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Abstract - Moving object management approaches, especially 
continuous query processing techniques, have attracted significant 
research effort due to the broad usage of location-aware devices. 
However, little attention has been given to designing concurrency 
control protocols for continuous query processing. Existing 
concurrency control protocols for spatial indices are based on a 
single indexing tree, while popular continuous query processing 
approaches require multiple indices. In addition, continuous 
monitoring combined with frequent location updates challenges 
the development of serializable isolation for concurrent index 
operations. This paper proposes an efficient concurrent 
continuous query processing approach C3, which fuses scalable 
continuous query processing methods with lazy update techniques 
on R-trees. The proposed concurrency control protocol, equipped 
with intra- and inter-index protection, assures serializable 
isolation, consistency, and deadlock-freedom. The correctness of 
the proposed protocol is theoretically proven, and the experiment 
results demonstrated its scalability and efficiency. 

I. INTRODUCTION 
The broad usage of location-aware devices, such as GPS and 

RFID, has promoted the applications of moving object 
management. The moving objects in the real-world need to be 
modeled and organized to efficiently process different queries. 
Examples of such applications include vehicle monitoring [1], 
[2] and flight tracking systems [3], [4] that manage real-time 
moving objects. To efficiently support these emerging 
applications, several spatial/spatial-temporal access methods 
have recently been proposed by accelerating frequent updates 
with hashing [5] and lazy update techniques [6]-[8]. In 
addition, continuous queries on moving objects have attracted 
significant research efforts due to their potential applications 
and the corresponding requirements on efficient data 
management. An example of continuous queries could be 
“tracking all ambulances within two miles to each patrol 
vehicle.” To monitor a particular area of interest, it is 
inefficient to continuously reissue these range queries while the 
locations of ambulances and patrol vehicles keep changing. 
Several solutions have been proposed to support efficient 
continuous query processing via indexing both objects and 
queries [9]-[11].  

To apply frequent location update and continuous query 
processing techniques in large scale multi-user systems, 
specific concurrency control protocols have to be designed to 
ensure the consistency of the database and the validity of query 
results. As stated in the Lowell Report [12], “We face major 
changes in the traditional DBMS areas, such as ..., concurrency 
control, ..., technology keeps changing the rules. These 
changing ratios require us to reassess storage management and 
query processing algorithms.” Continuous query on moving 
objects in multi-user environments raises the following 
concurrency challenges: (1) Conflict from frequent movement: 

Frequent location updates and searches can cause conflicts 
when accessing spatial indices, and consequently can lead to 
inconsistent results. (2) Conflict by continuous monitoring: The 
conflicts could become even more serious while processing 
continuous queries, because both the objects and queries have 
to be monitored to refresh the results. (3) Inconsistency among 
indices: As scalable continuous query processing requires 
multiple indices, not only the consistency within an index, but 
also among these indices, has to be assured. Otherwise, the 
database may either miss queries or objects, or return incorrect 
results.  

Existing concurrency control protocols only protect 
fundamental operations on a single indexing tree. Fig. 1 
provides an example of inconsistent query results using these 
protocols. In this example, a patrol helicopter Q keeps tracking 
police vehicles within a given range of 0.5 mile. t1 and t2 are 
two consecutive query report timestamps. A and B are two 
police vehicles 1 mile away from each other, driving in the 
same direction as the helicopter. We assume that all location 
updates are submitted on time, and the query results are 
retrieved every time after the location updates at that timestamp 
have been submitted. Based on the existing spatial concurrency 
control protocols, a location update in this system consists of 
three atomic sub-operations: delete an old location, insert a new 
location, and refresh query results. With random execution 
orders of these sub-operations, location updates and query 
reports may exhibit inconsistent status [13]. Possible query 
result sets of Q at t2 include Ø, {A}, {B}, or {A,B}, within which 
only {A} is correct. Further details are discussed in Section 
III.B. Without proper serializable isolation, the above 
inconsistent scenarios may occur and thus cause serious 
consequences in critical applications, like flight control and 
battlefield information systems, where the relative locations of 
objects and queries are important. All these inconsistent 
scenarios can be avoided by a well designed concurrency 
control protocol for serializable continuous query processing. 

 
Fig. 1 Inconsistency of Continuous Query with Atomic Sub-operations. 

<Q, t1> <Q, t2> 

<B, t1> <B, t2> 

Correct result for Q at t2: A 
Possible results if without concurrency control:  

  Pseudo disappearance: on A or A&B � Ø, on B � {A}; 
  Back order: on A � Ø, on B � {A,B}, on A&B � {B}; 
  Pre-order: on A or B or A&B�{A}. 

<A, t1> <A, t2> 
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The existing concurrency control protocols for spatial 
indices primarily consider fundamental operations (including 
searches, inserts, and deletes) on a single index. Record-
oriented transaction management approaches [14] can protect 
complex operations. However, they are inefficient for 
processing continuous queries because they either lock 
resources until commit (2-phase locking) or result in a large 
number of roll-backs (version-based approaches) in the moving 
object scenario. Therefore, the lack of efficient concurrency 
control protocols for continuous queries limits the applicability 
of the moving object management systems in the real world. 

This work proposes a Concurrency Control protocol for 
Continuous queries (C3) based on an efficient spatial access 
framework for continuous query processing. To the best of our 
knowledge, this is the first approach that applies lazy update 
techniques on scalable continuous query processing, and 
provides efficient serializable isolation on operations involving 
both on-disk and in-memory indices. Experiments 
demonstrated 160 ~ 380% performance gain from different lazy 
update buffers. Furthermore, the proposed concurrency control 
protocol exhibited up to 78% improvement when compared 
with existing index concurrency control integrated with record-
oriented protocols. The major contributions of this paper are as 
follows:  
� An efficient continuous query processing approach with 

lazy update techniques for moving objects is proposed 
based on R-trees.  

� A sophisticated concurrency control protocol C3 is 
designed to assure serializable isolation, consistency, and 
deadlock-freedom for moving object indices. 

� The correctness of the proposed concurrent operations is 
formally proven by analyzing their locking sequences and 
durations.  

� The scalability and efficiency of the proposed framework 
were validated by a set of extensive experiments on 
benchmark datasets. 

The rest of the paper is organized as follows: Section II 
reviews the related work on concurrency control protocols and 
moving object management. Section III illustrates the 
application scenarios for the proposed approach, and introduces 
the indexing structure and concurrency control protocol in this 
framework. The detailed algorithms for the concurrent 
operations are designed in Section IV. The correctness is 
analyzed in Section V. Section VI evaluates the performance of 
the proposed approach on benchmark datasets. Finally, Section 
VII concludes our work and suggests future directions. 

II. RELATED WORK 
This section summarizes representative research 

achievements on the concurrency control on R-trees, frequent 
update for R-trees, and continuous query processing. 

As one of the most popular multi-dimensional indexing 
structures, the R-tree [14] provides a robust tradeoff between 
efficiency and implementation complexity. Variants of the R-
tree [15], [16] have been designed to optimize the indexing 
structure. To make the R-tree family applicable to real world 
systems, concurrency control protocols have been proposed to 
resolve the inconsistency in multi-user environments. The lock-
coupling based algorithms [17], [18] release the lock on the 

current node only when the next node to be visited has been 
locked while processing search operations. To prevent the 
phantom update on the R-tree, the dynamic granular locking 
(DGL) has been proposed [19], where the empty space in any 
tree node can be locked as an external granule. For concurrent 
operations in read-dominant applications, GLIP [20] has been 
proposed to provide phantom protection on the R+-tree and its 
variants. 

