zero-overlap
design avoids the limitations associated with duplicating the
links between objects as discussed in Section 2.1. An example
of the ZR+-tree that can be compared to the R-tree and the R+-
tree in Fig. 1 is given in Fig. 4, where the object D is clipped
into D; and D, to achieve zero overlap and avoid the
construction limitations of the R+-tree.

The definition of the ZR+-tree is given in the form of a
revised version of the earlier definition of the R+-tree by
modifying property 1 and 2 as follows:

1. A leaf node has one or more entries of the form
(objectlist, RECT) where objectlist gives the identifiers
for each object that completely encloses or covers
RECT. Note that a single bounding rectangle with
multiple object ids is still counted as a single entry,
even though it requires extra space in the node. An
alternative is to use a pointer as objectlist to the entry in
a table that stores the corresponding object ids.

2. Aninternal node has one or more entries of the form
(p, RECT) where p points to a ZR+-tree leaf or
internal node R such that RECT is the MBR of all
(pi, RECT;) in R. Thus, the definition of the ZR+-tree
is more orthogonal as a result of eliminating the
difference in rules for the MBRs of leaf nodes and
internal nodes. However, the MBR of an object may
be fragmented, such that the union of all the
fragments equals the MBR of the object, and each
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Fig. 5. ZR+-tree solution to the problems in Figs. 2a and 2b.
(a) Clustering-based reinsert in ZR+-tree. (b) Object clipping in ZR+-tree.

of the fragments may be inserted into the same or
different leaf nodes.
In addition to the structure evolution, two operation
strategies are proposed to improve insertions on the
ZR+-tree and refine the indexing tree:

1. While performing an insert operation or a split
operation, different plans are evaluated in terms of
the the number of new object clippings and the
overall coverage. For insert operations, each possi-
ble way to expand existing nodes to cover the new
object is treated as a plan. Plans for splits are the
possible hyperplanes that correspond to any
dimension used to divide the node into two parts.
The plan with the least number of object clippings,
and then the smallest overall coverage, is selected
to perform that operation.

2. Once a failure of insertion (as shown in Fig. 2a) or a
split propagation caused by updating has occurred,
a clustering-based reinsert operation will be per-
formed to optimize the distribution of the nodes. The
reinsert will group the entries that are spatially
nearby and then construct new entries. The number
of new entries will be the same as the number of old
entries or the number of old entries plus one. If the
reinsert operation fails to enable the insertion of the
proper object, eventually, a compelled split, which
requires object clipping, will be performed to
accomplish the insert operation.

Figs. 5a and 5b show the ZR+-trees corresponding to the
R+-trees in Figs. 2a and 2b, respectively, which result from
the above modifications of properties. Note that in Fig. 5a, a
reinsert has been performed in order to build new entries.
These 10 objects are clustered into four groups based on
their positions. This new clustering of the entries avoids the
deadlock situation. Assured by the compelled split, the
insertion deadlock can be resolved. In Fig. 5b, if P is
inserted after O, P will need to be fragmented into three
rectangles (P, P», P;) before it can be inserted. If ) is then
inserted after P, similarly, @) will be fragmented into five
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Fig. 6. A clip array for objects in Fig. 5b.

rectangles, in which @, @2, and Qs are cut to correspond
with P’s existing rectangles, while @, and @Q; are
fragmented due to the rectangle rules. Similarly, R will be
fragmented into seven rectangles. In this way, the original
entry of O is now holding the fragments of P, (), and R, and
the whole node can be easily split with these fragments.

In order to support the proposed index tree, additional
metadata are required to store the information concerning
object clipping. When updating a data object, the operations
need to know how many pieces it has been clipped into and
in which leaf nodes they are located, and then expand the
operation to the remaining parts if necessary. An array of
linked structures is designed to maintain the object
information necessary to enable such operations. Each
clipped object is added as an element of the array, and all
the pieces of the object entries, represented by the pointers
to the leaf nodes that contain these pieces, will be linked in
this array element, as shown in Fig. 6.

As only one MBR and several ids for each clipped object
are stored in this clip array, it is feasible to store the whole
array in physical memory. Based on our experiments with
real data, on the average, each object is clipped into less
than 1.5 segments, so it is reasonable to assume that each
clipped object can use two double integers to denote the
MBR and 16 integers as eight links (two ids for each link). In
this case, 100,000 objects occupy only 4 Mbytes, which is
small compared to the memory size available in mainstream
computers.

3.3 Lockable Granules

Each leaf node in the ZR+-tree is defined as a lockable
granule. We also define an external lockable granule for
each ZR+-tree node as the difference between the MBR
of the node and the union of the MBRs of its children.
In order to reduce the overhead associated with lock
maintenance, objects are not individually lockable. The
clip array introduced as an auxiliary structure to store
the object clipping information does not need to be
locked because the locking strategies on leaf nodes
ensure the serializability of access for the same object,
and updating one object will not affect the other objects.
Thus, in the case of the indexing tree in Fig. 3, the leaf
nodes A and B, ext(A), ext(B), and ext(root) are defined
as lockable granules. ext(4) covers the region
A.mbr — (C.mbr U Dy.mbr U E.mbr), and ext(root) covers
the region MBR(A.mbrU B.mbr) — (A.mbr U B.mbr). The
above lockable granules cover the entire MBR of the tree
root. However, all of these lockable granules do not fully
cover any search windows that are partially or fully
located outside the MBR of the root. One option is to
define ext(T) as a lockable granule that covers all such

space. Another option is to define the ext(root) itself to
include ext(T). When inserting objects into such space,
either approach leads to the same level of concurrency,
since any insertion outside the root’s MBR leads to the
growth of the MBR for the root node and thus conflicts
with ext(root). However, for select and delete operations,
ext(root) and ext(T) do not necessarily conflict. For
example, a delete operation that overlaps with the lock
granules C, ext(A), and ext(root) can coexist with a
select operation that overlaps with E and ext(T). Thus,
defining ext(T) as a separate lockable granule leads to
better concurrency. It also effectively handles situations
where the tree is empty and the root is NIL.
Summarizing the above analysis, the lockable granules
in the ZR+-tree for GLIP are defined as all the leaf
nodes, external of the nodes, and external of the tree.

