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ABSTRACT 

Activity analysis disaggregates utility consumption from smart 
meters into specific usage that associates with human activities. It 
can not only help residents better manage their consumption for 
sustainable lifestyle, but also allow utility managers to devise 
conservation programs. Existing research efforts on disaggregating 
consumption focus on analyzing consumption features with high 
sample rates (mainly between 1 Hz ~ 1MHz). However, many 
smart meter deployments support sample rates at most 1/900 Hz, 
which challenges activity analysis with occurrences of parallel 
activities, difficulty of aligning events, and lack of consumption 
features. We propose a novel statistical framework for 
disaggregation on coarse granular smart meter readings by 
modeling fixture characteristics, household behavior, and activity 
correlations. This framework has been implemented into two 
approaches for different application scenarios, and has been 
deployed to serve over 300 pilot households in Dubuque, IA. 
Interesting activity-level consumption patterns have been identified, 
and the evaluation on both real and synthetic datasets has shown 
high accuracy on discovering washer and shower. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications 

General Terms 
Algorithms, Design, Experimentation, Performance 

Keywords 

Smart Meter, Low Sample Rate, Disaggregation, Classification, 
Hidden Markov Model, Gaussian Mixture Model. 

1. INTRODUCTION 
    Sustainability and design of sustainable technologies have 
become urgent and important priority for cities given the 
unprecedented level of resource demand - water, energy, transit, 
healthcare, public safety - to every imaginable service that makes a 
city attractive and desirable. At the same time, digital reification of 
cyber-physical world has been possible with widespread 
penetration of sensing and monitoring technologies. These two 
important catalysts have fuelled significant interest and cross 
organizational collaboration among researchers, industries, urban 
planners, and government. A lot of technology and research has 

recently focused on leveraging information from such digital 
reification of cyber-physical world to help manage various services 
more efficiently. Our paper takes a step in that direction - examines 
the feasibility and provides innovative approaches towards 
influencing people’s consumption behavior. More precisely, we 
provide activity analysis based on smart water meter readings.  
    Given the real world constraints, we research the feasibility of 
activity analysis to identify activities from smart utility meter 
readings. Our study is based on the hypothesis that consumption 
activities disaggregated from meter readings will empower 
residents with appropriate insights to influence and shape their 
behavior. This has been rightly validated through a city-wide 
survey [1] followed by four-month-long experimentation with a 
real city [2]. In addition, from disaggregated consumption, utility 
managers can design and assess conservation programs, and 
prioritize energy-saving potential retrofits. 
    Research on disaggregating electricity or water load has been 
conducted on smart meter readings with fine granularity (mainly 
between 1 Hz ~ 1MHz). Existing approaches identify appliances/ 
fixtures based on analyzing steady state or transient state change in 
real-time consumption. However, they are not suitable for many 
existing smart meter infrastructure. 
    Real-world deployments of smart meters are designed for utility 
billing and some basic analysis requirement, but many of them are 
not suitable for consumption disaggregation. Smart meters transmit 
consumption readings using wireless protocols, which consume 
battery and have dependency on physical environments. Although 
the meters can sample at a rate even higher than 1MHz, many of 
existing deployments have chosen to accumulate to 15 min or even 
longer intervals to ensure reliable data transmission. However, 
physical environment may still affect the data transmission. This 
scenario brings the following challenges to consumption 
disaggregation: 1) Parallel usage activities, e.g., a toilet flush and 
shower in the same 15 minute interval. 2) Difficulty of aligning 
usage events temporally, e.g., a shower may appear in one or two 
intervals. 3) Lack of features, i.e., only aggregated consumption 
and start time of each interval can be used to identify usage activity. 
An example of such water meter data and expected disaggregated 
activities is illustrated in Figure 1. 

 
Figure 1. An Example of Data and Disaggregated Activities. 

    To handle these challenges, we have designed a novel statistical 
framework for activity analysis on coarse granular smart water 
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meter readings, and deployed it as a component in Smarter Water 
Service for Dubuque, IA. In this framework, fixture characteristics, 
household behavior, and activity correlations are utilized to 
disaggregate consumption. To implement this framework, we 
propose two approaches to identify activities. The first approach 
applies hidden Markov model to capture the relationship among 
consumption events and hidden activities. The second approach 
utilizes classification techniques to learn from labeled activities, 
and a Gaussian mixture model is used for disaggregation. The 
proposed approaches have been validated using both real-world 
water consumption and synthetic datasets. The experiments have 
demonstrated the capability of the proposed disaggregation 
framework, illustrated the appropriate sample rate for 
disaggregation in various applications, and revealed interesting 
usage insights from 300+ pilot households. In summary, the major 
contributions of this work include: 

 Providing activity-level consumption insights to residents and 
the city management team to support decision making. 