R-trees are usually considered as costly for updating, which 
makes them unsuitable for processing moving objects. 
Techniques utilizing hashing and lazy update have been 
designed to reduce the update cost of the R-tree and its variants. 
Table I lists several approaches for efficient update on R-trees 
and the corresponding techniques applied. The Frequent Update 
R-tree (FUR-tree) [5] processes delete operations directly from 
leaf nodes and simplifies insert operations if the location 
change is small. Lazy update approaches utilize buffer memory 
to reduce the I/O cost. The R-tree with update memos, RUM-
tree [8], applies main memory buffer to cache delete operations, 
so that they can be processed later when the particular leaves 
are accessed. Lazy group update on R-tree, LGUR-tree [7], 
caches not only delete operations, but also insert operations. 
Another approach, the RR-tree, constructs a memory-based 
buffer tree in addition to the disk-based R-tree to perform the 
lazy group update operations [6].  

TABLE I. TECHNIQUES FOR EFFICIENT R-TREE UPDATE. 
 FUR-tree [5] RUM-tree [8] LGUR-tree [7] RR-tree [6]
Leaf node Hashing �    
Operation Buffer  � �  
In-memory Tree    � 
Continuous query is a common type of query that keeps 

monitoring moving objects in a certain area. One of the most 
challenging tasks in continuous query processing is to answer 
moving queries over moving objects. Several approaches have 
been proposed to tackle this problem by indexing both objects 
and queries. SINA [9] applies hashing techniques to join in-
memory moving objects and queries, and performs further joins 
with on-disk objects and queries. SINA processes location 
updates in batches for optimal I/O costs. Another approach, 
MAI [10], constructs motion-sensitive indices for objects and 
queries, so that the update frequency can be reduced and 
prediction queries can be supported. A generic framework for 
continuous queries on moving objects [11] has been proposed 
to optimize communication and query re-evaluation due to 
frequent location updates. 

Existing concurrency control protocols for the R-tree [19], 
[20] are neither sufficient to protect scalable continuous queries, 
nor suitable to handle the R-trees with lazy update buffers. The 
former requires protection on two independent indices, whereas 
the latter needs to assure the consistency on both in-memory 
and on-disk indices. It is not a trivial task to fuse concurrency 
control, continuous query, and lazy update techniques into a 
real-world moving object management system. Concurrent 
continuous query processing on moving objects has been 
proposed on a B-tree-based framework [13]. But it does not 
consider the operation protection over buffers. One potential 
solution is to adopt record-oriented transaction management 
techniques such as 2-phase locking (2PL) or versioning 
approaches [21] on indices. However, the 2PL strategy tends to 
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lock the resources until the commit point, which performs 
similarly to the sequential execution on indices. The versioning 
approach requires a large number of different versions in 
frequent update scenarios, and thus leads to frequent undo/redo 
operations. The focus of this paper is to design an efficient 
concurrent continuous query processing approach on the R-
tree-based access methods, such that frequent updates and 
continuous moving queries on moving objects are supported. 

III. PRELIMINARIES 
This paper provides a solution for concurrent continuous 

range queries on multi-dimensional moving object databases. In 
this environment, each range query keeps monitoring a spatial 
window and refreshing query results based on the object and 
query movement. Concurrent operations supported in this 
system include object location updates, query location updates, 
and query reports. An object location update operation inputs 
both the old and new locations of a spatial point, and updates 
the object database, object index, and query results. Similarly, a 
query location update operation inputs both the old and new 
positions of a spatial query window, and updates the query 
database, query index, and query results. A query report returns 
a set of data objects that currently overlap with a given query. 
These operations should not interfere with each other, and the 
outputs of query report operations should reflect the current 
consistent state of the database. Concurrent fundamental 
operations including insert, delete, and search can be inferred 
from the continuous query processing in C3. 

To achieve scalability, three indices are utilized in this 
design, for moving objects, moving continuous queries, and 
query results, respectively. The index for query results is the 
join of the indices of objects and queries, and is consistent with 
the updates on these two indices. The consistency of these 
indices is assured by a concurrency control protocol.  

The proposed C3 works for the R-tree-based spatial access 
methods with lazy updates. This access method comprises the 
features of both the lazy group update and update memo 
techniques, so the proposed protocol can work on those R-trees 
with any of these techniques for both continuous and snapshot 
queries. In order to focus on the concurrency control protocol, 
the access method is generalized by only maintaining the 
current locations of queries and objects. However, it is 
convenient to extend the concurrency control protocol to 
velocity-sensitive indices, such as MAI [10]. Furthermore, C3 
can be generalized to a basic model that consists of three 
indices, two independent indices and the third as the joint of the 
first two. The updates on either one of the independent indices 
will be reflected in the joint results. The proposed protocol can 
be applied on this generalized structure for serializable 
isolation. 

To specify the problem to be solved, several assumptions for 
the application environment are made: 
� Point objects: Moving objects are represented by spatial 

points; each object reports its new location to the database 
during movement.  

� Window queries: Moving queries are represented by their 
query windows (spatial boxes); each query reports its new 
query window to the database during movement.   

� Lock manager: There exists a lock manager to support 
different lock types and to maintain locks. It has a system 
counter to assign a unique timestamp to each operation. 

In addition, we assume that the operations submitted to the 
database are processed without timeout restriction. The above 
assumptions are practical in real-world applications. Some 
previous work, such as SINA [9], adopted a different approach 
that handles location updates in batches. With our assumptions, 
new locations are updated immediately after being reported. 
This work aims to assure the continuous consistency between 
query results and movements; the relative positions of items are 
important in many applications where concurrency control 
should be applied. For these applications, our approach has the 
advantage of handling updates without losing movement details 
(e.g., missing trajectories of fast-moving objects/queries, 
returning incorrect results due to aligned update time). 
Meanwhile, using the generalized 3-index model, the proposed 
concurrency control protocol can be integrated into a system 
like SINA for concurrent operations in batches. Based on these 
assumptions, the design of access methods and the 
corresponding concurrency control protocol are introduced in 
the following subsections. 

A. Access Framework 
The proposed concurrency control protocol is based on a 

generalized spatial access framework that integrates the 
existing techniques for frequent update and continuous query 
processing. As summarized in Table II, the generalized access 
method applies two R-trees with lazy group update for insert 
operations and with update memo for delete operations. One R-
tree is constructed for indexing moving objects (O-tree, shown 
in Fig. 2) and the other is for indexing moving queries (Q-tree, 
shown in Fig. 3). The construction methods of O-tree and Q-
tree are exactly the same. In addition to O-tree and Q-tree, 
there is a hash-based array, Q-result (shown in Fig. 4), to store 
all the results for continuous range queries.  

On both O-tree and Q-tree, the lazy group update requires 
one insert buffer I-buffer (dashed boxes connected to each non-
leaf node in Fig. 2) for each non-leaf node. I-buffers temporally 
store inserted objects or queries on an appropriate level, and if 
full, push the largest group of inserted objects or queries down 
to the particular I-buffer on the next level or to the leaf node 
[7]. Each entry of an I-buffer has the form of (Oid/Qid, MBR, 
target_child, timestamp).  