4 OPERATIONS WITH GLIP oN ZR+-TREE

To support concurrent spatial operations on the R+-tree and
its variants, a granular locking-based concurrency control
approach, GLIP, that considers the handling of clipped
rectangles is proposed. The approach is designed to meet
the following requirements:

1. The following concurrent operations should be
supported.

Select for a given search window. This is presumed
to be the most frequent operation. This operation
could result in the selection of a large number of
objects, though this may be only a fraction of the
total number of objects. Hence, it is desirable to have
as few locks as possible that must be requested and
released for this operation.

Insert a given object. Having redefined the
properties of the R+-tree with clipped objects, a
new algorithm must be provided for insertion in
the ZR+-tree.

Delete objects intersected with a search window. Since
an object in the ZR+-tree may be clipped and the
search window might not select all the fragments of
a given object, the algorithm is required to delete all
fragments of the selected objects in order to maintain
consistency.

2. The locking protocol should ensure serializable
isolation for transactions, thus allowing any combi-
nation of the above operations performed.

3. The locking protocol should ensure consistency
of the ZR+-tree under structure modifications. When
ZR+-tree nodes are merged or split in cases of
underflow or overflow, the occasionally inconsistent
state should not lead to invalid results.

4. The proposed locking protocol should not lead to
additional deadlocks.

Details of the algorithms are provided in the following

sections with formal algorithm descriptions.

4.1 Select

The select operation, shown in Algorithm 1, returns all
object ids given a search window W. It is necessary to place
locks on all granules that overlap with the search window
in order to prevent writers from inserting into or deleting
from these granules until the transaction is completed.
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Algorithm 1. Search Algorithm

Algorithm Select(W, T)

Input: search window W, ZR+-tree T
Output: set of objecteID O

O = {}; P = Troot
If (P is NIL) or (not(P.mbr N W))
return O
If W N Pmbr<>P.mbr // Root does not cover W
Lock(ext(T), S, Commit) / / Lock external of tree
Lock(ext(P), S, Manual) / / Lock the root
Stack L == { Pmbr n'W, P)}
//Traverse the indexing tree and lock/unlock the visited nodes
Loop until Lis &
(R, P) :=L.pop
For each i in Prect,
If Prect, " R Then
If PisLeaf Then
O =0 UPchild, // Add the objects that are not in results
Unlock(P, S)
Else
If P.child .isLeaf Then
Lock(P.child, S, Commit)
Else
Lock(ext(P.child,), S, Manual)
L.push({(P.rect, "R, P.child)}) // Put the child of P in stack
R =R - Prect,
If (not P.isLeaf) and (R =)
Unlock(ext(P),S) / / Release S Lock on ext(P) if not overlaps R
Return O

Selection starts by checking whether the search window
overlaps with ext(T'). If so, a shared lock is placed on ext(T),
thus preventing a writer from inserting data into this space. A
breadth-first traversal is then performed starting from the
root node and traversing each node whose MBR overlaps
with the search window. For each internal node that overlaps
with W, an S lock is placed on its external area. This lock is
released when all of its child nodes and its external granular
have been inspected and locked if necessary. For each
internal node, if the MBRs of its children do not fully cover
the search window W, an S lock will be kept on the external
granule for the node in order to prevent writers from
modifying this region. This ensures consistency within the
tree, as it prevents writers from modifying the internal node
until all the child nodes have been properly inspected and
protected. As discussed earlier, in order to reduce the number
of locks that must be placed and released, we neither perform
object-level locking, nor lock the corresponding objects in the
clip array for the select operation. Instead, shared locks are
placed on the leaf nodes that overlap with W. Since the same
object id may recur in the same leaf node or across different
leaf nodes, a set of object ids is maintained to avoid returning
the same object id more than once. This is consistent with the
expected result from a select statement. Finally, all the locks
on the granules that overlap with W are released once the
search is complete.

Fig. 7 illustrates the lock management for the window
query in Fig. 3. For a search window WS that overlaps with
C, E, and D, initially, an S lock will be placed on the root.
An S lock is then placed on the leaf node A and the lock on
the root is released. This prevents any other transactions
from modifying the root (by placing an X lock on it) until all
its children have been inspected. After the lock on the root
has been released, the entry for node B in the root can be
modified as long as the modification does not result in
overlap with A. Thus, manual duration S locks are used to
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1. Lock (root, S)
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Fig. 7. Locking sequence for WS in Fig. 3.

maintain consistency while at the same time maximizing
the degree of concurrency.

4.2 Insert

Compared with R+-trees, the insert operation for ZR+-trees
(Algorithm 2) takes into account additional considerations.
To illustrate the insert operation, we name the MBR of the
object to be inserted as W. First, consider all the fragments of
W that do not overlap with any other objects” MBRs. These
fragments must be inserted into the leaf nodes of the tree.
However, the fragments that intersect with existing objects’
MBRs may result in clipping these MBRs if they are not
equal. Considering the objects in Fig. 5b, if P is inserted after
O, P will need to be fragmented into three rectangles
(P1, P, Ps) before it can be inserted. Similarly, if @ were to be
inserted after P, the same clipping would also be required.
The number of fragments that an insertion will create is a
function of the gaps in the objects.