 Designing a general disaggregation framework with two 
implementations for different scenarios. 

 Exploring appropriate smart meter sample rate to enable 
consumption disaggregation. 

 Revealing interesting consumption patterns from the 
disaggregation results. 

    This paper is organized as follows: Section 2 illustrates the 
application deployment for the proposed approach, and introduces 
the related challenges. A novel general statistical framework for 
disaggregation is proposed in Section 3. The detailed 
implementations for water consumption disaggregation are 
described in Section 4. Section 5 evaluates the performance of the 
proposed approaches under different scenarios with real-world and 
synthetic datasets and demonstrates some interesting findings from 
the pilot households. The related work is reviewed in Section 6. 
Finally, Section 7 concludes our work with future directions. 

2. BACKGROUND & PROBLEM 
2.1 Application Deployment 

 
Figure 2.  Data Acquisition.  

    The activity analysis is an important function provided in 
Smarter Water Service based on smart water meters. The deployed 
environment of our smart water meter infrastructure is shown in 
Figure 2. Since August 2010, over 300 pilot households have 
volunteered to install Neptune R900 smart water meters [3] with 
UFR (Unmeasured Flow Reducer), which transmit a new 
aggregated reading roughly every 15 minutes through 900MHz 
wireless connection. Each aggregated reading is broadcasted 
repeatedly within the entire interval to ensure the success of 

transmission. Wireless gateways have been deployed in the city to 
collect these readings, attach timestamps, and send to a data center 
through 3G network every hour. In addition, 6 volunteer 
households had applied data logger which records water 
consumption every 10 seconds, and had done water usage activity 
journaling accordingly for a week. All the meter readings have 
been anonymized and sent to IBM Computing Cloud for analytics. 
    The software architecture of the deployment is visualized in 
Figure 4. The smart meter data are first cleaned and transformed by 
InfoSphere Information Server®(IIS), and then stored in a Smart 
Meter Database managed by DB2®. On top of this database, 
Cognos® is utilized to provide OLAP functions such as 
consumption metric and pattern monitoring; a java-based module is 
developed to perform advanced analytics functions such as 
disaggregation and prediction. IBM WebSphere Application 
Server®(WAS) hosts the service layer to allow users interact with 
the services. In addition, a community engagement component 
plays the role of motivating residents through competition and 
collaboration via multiple media channels. The whole system, as a 
$850K deployment engagement with Dubuque, IA, has been 
deployed on IBM Smarter Cities Sustainable Model Cloud, and 
provides services to residents (300+ pilot households) and the city 
management team (about 10 government employees)[2].  

 
Figure 4. Smarter Water Service Architecture. 

    The main objective of this Smarter Water Service is to provide 
affective services that can help the volunteers modify their 
behavior to be more sustainable, in other words, let the residents 
know what they need to know to change their behavior. To achieve 
that goal, one important process is to reveal disaggregated water 
consumption, so that the users can know where in their houses they 
could conserve water, and sustainable operations or investment can 
be suggested. As a component of Smarter Water Service, activity 
analysis shared the computing resources with the other custom 
analytics. It works as a backend service that outputs activity-level 
consumption distribution reports every month from 15-minute 
aggregated consumption. This component will continuously 
provide consumption insights as part of the Smarter Water Service, 
and will be updated by enhancing learning ability and expanded to 
the expected 4000 households with hourly readings by 2013. 

A preliminary summary has shown 6.6% normalized 
accumulative consumption reduction in 8 weeks after the Smarter 
Water Service was published in September 2010. In addition, a 
survey conducted in December 2010 showed that since September, 
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out of 64 respondents, 15 households had fixed leaks, 13 
respondents had shortened their showers, and 14 purchases on 
water-efficient toilet/appliances had been made.     

2.2 Problem & Definitions 
The problem of disaggregation from coarse granular smart water 
meter readings can be informally described as follows: 
Problem: Given a sequence of aggregated interval water 
consumption ࢔࢕࡯ሺ்ሻ ൌ ሺ݊݋ܥଵ, … ,  ௜ refers to the݊݋ܥ ሻ, where்݊݋ܥ
aggregated water consumption at the i-th time interval, the 
proposed solution should return a set of activities 
 ൫ሺܣଵ, ,ଵሻܧ … , ሺܣ௞, ௞ሻ൯ܧ  that are most likely to cause the 
aggregated consumption ࢔࢕࡯ሺ்ሻ , where ܣ௜  refers to an activity 
state (e.g., washer, shower, or toilet uses), and ܧ௜  refers to an 
observation (event) of water consumption for this activity state and 
is represented by a vector of event features, including total water 
consumption and start/end time intervals. 
    The related terms and their definitions are summarized in Table 
1, and will be used in the rest of the paper. We use capital letters to 
denote random variables and small letters to denote observations. 