TABLE II. COMPONENTS IN INDEXING STRUCTURE. 
Component O-tree Q-tree Q-result 
Function Index moving objects Index continuous 

queries 
Store continuous 
query results 

Implementation 
techniques 

I-buffer to cache 
insertion; 
D-buffer to cache 
deletion 

I-buffer to cache 
insertion; 
D-buffer to cache 
deletion 

Hash array 

On the other hand, efficient updates need a delete buffer D-
buffer (dashed box beside the tree in Fig. 2) for each R-tree. D-
buffers cache the delete operations by recording the 
object/query IDs, the number of obsolete records for that ID, 
and their latest timestamps, and remove the obsolete records in 
leaf nodes when processing garbage collection [8]. Each entry 
of a D-buffer has the form of (Oid/Qid, #_obsolete, timestamp).  

On either O-tree or Q-tree, a range search needs to traverse 
the R-tree with I-buffer to locate records overlapped with the 
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search range. In this structure, search results can appear not 
only in leaf nodes, but also in I-buffers. Before outputting the 
objects, the D-buffer has to be checked to remove obsolete 
objects from the results. An insert operation on either index tree 
first tries to insert a given item into the I-buffer associated with 
the root node of the R-tree. If the target I-buffer is full, it will 
be re-organized by: 1) removing obsolete items by checking the 
D-buffer; 2) executing lazy group update to push items into an 
I-buffer on the next level, whose associated node is chosen to 
include this item based on the R-tree insertion algorithm, or 
into a leaf node if it reaches the leaf level of the R-tree. A 
delete operation on either of these indexing trees only needs to 
add this delete record to the D-buffer with the current 
timestamp. A D-buffer can be cleaned by visiting the leaf nodes 
to remove obsolete items. The sizes of the I-buffers and D-
buffers are much smaller than that of the trees. The impact of 
buffer size on location updates has been studied in [7], [8]. 

 
Fig. 2 An Example of O-tree with I-buffers and D-buffer. 

 
Fig. 3 An Example of Q-tree with I-buffers and D-buffer. 

Q-result (shown in Fig. 4) is a hash-based array to store all 
the results for continuous range queries. It is hashed by query 
IDs, and each particular entry corresponds to a continuous 
query. Each entry of Q-result is in the form of (Qid, obj_list), 
corresponding to a query ID and the list of objects covered by 
the query. The obj_list also contains the timestamp of each 
object in the list. The instance of Q-result in Fig. 4 reflects the 
data and query sets in Fig. 2 and Fig. 3 accordingly. For 

example, the query Q2 covers the object D, therefore the entry 
Q2 in the Q-result contains D. A query report on Q2 can 
directly retrieve D from the Q-result without accessing the 
indexing trees. 

 
Fig. 4 Q-result for Objects in Fig. 2 and Queries in Fig. 3. 

The continuous queries on this indexing framework are 
processed via three operations, query report, object location 
update, and query location update. The details of these 
operations are discussed in Section IV. 

B. Concurrency Control Protocol 
Continuous query processing requires an appropriate 

concurrency control protocol to ensure valid results. Take the 
scenario in Fig. 1 as an example, inconsistent results are caused 
by unserializable processing schedules. Suppose each 
movement contains three atomic phases supported by existing 
protocols: D for the deletion of an old location, I for the 
insertion of a new location, and R for refreshing query results. 
And the atomicity of each single phase is assured by an 
appropriate concurrency control protocol in place. In addition, 
let qRt2 denote the query report for Q at t2, which is also atomic. 

The situation that returns empty set at t2 is called pseudo 
disappearance, because the vehicle A seems disappeared in Q 
during its movement. This happens when a processing 
sequence contains …�A.Dt2�Q.Rt2�A.It2�qRt2�A.Rt2�…, 
where A has been deleted from the database when Q updates its 
results, and there are no more updates occur before the query 
report for t2. The vehicle B will be returned at time t2 in a 
scenario called back order, where the query seems staying at 
its previous position while some objects have already updated 
their locations. This occurs when a processing sequence 
contains …�B.Rt2�Q.Dt2�qRt2�Q.It2�…. In this case, B 
updates its location and adds itself to the result set of Q before 
Q’s location is updated, and the query report is processed 
before Q re-evaluates its results. Back order may also result in 
an output {A,B} at t2, where only B is back ordered and A is in 
normal status. Such a processing sequence may contain …B.Rt2 
�Q.It2�A.Rt2�qRt2�Q.Rt2…. In contrast to back order, 
another scenario is named pre-order, in which the queries are 
updated while some location updates for objects are delayed. In 
this example, pre-order on A, which may contain a processing 
sequence like …Q.Rt2�A.Dt2�qRt2 …, will still output {A} as 
the result of Q at t2, because in this situation, Q evaluates and 
outputs its results before the new location of A is updated, and 
both <A,t1> and <A,t2> intersect with <Q,t2>. All these 
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inconsistent processing sequences have to be prevented by the 
concurrency control protocol. 

In this protocol, the lockable items include leaf nodes and 
the external granules of nodes (defined in DGL [19]) on both 
trees, entries in each D-buffer, and entries in Q-result. I-buffers 
in both trees do not need specific locks, because they are 
attached to certain internal nodes which can be locked by the 
external granule. Following the convention of lock-coupling 
approaches [19], the types of locks that are utilized in the 
proposed protocol include S (shared lock), X (exclusive lock), 
IX (Intention to set X locks), IS (Intention to set S locks), and 
SIX (Union of S and IX lock). 

In the proposed protocol, lock requests can be conditional or 
unconditional for different purposes. A conditional lock request 
means if the lock cannot be granted immediately, the requester 
will cede the lock request. On the contrary, an unconditional 
lock request means that the requester is willing to wait until the 
lock can be granted. In the proposed concurrent framework, 
most lock requests are unconditional. Only a small portion of 
lock requests are designed as conditional to prevent 
unnecessary process and avoid deadlocks. 

In summary, the proposed concurrency control protocol 
supports serializable isolation by providing protection from the 
following issues: 1) inconsistency within each indexing 
structure, 2) inconsistency among D-buffers, O-tree, Q-tree, 
and Q-result, and 3) deadlock caused by accessing multiple 
indices. 

IV. CONCURRENT OPERATIONS 
The proposed concurrency control protocol supports 

concurrent operations for continuous query and moving object 
management, including query report, object location update, 
and continuous query location update. These operations can be 
simultaneously processed without interfering with each other. 
These concurrent operations are described in the following 
subsections. 

A. Query Report 
The query report operation retrieves the moving objects 

covered by a continuous query. This operation takes a query ID 
as input and returns a set of object IDs. In the proposed 
indexing framework, it reads the particular entry in the Q-result 
and validates the results by looking up the D-buffer of O-tree, 
because the Q-result is a hashed array that may contain 
obsolete objects. In detail, with C3, the query report first places 
an S-lock on the entry with a given query ID in the Q-result, 
and reads the corresponding obj_list. After that, it requests S-
locks on the D-buffer of O-tree for all the objects that contained 
in obj_list, and then removes obsolete objects from obj_list. At 
last, this operation returns the remaining objects and releases all 
the S-locks it has requested.  

For example, based on the Q-result in Fig. 4, the query 
report with the input Q5 requests an S-lock on the entry Q5 in 
the Q-result and then finds the object H in the entry. An S-lock 
is then requested on the entry of H in the D_buffer. After 
validating H, the algorithm releases all these S-locks and 
returns H as the final result. The algorithm of the query report 
is illustrated in Algorithm 1. This operation can be requested by 
clients or triggered by the corresponding Q-result updates.  