Algorithm 2. Insert Algorithm

Algorithm Insert(W, O, T)

Input: key W, object O, ZR+-tree T, queue of X locks to request M
Output: NIL

L:={}; P:=Troot; M :={}; Sz := {}
// Record required locks
If WNP.mbr<>P.mbr //root does not cover W
M.enqueue({ext(T), X, Commit})
L.enqueue({P, W})
Loop until L is &
(P, R) := L.dequeue
If P.isLeaf
Sy =5+ {P, R}
M.enqueue({P, X, Commit})
Else

If P.mbr covers R and !( T, P.rect; covers R)
M.enqueue({ext(P), X, Commit})
SC := minExtend(W, P) //Choose list SC in P to extend
to include W with minimum cost
and update MBRs (Algorithm 3)
L.enqueue({each node in S and its extended MBRY})
break
Else
n :=P.child; | P.childi covers R
L.enqueue(n, R) //Traverse down
// Request locks and insert object, or re-do if conflict occurs
If LockAll(M) / /Request all the X locks and check version
For every pair (P, R) in S,
P.child(P.entries) :== O
P.rect(P.entries++) :=R
If R<>W //The object is clipped
StoreClipArray(O, R, P) / /Store object in clip array
If P.entries > P.capacity //Overflow
Split(P) //If splits propagate to a node not in M then add the
node to M and restart from LockAll
Else
Insert(W, O, T) //Restart insert operation
Return
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The insert operation without concurrency control proto-
col proceeds as follows: First, a breadth-first traversal is
performed from the root node. When W is found to be
covered by node N but not any single child of N, the child
nodes of NV are selected to extend if NN is an internal node. If
SC is the set of child nodes for N, SC is partitioned into two
sets, S; and S5, such that S| contains all the child nodes
whose MBRs need not be changed, and \S; is the set of nodes
that must be changed in order to cover W. In order to select
the appropriate set of nodes to extend the MBRs, a heuristic
strategy is adopted to choose the fewest nodes involved and
then the smallest coverage. This leads to a relatively small
tree and a small coverage area, both of which contribute to a
better search performance by fitting more index to memory
and eliminating paths as early as possible.

No granules are locked during this traversal, although all
the granules that overlap with W are recorded. After the
traversal, X locks are placed on all of these lock granules in an
atomic manner. If the locks are successfully acquired, the
actual insertion can then be performed. Since the X locks are
retained on all these granules until the transaction is
complete, this guarantees that any other operations that need
totraverse any part of the path impacted by the insertion must
wait until the transaction is committed. At the same time,
since any active selection will hold S'locks on all the granules
that it has covered and update operations always attempt to
place S or X locks on the area they intersect, an insert
operation will only be performed when no active insertion,
deletion, or selection that overlaps with the insertion is
present, thus ensuring serializability.

There is still a risk that two insertion transactions 7} and
T, could be performed at the same time, following
intersecting paths and then waiting for X locks. If no
selections are active and 1) acquires the X locks first, it will
perform the insertion and then commit. Now, 75 can
acquire the X locks, but the path it had previously traversed
is dirty. In order to prevent T from performing an insertion
on this dirty data, a version number is maintained for each
node. All requests for an X lock implicitly pass the current
version of the node that the X lock is being requested for.
When the X lock becomes grantable, the current version
number is compared with the version number at the time of
the request. If they do not match, the lock is released and a
dirty signal is returned, causing the insert procedure to be
restarted.

Conflicts between insertions that could cause deadlocks
are avoided by simultaneously requesting all the X locks
needed by an insertion. With the proposed protocol, as part
of the insert operation, the insertion only holds X locks once
and requires no lock before or afterwards. Thus, no
deadlock can be induced using this protocol, since for any
deadlock to occur, the protocol would need to request a
conflicting lock while simultaneously holding other locks. If
the X locks are not requested at the same time, and the
insertion were to place X locks on each lockable granule it
traverses, it is possible that an X lock has been propagated
bottom-up by a node split in an insert operation, while at
the same time, a select operation is attempting to acquire an
S lock on the same node. This would cause a deadlock.

To conclude the insert algorithm shown in Algorithm 2,
the actual insertion is performed as follows: Pending
insertions into all the leaf nodes are performed first. At this
point, nodes that overflow are not split but only marked for
splitting. Using the minExtend function (shown in Algo-
rithm 3), the nodes in S, are then expanded to include the
new object W following an optimal plan with the fewest
number of nodes and the smallest size of area involved. The
node expansion is only logical, since they have not yet been
locked. Should the expansion fail, a reinsert function (to be
introduced in the next subsection) will be invoked to
reconstruct Sy. After the expansion, the new object W is
segmented into pieces that can be covered by the N nodes,
where N is the size of Sy. This process repeats until all the
segments of W have been inserted into leaf nodes. Even if the
resulting leaf nodes overflow after inserting W, the over-
flowed nodes are not physically split at this point but only
marked for splitting. Since S;.MBR does not overlap with
the MBR of any of its siblings, splitting S, into nodes will
only produce nodes whose MBRs do not overlap with their
siblings as long as the split does not extend the MBR of the
splitting region. A split algorithm that follows the approach
in [23] guarantees this. The node insertion is now completed,
and all the nodes that are to be locked will be X locked. The
protocol then splits each leaf node marked for splitting, and
inserts the new leaf node in the lowest level internal nodes. If
this insertion causes an overflow in the lowest level internal
nodes, they are not split immediately but only marked for
splitting. Once all the marked leaf nodes have been split, any
lowest level internal nodes that had been marked for
splitting are split. This splitting may propagate the tree as
required. Since not all the internal nodes are locked, this may
cause the split to propagate to an internal node that has not
been locked. In this case, this internal node is added to the
list of nodes that require X locks, and the tree is restored to
its original state before the insertion. The process is then
repeated as it waits for locks on all the nodes.