Table 1. Terms & Definitions. 
Term Symbol Definition 

Consumption Con Amount of water used in terms of gallons. 

Interval Int The time period between 2 consecutive meter 
readings. 

Activity ܣ Integer value that represents one of the 
following: sink, toilet, shower, and washer. 

Event ܧ 
A vector of features to represent an event. The 
event features include total consumption, 
start/end time, etc.  

Event sequence ሺܧଵ, … ,  ሻ்ܧ
A sequence of events occurs in a time window 
(e.g., 24 hours), where T is the number of 
events. 

Parallel activities ሺܣ௧ଵ, … ,  ௧௦ሻ s activities occur together in event Etܣ
Events of parallel 

activities P(E(T)) A set of events in ሺܧଵ, … ,  ሻ generated by்ܧ
parallel activities. 

Parallel sub-events ሺܧ௧ଵ, … ,  ௧௦ሻܧ
A set of parallel sub-events whose aggregation 
generates the event ܧ௧. Each sub-event ܧ௧௜ is 
generated by a single activity ܣ௧௜.      

2.3 Research Challenges 
    General challenges for usage disaggregation from single main 
meter include the following: 1) Appliances/fixtures with similar 
consumption patterns, e.g., certain sink usage and a toilet flush; 2) 
Appliances/fixtures with multiple settings, e.g., normal, dedicated, 
and permanent of a washer; 3) Load variation, e.g., low, medium, 
and full load of a washer, or length of showers; 4) Multiple cycles, 
e.g., washer and dishwasher; 5) Lack of real-world ground truth, 
i.e., hard to collect sufficient labeled data from consumers. 
Disaggregation with the above challenges can be treated as a real-
world classification problem. 
    In addition, the specific application scenario introduced in the 
previous section brings more challenges because of the coarse 
granularity and unstable reading intervals caused by unreliable 
communication. These limitations cause: 1) Parallel usage 
activities, e.g., two toilet flushes and a shower in the same 15 
minute interval. 2) Difficulty of aligning usage events temporally, 
e.g., a shower may appear in one or two intervals. 3) Lack of 
features, i.e., only aggregated consumption and start time of each 
interval can be used to identify usage activity. These specific 
challenges make the task of water usage disaggregation more than 
a classification problem and difficult to solve. 
    The existing disaggregation approaches focus on analyzing 
steady state or transient state changes. They cannot handle the 
specific challenges in this scenario, because no steady state or 
transient state can be detected with such a low sample rate. 

2.4 Observations 
    Due to the challenges discussed, the aggregated consumption of 
each interval alone surely cannot provide confident disaggregation 
results. We need to investigate the available ground truth on what 
other factors may help improve the disaggregation accuracy. After 
a study over the activity journaling from the volunteers, we have 
found three useful characteristics of water usage activities: fixture-
dependant, household-dependant, and time-dependant. 
2.4.1 Fixture-dependant Pattern 
    Each fixture category has its own usage pattern in term of 
consumption and duration that can be used to distinguish it from 
the others. Specifically, the amount of water consumed in a toilet 
flush usually fell in several small ranges between 1.5 ~ 5 gallons, 
and was consistent for a specific toilet. A load of washer generally 
lasted between 30~60 minutes, and consisted of multiple cycles 
with similar water usage. Showers had consistent flow rate most of 
the time, and lasted from 5 minutes to 15 minutes in most cases. 
Sink usage was usually short in time and low in consumption. 
These patterns can help briefly categorize the usage events. For 
example, any interval with flow rate lower than 0.1 gallons per 15 
minutes can be filtered out as sink usage. However, using a fixture 
specification library is not enough to identify parallel activities, or 
to deliver customized models for each household. 
2.4.2 Household-dependant Pattern 
    Activity patterns heavily depend on the fixture models and 
occupants of a specific household. For example, households with 
kids generally spent more time on shower every day; households 
with open leaks showed continuous usage for a long time; some 
households have 3 toilets and each has a different specification. 
Therefore, each household needs to be modeled separately to 
ensure accurate disaggregation. These models can be learned from 
historical consumption records and household profiles if available. 
2.4.3 Time-dependant Pattern 
    According to human behavior, some activities may happen 
frequently during a specific time period, which can be used to 
distinguish ambitious water usage. One interesting example of such 
pattern is shower. Most of the labeled showers happened either 
close to the first event of usage in the morning or close to the first 
event after work. Although toilet flush occurred almost any time in 
a day, it was less frequent in working hours and midnight than the 
rest of a day. Not only time of day, but also day of week has been 
found drawing impacts on activity patterns. An example could be 
washer usage which happened mostly during weekends in some 
households. In addition, some activities are found temporally 
associated. For instance, a toilet flush in many cases was followed 
by a short sink usage for hand washing. According to the time-
dependant activity patterns, timestamps of usage events should be 
able to improve disaggregation results significantly. 