 
Algorithm 1. Query Report. 

B. Object Location Update  
The object location update operation updates the location of 

an object, as well as the results of affected queries. It takes the 
new location of an object and performs a lazy update on the O-
tree and an update on the Q-result. There are three phases in 
this operation, location update on the O-tree, point search on 
the Q-tree, and update on the Q-result, as shown in Algorithm 
2. The details of these phases are presented as follows. 

 
Algorithm 2. Object Location Update. 

Algorithm Object_Location_Update 
Input: Oid: Object ID, loc_old: Old Location of Object, loc_new: New Location of 
Object, O-tree: Index Tree of Objects, Q-tree: Index Tree of Queries, Q-result: Result 
Sets for Queries 
Output: Nil 
 

ts = get_timestamp(); 
QList = Nil; //set of queries that cover the point 
 

//Phase 1. O-tree location update 
//delete old location 
X-lock(O-tree. D-buffer.entry[Oid]; //avoid operations on same object 
O-tree.D-buffer.Add(Oid, #_obsolete, ts); 
//insert new location 
X-lock(O-tree.root.ext); 
curNode = O-tree.root; 
Add (Oid, loc_new, ts) to curNode.I-buffer; 
Enlarge curNode.MBR to cover loc_new; 
While curNode.I-buffer is full and not curNode.isLeaf 

nextNode = curNode.I-buffer.childForUpdate(); 
X-lock(nextNode.ext); 
curNode.I-buffer.groupUpdate(); //push the largest group of contents to its 

target child 
Unlock(curNode.ext); 
curNode = nextNode; 

Unlock(curNode.ext); 
 

//Phase 2. Q-tree point search  
S-lock(Q-tree.root.ext); 
curNode = Q-tree.root; 
While not curNode.isLeaf 

QListTmp = curNode. I-buffer.find(loc_new); 
If (S-lock(Q-tree. D-buffer.entry[QListTmp], Conditional)) //conditional lock, 

true if the lock is granted 
X-lock(Q-result.entry[QListTmp]); //avoid operations on same query 
QList.add(QListTmp); 

nextNode = curNode.findEntry(loc_new); 
S-lock(nextNode.ext); 
Unlock(curNode.ext); 
curNode = nextNode; 

QListTmp = curNode.find(loc_new); 
If(S-lock(Q-tree. D-buffer.entry[QListTmp], Conditional)) //conditional lock 

X-Lock(Q-result.entry[QListTmp]); //avoid operations on same query 
QList.add(QListTmp); 

Unlock(curNode.ext); 
QList = Q-tree. D-buffer.filter(QList); //remove obsolete queries in QList 
Unlock(Q-tree. D-buffer.entry[QList]); 
 

//Phase 3. Q-result Update 
For each Qid in QList 

Update Q-result.entry[Qid].obj_list by adding (Oid, ts); 
Unlock(Q-result.entry[Qid]); 

UnLock(O-tree. D-buffer.entry[Oid]); 
Return; 

Algorithm Query_Report 
Input: Qid: Query ID 
Output: S: Set of Objects 
 

S-lock(Q-result.entry[Qid]); 
S = Q-result.entry[Qid].obj_list; 
For each pair (Oid, ts) in S 

S-lock(O-tree.D-buffer.entry[Oid]); 
If Oid in O-tree.D-buffer 

If O-tree.D-buffer.entry[Oid].ts > ts 
 S = S – (Oid, ts); 

Unlock(O-tree.D-buffer.entry[Oid]); 
Unlock Q-result.entry[Qid]; 
Return S; 
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Phase 1 - O-tree location update: It updates the O-tree by 
inserting the new location and deleting the old location in a 
lazy manner. It first requests an X-lock on the corresponding 
object in the D-buffer of the O-tree to avoid conflict on 
accessing the same object. This X-lock will be kept until the 
end of this operation to avoid deadlock. After adding the delete 
record in the D-buffer of the O-tree, the algorithm performs a 
lazy group insertion on the O-tree, which attempts to insert the 
new location into a higher level I-buffer. The locking strategy 
for lazy group insertion is similar to the insertion in DGL, 
except that once the external of a tree node is locked, the I-
buffer attached to it is also treated as locked.  

Phase 2 - Q-tree point search: It queries the Q-tree using 
the new location of the object to find all the queries that cover 
this new location. The actual retrieval is performed on the 
corresponding I-buffers and leaf nodes. A locking strategy 
similar to the search in DGL is applied on the indexing tree. 
Additionally, when a query is identified to cover the object, the 
corresponding entry in the D-buffer of the Q-tree will be S-
locked and scanned to validate the query. Note that these S-
locks on the D-buffer of the Q-tree are unconditional, which 
means if any of these queries is X-locked by other operations, 
this object location update will cede that occupied query. This 
is because if a query is locked by a query location update, it 
will be re-evaluated based on its new location. So there is no 
need to include this query in this object location update. This 
unconditional lock can also prevent the deadlock between 
object location updates and query location updates. Once the 
affected queries are found, an X-lock will be requested on the 
corresponding entries in the Q-result to avoid conflict accesses 
on the same query. All the S-locks on the D-buffer of the Q-tree 
are released by the end of phase 2 to allow accesses from other 
concurrent operations.  

Phase 3 - Q-result update: It adds the object and the 
corresponding timestamp to the query results of all the queries 
that have been found in phase 2. Because these entries in the Q-
result have been locked in phase 2, they can now be directly 
updated. The locks on the Q-result and the D-buffer of the O-
tree are released at the end of this operation. 

An example based on the objects and queries in Fig. 2 and 
Fig. 3 can demonstrate this object location update. Suppose the 
object C is moving into the region of node R4 and also covered 
by the query Q5. The system first locks the entry of C in the D-
buffer of the O-tree, although there is no record for C yet. Then 
an entry (C, 1, ts) is inserted into the D-buffer. C is then 
inserted into the I-buffer of the root node in the O-tree with 
timestamp ts. In phase 2, a point search is performed on the Q-
tree using the new location of C, and Q5 is retrieved. The entry 
of Q5 in the D-buffer of the Q-tree is S-locked, and the entry of 
Q5 in the Q-result is X-locked. After checking the D-buffer, Q5 
is confirmed as the affected query by C. The obj_list of Q5 is 
now updated to contain C and H. Finally, all the locks are 
released.  

C. Query Location Update 
The query location update operation handles the location 

change of a query. This change could be on the location or the 
size of query window, or both. This operation takes the new 
search window of a given query as input, and updates the Q-

tree and the Q-result accordingly. Similar to the object location 
update operation, this algorithm consists of three phases, 
namely, location update on the Q-tree, range search on the O-
tree, and update on the Q-result. Timestamp ts is assigned at 
the beginning of the processing, so that the lazy update can 
have a sequential order for the update records.  

 
Algorithm 3. Query Location Update. 

Phase 1 - Q-tree location update: It performs a lazy update 
on the Q-tree. It first requests an X-lock on the D-buffer entry 
of the Q-tree for that query, so that the conflict caused by 
accessing the same query can be avoided. After that, this 
operation adds the deletion record to the D-buffer of the Q-tree, 
and performs a lazy group insertion on the Q-tree with the new 
query window. The locking strategy applied for insertion on the 
Q-tree is similar to phase 1 in the object location update. By the 
end of phase 1, the corresponding entry in the Q-result is 
exclusively locked, and the X-lock on the D-buffer of the Q-tree 
is released, so that the particular query is always under 
protection.  