Algorithm 3. minExtended Function

Function: minExtend(W, T)

//Choose a set of nodes to include object W with minimum cost
Input: key W, ZR+-tree T

Output: NodeList SC

N:={};S5:={}
Loop until N = {T.child;}
P := the nearest child of T to W and not in N
N :=N+P
For all combinations of nodes in N
If the set of nodes SN can extend to cover W w/ o overlapping
S5 := SS+SN
IfSS <>
SC := solution in SS with least nodes and then least coverage
Break
IfSS=0
Lock(ext(T.root), X, Manual) //Lock this branch for re-insert
Re-insert(W, T)
Unlock(ext(T.root), X)
SC := minExtend(W, T)
Return SC
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Assuming that the update window WU in Fig. 7
indicates an object G to be inserted, this algorithm can be
processed as follows. In the step of recording required
locks, the leaf node B is selected to contain the object G and
recorded for X lock requests. After an X lock is placed on
the unchanged leaf node B, the algorithm modifies B by
adding the information for the object G. Finally, this X lock
is released before commission.

Clearly, if the select requests from other transactions
continue to arrive while the insertion is waiting for the
X locks to be granted, it is possible that the transaction that
is waiting for insertion never acquires its lock, resulting in a
starvation. To prevent this, a scheduling mechanism is used
to ensure S locks are granted on the resources that other
transactions are waiting for an X lock on, if and only if the
transaction that requests the S lock arrives before the X lock
request. The details of this policy are not discussed in this
paper, but interested readers may refer to [27].

4.3 Reinsert

In some cases, insertion may fail (as shown in Fig. 2a)
because of complex spatial relationships among existing
nodes. Moreover, propagated splits caused by updating
are difficult to avoid in update operations. A reinsert
function is therefore required to resolve any insertion
deadlock and alleviate split propagation. The objective of a
reinsert function is to decompose the existing nodes and
form new nodes rationally based on their spatial locations.
Compared with the existing reinforced insert operation in
R*-tree [2], this reinsert function focuses on redistributing
index entries of multiple sibling nodes rather than on
optimizing the distribution of the children of only one
node. Therefore, this reinsert operation can relieve the
deadlock situation illustrated in Fig. 2a, which requires
redistributing the objects with a common grandparent
node that the existing reinforced insertion cannot properly
handle. Ultimately, the reinsert method guarantees the
success of the insert operation by a compelled split.

Specifically, as shown in Algorithm 4, the reinsert
function works as follows: Given a set of entries from
K nodes (including the object to insert if the aim is to
resolve an insertion deadlock), a clustering algorithm is
used to generate the center entries of K clusters of the
entries. These K center entries are used to form K nodes
as the first level of a subtree. Consequently, the remaining
entries are inserted into this subtree based on their
minimal distances from any center entry. After inserting
all the entries, these nodes will replace the original nodes
in the ZR+-tree. If after this stage, the insertion still fails, a
compelled split (Algorithm 5) is performed to split one of
the K nodes, so that a subset of the K nodes can be
extended to cover the new object. During the processing
of the reinsert, an X lock will be requested on the parent
of the K nodes by its invoker to protect this subtree from
concurrent update operations.
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Algorithm 4. Reinsert Function

Function: Re-insert(W, T)

/ / Re-arrange the entries in T’s children according to their distribution
Input: key W, ZR+-tree T

Output: NIL

SC := {child nodes of T.root}; SCC := {children of SC and W}; C := Cen-
troid(T.root.rmb); SP:== &
P := the farthest mbr to C in SCC // Based on centroid-to-centroid dis-
tance
SP = SP+P
For N:=2 to SC.size
P:= the farthest mbr to SP in SCC
SP := SP+P
SP = cluster(SCC, SP) / / Find SC.size items from SCC as central objects
for each cluster using SP as feeds
T = construct(SP) // Construct SC.size children for T.root using each
node in SP as the only entry in each child
For every member n in SCC but not in SP, sorted by their minimal dis-
tance to any mbr in SP
Insert(n.mbr, n, T)
Compelled-split (W, T)// Split a child of T, to enable the insert of W
Return

Algorithm 5. Compelled-split Function

Function: Compelled-split(W, T)

// Split a child of T according to W’s location
Input: key W, ZR+-tree T

Output: NIL

SC = {child nodes of T.root}
P :=the node in SC can be split to include W with
fewest clipped object and then least extention
IfP <>/ / Compelled split is necessary

Split(P) / / Use the optimal plan to split node P
Return

The classical k-means algorithm is used for this cluster-
ing task because the number of clusters is fixed. Other
clustering algorithms that can return a fixed number of
clusters may also be applied. One essential step to reduce
the complexity of the clustering is to choose appropriate K
seeds to initiate the clustering. An optimal strategy is to
select K seeds that are as far away from each other as
possible. A similar idea has been applied in the CURE
clustering algorithm [9].

This clustering-based reinsert function can group the
entries according to their distributions. With the compelled
split, this function prevents insertion failures and also
alleviates the need for excessive propagated splits. Further-
more, the tree structure will be refined after applying the
reinsert function, because the affected objects are more
likely to be grouped into their natural spatial clusters,
regardless of the order of insertions.

4.4 Delete

The delete operation, as shown in Algorithm 6, works in a
similar way to the insert operation. For a delete operation,
since the same object may be fragmented and stored in
multiple leaf nodes, it is necessary to assure that all the
fragments of an object are deleted. A deletion window W
may not select all the object fragments; deleting only the
fragments that intersect with the deletion window can thus
leave residual fragments. As addressed earlier in Section 3,
a clip array is maintained to store object id and pointers to
the leaf nodes that store the fragments of the object. First,
all ids of the objects that intersect with the deletion
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window are selected. The corresponding elements in the
clip array are then read to locate all the fragments in other
leaf nodes, after which the object deletion is performed.
However, it is inefficient to read the clip array for each
selected object, because in many cases, the object MBR
may not be fragmented in the tree at all. An optimized
strategy is to store a bit to indicate whether the MBR in the
leaf node is the complete object MBR. The algorithm thus
needs to read the clip array only when the search window
selects a fragmented MBR.

Algorithm 6. Delete Algorithm

Algorithm Delete(W, T)

Input: deletion window W, ZR+-tree T
Output: NIL

O :={}; O1 :={}; P := T.root; V := {}; M := Clip Array; Stack L := {( P.mbr N
W, P)}
If (P is NIL) or (not(P.mbr N W))
Return
// Record required locks
If W P.mbr<>P.mbr //Root does not cover W
V.enqueue({ext(T), S, Commit}) //Lock external of tree
Loop until Lis & //Traverse the indexing tree
(R, P) := L.pop
For each i in P.recti
If P.recti " R Then
If P.isLeaf Then
O :=0 U P.child; //Add the objects that are not yet in results
O1 := Olu {leaf nodes in M that covers P.childi} //Add leaf
nodes from the object link in clip array
Else
If P.child.isLeaf Then
V.enqueue({P.childi, X, Commit})
L.push({(P.recti " R, P.child;)}) //Put the child of P in stack
R:=R-DP.rect;
If (not P.isLeaf) and (R # &)
V.enqueue({ext(P), S, Commit}) //S Lock on ext(P) if it overlaps R
For every node n in O1 //Lock all the leaf nodes that cover the objects to
be deleted
V.enqueue({n, X, Commit})
For every internal node n in T whose MBR will shrink or be removed
after deleting set O
V.enqueue({ext(n), X, Commit})
// Request locks and delete object, or re-do if conflict occurs
If LockAll(V) / /Request all the locks and check version
For each object nin O
Delete n in the leaf nodes in O1; Delete nin M
For each underflow leaf node n in O1
Merge(n) / /Propagate if necessary
Else
Delete(W, T) / /Restart the delete operation
Return

Since the delete operation requests X locks on the leaf
nodes that contain segments of the objects to be deleted, this
will conflict with the S locks placed by the select operation.
In cases where this delete operation does not cause nodes to
merge, all the lockable granules that intersect with the
deletion window are exclusively locked before the actual
deletion is performed. Once underflow occurs, X locks will
be placed not only on the underflow node but also on its
parent, as long as its MBR needs to be shrunk or removed
because of the underflow. Thus, any search that commits
after the deletion is complete will not retrieve the objects
affected by this deletion. The delete operation also requests
S locks on ext(P), where P is an internal node, and ext(P)
overlaps with the deletion window while not being
exclusively locked. Therefore, no new objects that intersect
with ext(P) can be inserted before the commitment of this

deletion. While accessing the clip array to find fragments of
the selected objects, X locks will also be requested on the
leaf nodes that cover these fragments, thus providing
phantom access protection.

The example in Fig. 7 can be used to illustrate the delete
algorithm by considering WU as a deletion window such
that all the objects that intersect with WU must be deleted.
In the step of recording required locks, the leaf node B is
recorded first since it covers WU. Next, the leaf node A is
recorded because it contains the object segment D;, whose
original object has another segment D, that intersects with
WU. After investigating the intersected objects and required
locks, X locks are placed on nodes A and B at the same
time. Both leaf nodes are then modified by removing D,
and D, accordingly. Meanwhile, the entry for D is deleted
from the clip array. At the time of commission, these X
locks will be released.

4.5 Analysis

Based on the proposed GLIP protocol, ZR+-tree operations
meet the requirements of serializable isolation, consistency,
and no additional deadlocks. Specifically, serializable
isolation is guaranteed by the strategy of requesting S locks
on reading and X locks at the same time on updating. These
locks are granted on the affected granules before the actual
actions and provide protection until the process is complete.
Therefore, the intermediate status of one operation cannot
be exposed to any other operations. The consistency
requirement is ensured by implementing version checking
and restarting the insertion or deletion when the version
does not match. This version checking prevents the update
operations from modifying a version of the ZR+-tree that
differs from the one investigated. Finally, the deadlock-free
in GLIP can be validated as Proof 1, based on the conclusion
that common resources are not accessed in opposing orders,
which can be proved by contradiction. A major benefit of
the proposed design is that phantom update protection is
assured by the ability to lock on different granules.

Proof 1: Deadlock-fee in GLIP.

Proof:

*"The select algorithm requests S locks following the tree traversal
from root to leafand then from left to right on the same level.

' The strategy of lock-at-one-time for insertion and deletion makes
sure that all the affected granules are exclusively protected in an atomic
manner. In other words, the X locks in one operation are either placed
on all the affected granules or pending until all these granules become
available for X locks.

" There is no deadlock if the shared resources are not accessed in the
opposite orders.