Phase 2 - O-tree range search: It queries the new query 
window on the O-tree to retrieve all the objects that are covered. 
This range search scans the nodes and their I-buffers on the 
traversal path, and requests S-locks for the covered granules 
and the corresponding entries in the D-buffer of the O-tree. 

Algorithm Query_Location_Update 
Input: Qid: query ID, loc_new: new query window, O-tree: object index tree, Q-tree: 
query index tree, Q-result: results of the queries 
Output: Nil 
 

ts = get_timestamp(); 
OList = Nil; //set of objects that are covered by the new query 
 

//Phase 1. Q-tree location update  
//delete old window 
X-lock(Q-tree. D-buffer.entry[Qid]); //avoid operations on same query 
Q-tree. D-buffer.Add(Qid, #_obsolete, ts); 
//insert new window 
X-lock(Q-tree.root.ext); 
curNode = Q-tree.root; 
Add (Qid, loc_new) to curNode.I-buffer; 
Enlarge curNode.MBR if needed; 
While curNode. I-buffer is full and not curNode.isLeaf 

nextNode = curNode. I-buffer.childForUpdate(); 
X-lock(nextNode.ext); 
curNode. I-buffer.groupUpdate; //push the largest group of contents to its 

target child 
Unlock(curNode.ext); 
curNode = nextNode; 

Unlock(curNode.ext); 
X-Lock(Q-result.entry[Qid]); //avoid conflict from update on same query occur in 

middle 
UnLock(Q-tree. D-buffer.entry[Qid]); 
 

//Phase 2. O-tree range search  
S-lock(O-tree.root.ext); 
curNode = O-tree.root; 
while not curNode.isLeaf 

OListTmp = curNode. I-buffer.find(loc_new); 
If(S-lock(O-tree. D-buffer.entry[OListTmp], Conditional)) //conditional lock 

OList.add(OListTmp); 
nextNode = curNode.findEntry(loc_new); 
S-lock(nextNode.ext); 
Unlock(curNode.ext); 
curNode = nextNode; 

OListTmp = curNode.find(loc_new); 
If(S-lock(O-tree. D-buffer.entry[OListTmp], Conditional)); //conditional lock 

OList.add(QListTmp); 
Unlock(curNode.ext); 
OList = O-tree. D-buffer.filter(OList); 
 

//Phase 3. Q-result update  
Q-result[Qid].OList=OList; 
Unlock(Q-result.entry[Qid]); 
Un-lock(O-tree. D-buffer.entry[OList]); 
Return;
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Note that the S-locks on the D-buffer of the O-tree are 
unconditional, which means if these objects are X-locked by 
other operations, this query location update will cede those 
objects. This is because if an object is locked by object location 
update, it will be added to the corresponding queries based on 
its new location. So there is no need to include this object in the 
Q-result update. This unconditional lock can also prevent the 
deadlock between object location update and query location 
update.  

Phase 3 - Q-result update: It replaces the particular entry of 
the Q-result with the new set of objects that have been found as 
the results. The X-lock on the entry of the Q-result and the S-
locks on the corresponding entries of the D-buffer of the O-tree 
are released immediately after the update is completed. The 
details of the algorithm are shown in Algorithm 3. 

The algorithm of query location update can be illustrated 
using an example based on Fig. 2 and Fig. 3. Assume the query 
Q8 is moving upward within R1 and covers the object L with its 
new window. It can still be included in the extended leaf node 
R5. The algorithm first locks the entry of Q8 in the D-buffer of 
the Q-tree, although there is no record for Q8 yet. Then an 
entry (Q8, 1, ts) is inserted into the D-buffer and Q8 is inserted 
into the I-buffer of the root node in the Q-tree. An X-lock is 
requested on the entry for Q8 in the Q-result before releasing 
the lock on the D-buffer of the Q-tree. In phase 2, a window 
search is performed on the O-tree using the new query window 
of Q8, and the object L is retrieved. The entry of L in the D-
buffer of the O-tree is S-locked before checking its validity. 
After L is confirmed as an object covered by Q8, the obj_list of 
Q8 is replaced by L. Finally, all the locks are released.  

D. Garbage Clean 
Garbage clean for the proposed framework consists of two 

procedures, I-buffer clean and D-buffer clean. An I-buffer clean 
is a straightforward process. It pushes the valid items in an 
overflowed I-buffer to the next level on the tree. The 
concurrency control protocol requests X-locks on the external 
granules of the corresponding tree nodes involved in the I-
buffer clean procedure.  

A D-buffer clean procedure maintains the size of D-buffers. 
It compares the timestamps of the entries in leaf nodes or I-
buffers with the corresponding entries in a D-buffer, and 
removes the obsolete items in leaf nodes/I-buffers. Meanwhile, 
the corresponding deletion records in D-buffers are updated. 
This can be triggered by updating a leaf node/I-buffer or 
moving a token. The proposed concurrency control protocol 
protects this D-buffer by requesting X-locks on the involved 
leaf nodes/I-buffers and the items in the D-buffer before 
comparing their timestamps. If the item in a leaf node/I-buffer 
is obsolete, the operation deletes the entry in the leaf node/I-
buffer and updates the entry in the D-buffer. After the clean 
process of that item is completed, both locks will be released.  

V. CORRECTNESS 
The proposed concurrency control protocol C3 assures 

serializable isolation, consistency, and deadlock-freedom on the 
generalized access framework. Serializable isolation means the 
results of any set of concurrent operations equal to those from 
the sequential processing of the same set of operations. 

Consistency refers to the feature that the results always reflect 
the current committed status. Deadlock-freedom means any 
combination of the concurrent operations does not cause any 
deadlock. The correctness of this concurrency control protocol 
is discussed as follows by analyzing the lock sequences and 
durations of each operation.  

 
Fig. 5 Lock Durations for Concurrent Operations. 

Fig. 5 abstracts the order and duration of the locks requested 
in each operation, including object location update, query 
location update, query report, and garbage clean in D-buffers. 
The garbage clean in I-buffers only processes inside an R-tree, 
so it does not cause any correctness issue with inter-structure 
operations. The abbreviations in Fig. 5 indicate the locks on 
different structures. The items ON and QN are the locks inside 
the R-trees, while the items OD, QD and QR are the locks for 
the inter-structure protection. Objects and their corresponding 
O-tree nodes are locked in ON and OD, while queries and their 
corresponding Q-tree nodes are protected in QN, QD and QR. 
The horizontal span of each bar represents the time period that 
the lock is granted. Based on the algorithms, search operations 
request S-locks, and update operations request X-locks. The 
object location update and query location update will not 
request S-locks on the same substructure. The query report only 
requests S-locks, while garbage clean in D-buffers places X-
locks. Among these locks, ON and QN are gradually requested 
by traversing the tree; the other locks for each bar are granted at 
almost the same time. 

Serializable isolation: The proof of serializable isolation 
contains two parts, serializable isolation on the single tree and 
among the O-tree, Q-tree, and Q-result. The serializable 
isolation on a single R-tree has been proved [19]. A similar 
proof can show that O-tree and Q-tree are internally 
serializable, because the sub-operations on each single tree (ON 
and QN) are protected like on an R-tree, except that the locks 
on tree nodes cover the associated I-buffers. 