~.There will never be two operations in GLIP that exclusively hold a
potion ofthe resources required by each other.

Proved.

As the proposed GLIP protocol takes into account object
clipping, it can be extensively applied in the R+-tree and its
assorted variants. If it is applied in the R+-tree, the
necessary modification will be to simplify the clip array
until it contains only references to leaf nodes that cover the
same object. Because the R+-tree uses the reference to a
complete object as each entry in a leaf node, with this
change, GLIP provides phantom update protection in the
R+-tree.
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The ZR+-tree guarantees that if a query window is
entirely contained in the MBR of a leaf node, only a single
search path is followed. It also ensures that only one search
path will be followed for point queries. Neither of these is
true in R-trees. Therefore, given an R-tree and a ZR+-tree
with the same height, the ZR+-tree is likely to provide better
search performance, similar to that of the R+-tree. Not only is
following multiple paths inefficient, but a search in an R-tree
would also result in a point query locking multiple leaf
granules, thus reducing concurrency. Compared to the
R+-tree, the ZR+-tree refines the node extension function
in insertion, applies the reinsertion approach, and adopts the
orthogonal object clipping technique. In this way, the
ZR+-tree optimizes tree construction and removes insertion
and splitting limitations.

According to the definition, the number of entries in
ZR+-trees may be larger than the number of actual objects
due to fragmentation. These extra entries lead to additional
space requirements for the ZR+-tree and might also increase
the height of the ZR+-tree, which would possibly degrade
the efficiency of the search operation. In the worst case,
if the total number of leaf nodes in the ZR+-tree that can be
extended to cover part of the inserted object W without
overlapping with other nodes is N, neglecting potential
splits, W will need to be fragmented into at most N
fragments. Note that this worst case is applicable only when
no fragments in W that are covered by extending a leaf
node in N can be covered by extending another leaf node in
N. When fewer leaf nodes are covered by the inserted
window, the number of fragmentations due to the insertion
decreases. Furthermore, if the corresponding segments
from different objects have exactly the same MBR, they
are treated as a single entry in the leaf node. This approach
keeps the number of entries in the ZR+-tree similar to or
smaller than for the R+-tree, which has been validated by
our experiments. As a result, a ZR+-tree where the size of
the data set varies exponentially could be expected to
increase the height linearly, given a suitable fan out.

It is significantly more complex to implement insert and
delete operations for ZR+-trees, and these operations also
consume extra CPU cycles and I/O operations. Thus, the
insert and delete operations could be expected to be
slower than their R-tree and R+-tree counterparts. How-
ever, the complexity of the algorithm implementation itself
can be neglected for practical applications if the increase in
performance for the select operation is significant, espe-
cially since the implementation is a one-time cost.

Summarizing the above analysis, implementing GLIP on
the ZR+-tree can provide an efficient, stable, and extendable
multidimensional access method that enables concurrent
operations and is expected to outperform existing methods
for searching-predominant applications.

5 EXPERIMENTS

In order to evaluate the performance of the proposed
concurrency control protocol, GLIP, two sets of experiments
were conducted as illustrated in Fig. 8. The first set
compared the construction and query performance of the
ZR+-tree, the R+-tree, and the R-tree, while the other
compared the throughput of GLIP on the ZR+-tree and
Dynamic Granular Locking on the R-tree. The experimental
design consists of four components: selecting/generating
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Fig. 8. Experimental design.

benchmark data sets, constructing multidimensional in-
dices, executing query operations, and measuring respec-
tive performance. The experiments compared the ZR+-tree
and various indexing trees using two benchmark data sets
from the R-tree Portal [26], namely, major roads in Germany
(28,014 rectangles), roads in Long Beach County, California
(34,617 rectangles), and a uniformly distributed synthetic
data set (50,000 rectangles). In the real data sets, rectangles
were used to indicate segments of the roads. Relatively
speaking, the data distribution of the roads in Long Beach
County is skewed, while the roads in Germany are more
globally uniformly distributed. The synthetic data set is
uniformly distributed with a tunable density, which means
that every point in the space is covered by a certain number
of rectangles. As shown in Fig. 8, indexing trees were built
for these data sets by varying size, controllable capacity, and
fill factors. In the query operation stage, some data were
randomly taken from each of the above data sets for
insertion. The queries to be executed in both sets of
experiments were generated by randomly choosing the
query anchor from the data file and generating a bounding
box by varying query window sizes. The numbers of disk
accesses during execution were collected as the measure in
the first set of experiments. In the second set of experiments,
the write probability and concurrency level were changed to
obtain the corresponding throughput.

The experiments were conducted on a Pentium 4 desktop
with 512 Mbytes memory, running a Java2 platform under
windows XP. The implementations of the R-tree, the R+-tree,
and the ZR+-tree were all based on the Java source package
for R-tree obtained from the R-tree portal [26].

The first set of experiments evaluated the construction
and query performance of the ZR+-tree. In these experi-
ments, different data sizes were selected to construct the
ZR+-trees, R-trees, and R+-trees. In evaluating the query
performance, I/O cost is the determining factor, because the
query process on the ZR+-tree does not introduce extra
computation compared to the R+-tree. The disk accesses of
the point queries were recorded by varying the number of
rectangles. Additionally, the standard deviations of the
number of disk accesses were calculated to compare the
stability of the ZR+-tree and the R+-tree. Consequently,
queries with different window sizes were executed on the
constructed trees in order to record the execution cost. From
the analysis of the algorithm given in the previous section,
both the point query and window query performances of
ZR+-trees are expected to be better than those of the R-trees.
The number of disk accesses in this set of experiments was
computed to be the average value for 1,000 random queries
in order to reduce the impact of uneven data distribution.
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Fig. 9. Construction failure in R+-tree on Long Beach data.

The second set of experiments evaluated the throughput
of GLIP on the ZR+-tree by comparing it with dynamic
granular locking on the R-tree [4]. The throughputs for the
two trees were evaluated under different write probabilities
and concurrency levels.

5.1 Query Performance

Point query and window query operations were executed
on the R-tree, the R+-tree, and the ZR+-tree in order to
compare their query performance. In this set of experi-
ments, the capacity of the index trees was set to 100, the fill
factor was 70 percent, and the data size and query size
varied. The density of the synthetic data was set to 4.
Building the three types of indexing trees on two real data
sets, the height of the trees was always three even for the
R-tree, which had the least number of entries in leaf nodes.

5.1.1 Point Queries

According to the design, the performance for point queries
on the ZR+-tree should be better than that on the R-tree and
comparable to that on the R+-tree. Fig. 10 compares the
number of disk accesses of point queries for each of these
three indexing trees, as well as the standard deviation of disk
accesses for ZR+-trees and R+-trees. The left figures show
the number of average disk accesses on the y-axis, and the
size of data sets on the z-axis. The right figures plot the
standard deviations on the y-axis and the size of data sets on
the z-axis. While the disk accesses of the R-tree increases
along with the size of the data set, the point query
performance of the ZR+-tree and the R+-tree remains much
lower than that of the R-tree as the number of objects
increases. In both the roads of Long Beach County and the
synthetic data sets, the number of disk accesses of the ZR+-
tree remains almost constant, indicating that its performance
is quite scalable. Interestingly, while constructing R+-trees,
the program encountered a construction failure when the
data size reached around 19,000 because of an insertion
deadlock in the roads of Long Beach County data set. To
make the comparison complete, this particular object was
removed and repaired R+-trees were used (represented by a
dashed curve in Fig. 10b). Fig. 9 shows the deadlock
situation in detail, where the shaded rectangle indicates
the object to be inserted, and the gray rectangles are the
internal nodes in the R+-tree. In this situation, the nodes
cannot be extended to cover the object without overlapping
with each other. Although the I/O costs of the ZR+-tree and
the R+-tree are similar, the ZR+-tree consistently achieved
lower or equal (only twice) standard deviations in all three

6 - - «
3
55| = R-Tree 2 || = R+ -Tree
2 sf| —o— R+-Tree g —&— ZR+ -Tree
§ 45| —— ZR+ -Tree 5
4 - =
A 35 -
[=] g 3+
=i & o
o "] =
L 25" —— 8 o1
£4 7 -t E
L Z o
15 =]
hs . . . . X L 5 .
0 05 1 15 . 2 25 = (] 05 25
Number of Objects wot 8 Number of Objects x10*

™
2

—&— R-Tree I3
2 8] —e— Re -Tree § 05 R+ <Tree.
2 71| —o— R+ Tres (Fixeq) L ousl| T ZRe Tree
§ —+— ZR+ -Tree -
<6 A o4
% %
a° Soas-
b e
< S o3 =
. =]
s Soas
< =
2 é’ 02
T TP L T T BT
Number of Objects o S Number of Objects x10t
. T 8 1
2
I R -Tree §o.95- —6— R+ -Tree ]
3 Q ke o
g 45| Ri-Tree < | —4— ZR+ -Tree
g || —+—ZR+-Tree = Hoss- 1
< 4 /B_E/ e - 4
- -
& st e Som 1
S . B o7 1
B = Soss- 1
b 25 hi\é@-rj&ﬁfy b o
z < E o ]
2 o
RNoss - ~
1 : : ] . |
85 1 5 2 25 3 35 4 45 5 85 S0 1 15 2 25 3 as 4 45 5 &5
Number of Objects xot 3 Number of Objects xo*

(c

~

Fig. 10. Point query performance of R-tree, R+-tree, and ZR+-tree.
(a) Point query on major roads of Germany. (b) Point query on roads of
Long Beach County. (c) Point query on synthetic data.

data sets, which indicated that the ZR+-tree processed point
queries more stably. An examination of these outputs
showed that in most of the tested cases, the point query
performance of the ZR+-tree was much better than the R-tree
in terms of I/O cost and more stable than the R+-tree in
terms of the standard deviation.

5.1.2 Window Queries

For window queries, the full data sets were used in the
experiments (28,014 rectangles for Major German Roads,
34,617 rectangles for Long Beach County Roads, and
50,000 rectangles for the synthetic data). As Fig. 11a (left)
reveals, the ZR+-tree has a similar curve of average disk
accesses to that of the R+-tree, but the performance is
consistently better. It also performs better than the R-tree
when the query window size is set to be no larger than
1.2 percent of the data space. When the window size
increases, because the size of the leaf nodes in the ZR+-tree
and the R+-tree are usually smaller than those in the R-tree,
which allows for overlap among the nodes, window queries
in the ZR+-tree and the R+-tree will cover more leaf nodes
than in the R-tree, thus increasing the number of disk
accesses. For the same reason, the R+-tree performs worse
than the R-tree in Fig. 11b for query windows larger than
0.2 percent in terms of disk accesses. In all three of the data
sets, the performance of the ZR+-tree is generally better than
the R-tree and the R+-tree, with the windows size varied
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Fig. 11. Window query performance of R-tree, R+-tree, and ZR+-tree.
(a) Window query on major roads of Germany. (b) Window query on
roads of Long Beach County. (c) Window query on synthetic data.

from 0.1 percent to 2 percent of the data set. The only
exception is when the window size is larger than 1.2 percent
in the German Roads data set. Furthermore, the R+-tree has
higher standard deviations than the ZR+-tree for the same
query window sizes, shown in the right plots in Figs. 11a,
11b, and 11c. In most real applications, the size of the query
window is much smaller than 1 percent of the whole data set,
and these results showed that the ZR+-tree outperformed
both the R+-tree and the R-tree for most window queries.