On the other hand, the serializable isolation among the O-
tree, Q-tree, and Q-result can be proved based on the theory 
that a group of transactions are serializable if and only if their 
conflict graph has no cycles [22]. We prove this in the 
following lemma. 

Lemma 1: Object location updates (OLU), query location 
updates (QLU), query reports, and garbage cleans are 
serializable given that any sub-operations involve a single 
indexing tree are serializable.   

Proof: We prove this lemma using induction. Given that any 
sub-operations involve a single index tree are serializable, 
because of the conditional lock applied in the algorithm, the 
sub-operations on index tree nodes and I-buffers are serializable 
to each other. Therefore, we only need to consider the sub-

ON � locks for O-tree nodes; QN � locks for Q-tree nodes;  
OD�locks for O-tree.D-buffer; QD�locks for Q-tree.D-buffer; QR�locks for Q-results 
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operations corresponding to OD, QD, and QR. Fig. 6 illustrates 
the major steps of the proof. 

Step 1 - acyclic between two operations: to prove a conflict 
graph with any two operations in this framework is acyclic. 
Based on the lock durations illustrated in Fig. 5, obviously a 
conflict graph with any two same operations is acyclic. 
Considering two different operations, a query report or a 
garbage clean cannot cause a cycle in a conflict graph with 
another operation, because the locks requested by a query 
report or a garbage clean are maintained until its commit point. 
Based on Fig. 5, an OLU and a QLU can cause potential cycle 
in a conflict graph, because these two operations may involve 
the same object and query. However, because of the conditional 
locks applied in the algorithms, if an OLU realizes that the 
query affected by the object is locked by a QLU, it will not 
access that query or update the corresponding query result. The 
same rule applies to the potential conflict on objects in a QLU. 
Because if two operations conflict on objects, they must 
conflict on queries too; no edges for object locations can be 
drawn between an OLU and a QLU. Therefore, in a conflict 
graph contains an OLU and a QLU, the only edge, if exists, can 
be drawn either from the OLU to the QLU or from the QLU to 
the OLU for query locations and query results. In other words, 
no cycle could occur in a conflict graph that consists of two 
operations. 

Step 2 – acyclic among n operations: to prove given that a 
conflict graph with n operations (OP1, … OPn) is acyclic, the 
conflict graph with operations (OP1, …, OPn, OPn+1) is also 
acyclic. Based on the proof in Step 1, if OPn+1 is a query report 
or garbage clean, it will not cause any new edges in the graph.  

Suppose OPn+1 is an OLU, a possible edge from OPi 
(1<=i<=n) to OPn+1 can be drawn for query results if OPi is 
another OLU, or drawn for query locations and query results if 
OPi is a QLU. Similarly, a possible edge from OPn+1 to OPj 
(1<=j<=n, j!=i) can be drawn for query results if OPj is 
another OLU, or drawn for query locations and query results if 
OPj is a QLU. Now we prove there is no path from OPj to OPi 
by contradiction. Assume there exists any path Pji from OPj to 
OPi, because the locks on one lockable structure are granted at 
the same time, Pji cannot contain any edge drawn for query 
locations and query results. However, based on the analysis in 
Step 1, the edges between any two operations can only be query 
locations and query results. This contradiction shows that the 
existence of Pji is impossible. Therefore, in case OPn+1 is an 
OLU, the conflict graph with operations (OP1, …, OPn, OPn+1) 
is acyclic.  

Similarly, if OPn+1 is a QLU, a possible edge from OPi to 
OPn+1 and a possible edge from OPn+1 to OPj can be drawn for  
query locations and query results. Assume there is a path Pji 
from OPj to OPi, Pji cannot contain any edge drawn for query 
locations and query results. From the analysis in Step 1, if there 
is a path between OPj and OPi, all the edges on this path have 
to be drawn for query locations and query results. Because this 
contradiction shows that the existence of Pji is impossible, the 
conflict graph with operations (OP1, …, OPn, OPn+1) is acyclic 
if  OPn+1 is a QLU. Therefore, given that a conflict graph with n 
operations is acyclic, the conflict graph with n+1 operations is 
acyclic, too. 

Based on the above two steps, we can conclude that the 
concurrent operations supported in the proposed approach are 
serializable. 

Q.E.D. 

 
Fig. 6 Conflict Graphs for Two Operations and n+1 Operations. 

Consistency: For either O-tree or Q-tree, the DGL approach 
(ON and QN in Object Location Update and Query Location 
Update) has been proved to protect the consistency on the R-
tree. Furthermore, from the above serializable isolation analysis, 
each proposed operation keeps locking its target items 
(object/query) throughout the process, which ensures that the 
intermediate status between any two phases will not be 
accessed by other operations. Because the query report locks 
the query (QR in Query Report) and objects (OD in Query 
Report) from initiation to termination, only the results of all the 
operations committed before its initiation will be accessed. This 
guarantees the continuous query results are consistent with the 
current database. 

Deadlock-freedom: Deadlock-freedom is assured as long as 
common sources are not accessed in opposite orders. Each 
indexing tree is deadlock-free internally with the protection of 
granular locking (ON and QN in Object Location Update and 
Query Location Update). The operations among multiple 
indices are proven to be deadlock-free in the following lemma.  

Lemma 2: Object location updates (OLU), query location 
updates (QLU), query reports, and garbage cleans are 
deadlock-free given that any sub-operations involve a single 
indexing tree are deadlock-free. 

Proof: Because query reports and garbage cleans only 
request locks at the beginning and release them at the commit 
point, these operations do not cause any deadlock with any 
other operations. We discuss OLU and QLU by observing the 
lock durations in Fig. 5 from the aspects of accessing objects, 
queries, and objects and queries. 

Objects – Because in OLU, ON is placed together with OD, 
and in QLU, ON is placed before OD and released during OD, 
locks on the O-tree nodes and the D-buffer of the O-tree are not 
granted in opposite orders. Therefore, locks on objects are 
deadlock-free. 

Queries – Similarly to locks on objects, QN is granted with 
QD in QLU, and QN is placed before QD and released during 
QD in OLU. In addition, QD always occurs before QR and is 
released during QR. Therefore, locks on the Q-tree nodes, the 
D-buffer of the Q-tree, and the Q-results are not requested in 
opposite orders. In other words, locks on the queries are 
deadlock-free.  
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Objects & queries - Note that OLU accesses objects before 
queries, while QLU accesses queries before objects. Therefore, 
the O-tree and the Q-tree are accessed in these operations in 
two opposite orders. However, based on the algorithms, 
conditional locks are requested on the second indexing tree 
accessed in both OLU and QLU. Once a conflict occurs on the 
second tree access, this tree access will be cancelled to 
eliminate the conflict. Therefore, the possible deadlocks caused 
by accessing two trees in opposite orders are prevented by the 
conditional locks that cede the conflicted objects or queries. 

Based on the above analysis, the proposed concurrency 
control protocol is deadlock-free, given that any sub-operation 
on a single index is deadlock-free.  

Q.E.D. 
Summarizing the above, this concurrent access framework 

provides serializable isolation, consistency and deadlock-
freedom. Therefore, it works correctly from the view of 
concurrency control. 

VI. EXPERIMENTS 
To evaluate the performance of the proposed framework, 

experiments on benchmark datasets have been conducted by 
measuring the throughput (number of concurrent operations 
processed in a second). The experiment design is illustrated in 
Fig. 7. The benchmark datasets were simulated by a network-
based moving objects generator [23] using the road network of 
the City of Oldenburg. We set three classes of moving objects 
and queries to represent vehicles, bicycles, and pedestrians. 
Half of the initial moving objects generated by the generator 
were used as moving objects, and the second half of the objects 
were expanded to range queries. Based on the moving object 
set and moving query set, two 3-level R-trees were constructed 
with a fanout of 100. Meanwhile, the object movements 
simulated by the generator were translated into object location 
updates and query updates. These location updates and a set of 
random query report operations were submitted to the system 
as a multi-thread batch job. The overall execution time for each 
batch job was collected, and the system throughput was 
recorded by averaging the throughput of twenty batches of 
concurrent operations.  

 
Fig. 8 Lock Durations for TD. 

For performance comparison, one approach that fuses the 
record-oriented 2-phase locking transaction management 
approach with DGL on the R-tree [19] for concurrent 
operations, namely TD, has been implemented. Another 
approach integrates a record-oriented versioning approach with 

DGL, namely VD, has also been developed. TD and VD follow 
the continuous query processing approach in C3, except that the 
operations in TD/VD are executed using the 2-phase 
locking/versioning strategy among indices and DGL within the 
R-trees. The lock durations of object location update and query 
location update in TD are illustrated in Fig. 8. It inherits the 
complete indexing framework from C3, including O-tree, Q-
tree, D-buffer, I-buffer, and Q-result.  Therefore, its number of 
I/O accesses is as optimal as C3. Similarly, VD follows the 
same query processing algorithms as C3, except it requires redo 
operations when conflictions are detected. The conditional 
locks requested in location updates result in less redo 
operations in VD than pure versioning protocols, because they 
allow the operations continue to commit. In other words, TD 
and VD are both advanced approach for concurrent continuous 
query processing, which can achieve the same performance as 
C3 in single-user environments. Because there is no existing 
concurrent continuous query processing approach in literature, 
TD and VD are appropriate baselines with serializability for 
comparison. In addition, simplified versions of C3 without 
operation buffers have been developed to evaluate the impact 
of the I-buffer and D-buffer. Specifically, three versions, 
including C3 without I-buffer (NIBF), C3 without D-buffer 
(NDBF), and C3 without any buffer (NBF), were adopted for 
comparison. 

In the experiments, five parameters varied to simulate 
different application scenarios and to demonstrate their 
respective impacts. These parameters are listed as follows. 
� Data_size: the number of initial moving objects and moving 

queries. It represents the number of moving objects plus the 
number of continuous queries. 

� Q_size: the side length of query window for each moving 
query. It simulates query ranges in different applications. 
The default value was 5. 

� Mobility: the total number of concurrent location updates 
for objects and queries in a batch. It corresponds to the 
frequency of object/query location updates. The default 
value was 2K. 

� OM_ratio: the percentage of object location updates in 
Mobility. It reflects the relative update frequency between 
objects and queries. The default value was 50%. 

� QR_ratio: the portion of query reports compared to 
Mobility. It shows the frequency of query report operations. 
The default value was 5%. 

The proposed framework was implemented using JDK 1.5, 
based on the R-tree code from [24]. The experiment system 
was built on a Windows Server 2003 with two Duo-Core 2.4 
GHz CPUs and 2 GB memory. Three sets of initial moving 
objects and moving queries were used in all the experiments, 
with the data_size 300K, 200K, and 100K, respectively. The 
performance gain of C3 is largely determined by the number of 
CPU cores. The more CPU cores are available, the more 
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simultaneous operations can be processed, and consequently, 
the more opportunity for increased performance by C3. 

A. Throughput vs. Buffers 
Experiments were conducted to evaluate the effectiveness of 

the I-buffer and D-buffer in the framework. Location updates 
and continuous queries were processed on the original C3, 
NIBF, NDBF, and NBF, respectively. The size of each I-buffer 
is 20 items (about 1KB), and the size of each D-buffer is 400 
items (about 20KB). For the 300K dataset, there were less than 
100 internal tree nodes. Therefore, the size of buffers in the 
experiments was less than 150KB. Similarly, given a 3MB 
buffer, this setting can support more than 10 million moving 
objects. Since the mobility and OM_ratio are expected to have 
significant impacts on the system throughput, these two 
parameters were varied to analyze the impacts of the buffers. 

 
a) Impacts of Buffers over Mobility 

 
b) Impacts of Buffers over OM_ratio 

Fig. 9 Throughput vs. Buffers. 

Fig. 9 a) shows the throughput of C3 on the three datasets 
and that of the simplified C3 on the 100K dataset when the 
mobility increased from 2K to 10K. The x-axis shows the 
mobility, and the y-axis indicates the throughput. Generally, 
deactivating any operation buffer significantly increased I/O 
operations for tree updates. On the other hand, the increased 
updates on the R-trees caused additional locks and lengthened 
the lock durations. As shown in both figures, by deactivating I-
buffers, the system throughput decreased by more than 62% for 
the 100K dataset. When D-buffers were deactivated, the system 
lost about 65% of the performance. When there was no 
operation buffer applied, the system throughput degraded more 
than 79% from the original C3 for the 100K dataset. As 
observed from the above results, D-buffers promoted the 
system performance slightly more than I-buffers. This is 
because the insertions with I-buffer need to traverse the R-tree, 
although only the higher levels for most of the time, and the I-

buffers close to the R-tree root may become bottlenecks. On the 
other hand, the deletions with D-buffer do not require tree 
traversal in most cases.  

The comparison among different versions of C3 when the 
OM_ratio gradually increased is illustrated in Fig. 9 b), where 
the x-axis represents the OM_ratio and the y-axis shows the 
throughput. Following the trend of the original C3 on the 100K 
dataset, these simplified versions of C3 increased along with 
the OM_ratio. In addition, the NIBF outperformed the NDBF, 
and the NBF always had the lowest throughput. 

Compared to the R-trees with buffers for frequent updates 
[7], [8], the C3 handles concurrent continuous query processing 
with seemingly lower throughput. It is because that each 
transaction in C3 consists of a location update, a result update, 
and a costly search, whereas a transaction in the related work 
contains only one operation which is usually an inexpensive 
update (costs less than 15% I/O of a search [8]). Considering 
this fact, C3 achieved comparable performance to the popular 
location update approaches. Furthermore, serializable isolation 
usually significantly degrades the system performance with its 
restricted locking policy, and C3 handled this efficiently. 

B. Throughput vs. Mobility 
In this set of experiments, the mobility of the objects and 

queries varied from 2K to 10K updates per batch, while the 
OM_ratio, QR_ratio, and Q_size were set to their default 
values. The throughput of the framework was measured on 
three datasets with different sizes, from 150K objects with 
150K queries to 50K objects with 50K queries. The throughput 
of TD and VD on the same datasets and movements was also 
collected. The experiment results are shown in Fig. 10, where 
the x-axis represents the mobility and the y-axis shows the 
throughput. For clear comparison, the charts in the rest of this 
paper set the minimal x-value to 60. The throughput on all 
datasets decreased linearly when the mobility increased. These 
results are considered as reasonable because a higher mobility 
indicates more location update operations in the processing 
queue, and a longer queue leads to longer waiting time for each 
operation.  

 
Fig. 10 Throughput vs. Mobility. 