5.2 Throughput of Concurrency Control

The performance for concurrent query execution was
evaluated both for the R-tree with granular locking and
the ZR+-tree with the proposed GLIP protocol. In order to
compare these two multidimensional access frameworks,
two parameters, namely, concurrency level and write
probability, were applied to simulate different application
environments on the three data sets. Here, concurrency
level is defined as the number of queries to be executed
simultaneously, and write probability describes how many
queries in the whole simultaneous query set are update
queries. The execution time measured in milliseconds was
used to represent the throughput of each of the approaches.
According to the algorithm analysis in the previous section,
the ZR+-tree with concurrency control should perform
better than the R-tree with granular locking when the write
probability is low. This performance gain comes from not
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Fig. 12. Execution time for different concurrency levels. (a) Synthetic:
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Level: 30. (d) Roads of Ger.: Con. Level: 50. (e) Roads of LB: Con.
Level: 30. (f) Roads of LB: Con. Level: 50.

only the outstanding query performance of the ZR+-tree but
also the finer granules of the leaf nodes in the ZR+-tree. The
size of the queries executed was tunable in this set of
experiments. The data sets used in these experiments were
the same as those used in the query performance experi-
ments, except that the size of the synthetic data set was
reduced to 5,000 in order to assess the throughput in
relatively small data sets compared to the real data sets.
Fig. 12 shows the execution time costs for the three data
sets with a fixed concurrency level and changing write
probabilities when the query range is 1 percent of the data
space. The concurrency level was fixed at two levels 30 and
50 as representative levels, while the write probability varied
from 5 percent to 40 percent. The y-axis in these figures
shows the time taken to finish these concurrent operations,
and the z-axis indicates the portions of update operations in
all the concurrent operations in terms of percentages. Both
approaches degrade the throughput when the write prob-
ability increases. Comparing the performance from the
different write probabilities, GLIP on the ZR+-tree performs
better than granular locking on the R-tree when the write
probability is small. When the write probability increases,
the throughput of the concurrency control on the R-tree
comes close to and exceeds that of the ZR+-tree. Specifically,
when the concurrency level is 30, the throughput of the ZR+-
tree is better with a write probability lower than 30 percent in
real data sets. When the concurrency level is raised to 50, the
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Fig. 13. Execution time for different write probabilities. (a) Synthetic:
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concurrency control on the ZR+-tree outperforms the R-tree
in cases where the write probability is less than 35 percent.
From this set of figures, it can be concluded that in reading-
predominant environments, GLIP on the ZR+-tree provided
better throughput than dynamic granular locking on the R-
tree, although this advantage tended to decrease as the write
probability increased.

Fig. 13 illustrates how the concurrency control protocols
perform with fixed write probabilities under different
concurrency levels. The y-axis shows the time costs to finish
the concurrent operations in milliseconds, and the z-axis
represents the number of concurrent operations. The write
probabilities were fixed as 10 percent and 30 percent as
representative values to reveal trends, while the concurrency
level varied from 10 to 150. In these experiments, GLIP
on the ZR+-tree consistently performed better than or similar
to the DGL on the R-tree. When the concurrency level
increases, the advantage of GLIP on the ZR+-tree becomes
more and more significant compared to DGL on the R-tree.
As these figures show, the advantage in the execution time of
GLIP on the ZR+-tree is significant when the concurrency
level is more than 50 in the two real data sets and more than
10 in the synthetic data set, with a write probability of
10 percent. All the figures in Fig. 13 show a similar trend,
namely, that the advantage of GLIP on the ZR+-tree increases
as the number of concurrent operations increases and is

particularly significant for evenly distributed data sets
compared to DGL on the R-tree.

To summarize our experimental results on both query
performance and concurrency control throughput, the
ZR+-tree outperformed the R-tree in terms of both point
query and window query costs and outperformed the R+-
tree in terms of both I/O cost and the stability of both point
queries and window queries. Comparing the concurrency
control protocols, GLIP on the ZR+-tree performed better
than dynamic granular locking on the R-tree, especially with
high concurrency and low write probability. It is therefore
particularly suited to applications that access multidimen-
sional data with high concurrency and low write probability.

6 CONCLUSION

This paper proposes a new concurrency control protocol,
GLIP, with an improved spatial indexing approach, the
ZR+-tree. GLIP is the first concurrency control mechanism
designed specifically for the R+-tree and its variants. It
assures serializable isolation, consistency, and deadlock free
for indexing trees with object clipping. The ZR+-tree
segments the objects to ensure every fragment is fully
covered by a leaf node. This clipping-object design provides
a better indexing structure. Furthermore, several structural
limitations of the R+-tree are overcome in the ZR+-tree by
the use of a nonoverlap clipping and a clustering-based
reinsert procedure. Experiments on tree construction,
query, and concurrent execution were conducted on both
real and synthetic data sets, and the results validated the
soundness and comprehensive nature of the new design. In
particular, the GLIP and the ZR+-tree excel at range queries
in search-dominant applications.

Extending GLIP and the ZR+-tree to perform spatial
joins, KNN-queries, and range aggregation offer further
attractive possibilities.
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