The throughput of C3 on both the 200K and 300K datasets 
reduced about 3% when the mobility changed from 2K to 10K. 
However, the decreasing rate on the 100K dataset was 
negligible with the increasing of the mobility. This suggests 
that mobility affects less on the smaller datasets than the larger 
ones. It is because concurrent operations on a smaller dataset 
may be processed quickly enough before causing conflicts. 
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Compared to the throughput of C3, TD on the three datasets 
processed 43~52 less operations every second, and VD 
processed 40~51 less operations. Specifically, the throughput 
on the 200K and 300K datasets lost about 38~44% by applying 
TD, and lost 34~39% by applying VD. The throughput on the 
100K dataset dropped about 33% for TD and 36~39% for VD. 
Among the three approaches, TD decreased its performance 
most significantly when the mobility increased, because a 
frequently updated dataset benefits more from reduced lock 
durations. Compared to VD, TD performed worse on the large 
datasets. On the other hand, the decreasing rates of VD’s 
throughput were higher than those of C3. The low throughput 
of VD was caused by the large number of redo operations 
during frequent updates, and these redo operations may 
consequently cause additional conflictions.  

Interestingly, C3 on the 300K dataset performed about 3% 
better than on the 200K dataset. These results demonstrated the 
scalability of the R-tree and the advantages of the lazy group 
update technique. The lazy group update approach minimizes 
the cost of R-tree update operations, and concurrent operations 
are facilitated by the finer lockable granules on the R-trees with 
larger datasets. These advantages compensated the increased 
storage and overlaps among the tree nodes of the 300K dataset. 

C. Throughput vs. OM_ratio 
In this set of experiments, three datasets with data_size 300K, 

200K, and 100K, were used to evaluate how the OM_ratio 
affects the system throughput. Fig. 11 illustrates the throughput 
of C3, TD, and VD, with the OM_ratio varied from 10% to 
90%. The x-axis indicates the OM_ratio, and the y-axis 
represents the throughput. In most cases, when the portion of 
the object location updates in simultaneous operations 
increased, the throughput increased too. This is because an 
object location update usually costs less than a query location 
update. An object location update, based on the algorithm, 
performs a point insertion and a point query. On the other hand, 
a query location update inserts a window and processes a 
window query on the R-tree. Therefore, a query location update 
requires more I/O accesses and index locks. 

 
Fig. 11 Throughput vs. OM_ratio. 

Furthermore, from this figure, it is clear that the 200K and 
100K datasets benefited more from increasing the OM_ratio. 
The throughput of the 200K and 100K datasets raised 5% by 
increasing the OM_ratio, while that of the 300K dataset slightly 
decreased when the OM_ratio gradually increased from 50% to 
90%. This difference was caused by the fact that in a larger 
dataset, the increased number of object location updates 

resulted in more conflicts with X-locks on the O-tree, which 
compensated the benefit from fewer range query and update 
operations. These results show that the performance of location 
management on a small dataset can be significantly improved 
by increasing the OM_ratio. Similar to the previous set of 
experiments, the throughput of the 300K dataset was slightly 
better than the 200K dataset most of the time. 

The throughput of TD and VD approaches in the figure 
shows significant performance degrade from C3. On all the 
three datasets, the throughput of TD was about 45 operations 
per second lower than C3, and VD lost 40~48 per second from 
C3. On all the datasets, the performance of TD and VD 
followed the trends of the corresponding C3 performance. The 
TD and VD on the 300K dataset decreased the throughput after 
the OM_ratio reached 50%, because write-write conflicts on 
the O-tree were increased, which caused longer waiting in TD 
and more re-do operations in VD. On the other hand, the 
performance of VD was lower than TD on the 100K datasets 
and better than TD on the 200K and 300K. This illustrated that 
VD had better scalability than TD, although performed worse 
on small datasets. 

D. Throughput vs. QR_ratio 
This set of experiments examines the relationship between 

the QR_ratio and the system throughput. The throughput was 
measured while the QR_ratio increased from 5% to 25%. The 
results are illustrated in Fig. 12, where the x-axis indicates the 
QR_ratio and the y-axis shows the throughput. Generally, a 
higher QR_ratio decreases the system performance, because 
more query reports are issued to consume the system resources. 
As shown in the figure, the throughput of C3 on the three 
datasets decreased by 0~2 operations per second when the 
QR_ratio increased from 5% to 25%. These results suggest that 
the cost for query report operation is relatively low, so that it 
can be efficiently processed without significantly blemishing 
the system performance. This is the benefit from the design of 
this concurrent continuous query processing, because the Q-
result always stores the correct results, and the query report 
operation only requests S-locks on the corresponding Q-result 
entry and the D-buffer entries of the O-tree. 

 
Fig. 12 Throughput vs. QR_ratio. 

Similarly, although the number of query report operations in 
each batch increased from 100 to 500, there was no significant 
change on the throughput of TD and VD. As shown in the 
figure, C3 improved the performance by 50~55% from VD, 
and by 47~63% from TD.  
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E. Throughput vs. Q_size 
This set of experiments varies the Q_size to study how the 

query window size affects the system performance. The 
experiment results are plotted in Fig. 13, where the x-axis 
shows the Q_size and the y-axis represents the throughput. The 
throughput of C3 on all the three datasets slightly and linearly 
decreased by about 7 when the Q_size increased from 5 to 25. 
Once the Q_size increases, each continuous query may cover 
more objects, and each object movement may affect more 
queries. Therefore, not only the tree access cost, but also the 
number of requested locks will increase. Following the trend in 
the previous experiment results, the 300K dataset performed 
better than the 200K dataset under C3 due to its fewer lock 
conflicts.  

 
Fig. 13 Throughput vs. Q_size. 

Similar to C3, the performance of TD slightly degraded 
when the Q_size increased from 5 to 25. C3 on each dataset 
achieved a significant performance improvement against TD. 
C3 on the 100K dataset improved the throughput by 47~44% 
from TD, 56~62% on the 200K dataset, and 58% on the 300K 
dataset. Compared to VD, C3 improved the performance by 
53% on the 100K dataset, 45~52% on the 200K dataset, and 
about 50% on the 300K dataset. 

The experiment results demonstrated that the performance of 
the proposed concurrent continuous query processing approach 
is efficient and scalable. As an interesting observation, in all 
these experiments, the 300K dataset outperformed the 200K 
dataset in C3, which demonstrated the scalability of the 
proposed approach in terms of data_size. Meanwhile, the 
OM_ratio, mobility and Q_size had noticeable impacts on the 
system throughput, whereas the QR_ratio did not significantly 
affect the performance. In addition, C3 gained substantial 
benefits by applying optimal lock durations and utilizing the 
operation buffers in the framework. 

VII. CONCLUSION 
This paper proposes C3, a concurrency control protocol for 

continuous queries, on an R-tree-based indexing structure. It is 
the first concurrency control protocol that protects the 
concurrent continuous query processing with lazy update 
techniques. It is proved to achieve serializable isolation, 
consistency, and deadlock-freedom for continuous queries over 
moving objects. Extensive experiment results on benchmark 
datasets have validated the efficiency and scalability of the 
proposed framework. This work provides an effective solution 
for continuous query processing and promotes its applicability 
in multi-user systems. 

Concurrent operations involving a large portion of data, such 
as continuous kNN search and spatial join, still lack for 
efficient solutions. Future efforts could focus on extending C3 
for these operations, and for indexing structures with velocity 
information for continuous query processing. 
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