3. A NEW STATISTICAL 
DISAGGREGATION FRAMEWORK 

    Coarse granular smart meter readings cause a large portion of 
parallel activities, and disaggregation of parallel activities has 
become a critical and important challenge. This section introduces 
a new General Disaggregation Framework (GDF) to address the 
disaggregation problem. As illustrated in Figure 3, the GDF 
framework applies six phases to disaggregate water consumption. 
The work flow is described as follows: 
    Phase 1 Event extraction: Given a sequence of aggregated 
interval consumption ሺ்ሻ࢔࢕࡯  ൌ ሺ݊݋ܥଵ, … , ሻ்݊݋ܥ , the intervals 
with continuous consumption are grouped to generate events where 
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each represents one activity or parallel activities. The output of this 
phase is an event observation sequence of a given time window: 
ሺ்ሻࢋ ൌ ሺ݁ଵ, ݁ଶ, … , ்݁ሻ. Hence, ࢋሺ்ሻ is regarded as one observation 
of the event random variables ࡱሺ்ሻ ൌ ሺܧଵ, ,ଶܧ … ,  ሻ. Each event்ܧ
௜ܧ  may be generated by a hidden activity ሺܣ௜ሻ or several parallel 
hidden activities ሺܣ௜ଵ, … ,  .௜௦ሻܣ
    Phase 2 Model selection and training: Select an appropriate 
stochastic model ࡰ൫ࡱሺ்ሻ;  ൯, such as HMM or GMM, and estimateࣂ
parameters ࣂ෡ based on historical labeled or unlabeled observations. 
    Phase 3 Parallel activity detection: Given the estimated 
stochastic model ;ሺ்ሻࡱ൫ࡰ  ෡൯ࣂ , the events with parallel activities 
ሺ்ሻ൯ࢋ൫ࡼ  can be identified from anomalous events ሺ்ሻ൯ࢋ൫ࡻ  . 
Anomalous events can be obtained using leave-one-out test, 
i.e., ሺ்ሻ൯ࢋ൫ࡻ  ൌ ൛݁௧ |݁௧ א ሺି௧ሻࡱ൫ࡾ ൌ ,ሺି௧ሻࢋ ൯ൟߙ , where ࡱሺି௧ሻ ൌ
ሺܧଵ, … , ,௧ିଵܧ ,௧ାଵܧ … , ሻ்ܧ ሺି௧ሻࢋ , ൌ ሺ݁ଵ, … , ݁௧ିଵ, ݁௧ାଵ, … , ்݁ሻ . 
 ௧ that is definedܧ ሻ refers to the outlying region of normal eventڄሺࡾ
based on the conditional distribution of ൣܧ௧| ࡱሺି௧ሻ ൌ  ሺି௧ሻ൧ and aࢋ
confidence level ߙ (e.g., 0.99). The calculation of outlying regions 
based on HMM and GMM models will be discussed in Section 4. 
This phase assumes all anomalous events are generated due to 
parallel activities. An anomalous event may also be generated by 
true abnormal activities such as a shower lasting more than an hour. 
However, it is difficult to differentiate these only based on coarse 
granular meter readings. Hence, we only consider parallel activities.  
    Phase 4 Parallel size estimation: For each anomalous event 
observation  ݁௧ א ܱ൫ࢋሺ்ሻ൯ , the number of parallel activities that 
generate ݁௧ can be estimated by  
ݏ ൌ min൛ݏ|݁௧ א ஺௚௚ିࡾ ൫ࡱሺି௧ሻ ൌ ,ሺି௧ሻࢋ ,௧ଵܧሺ݃݃ܣ … , ,௧௦ሻܧ  ൯ൟߙ

where ሼܧ௧ଵ, … , ௧௦ሽܧ  refers to the parallel activities (random 
variables) whose aggregation generates the event ݁௧, ݃݃ܣ ሺڄሻ refers 
to the vector of aggregated features, and ࡾ஺௚௚ି ሺڄሻ  refers to the 
normal region of the aggregated features ݃݃ܣሺܧ௧ଵ, … , ௧௦ሻܧ . 
,௧ଵܧሺ݃݃ܣ … , ௧௦ሻܧ  returns aggregated features, such as the total 
water consumption, the earliest start time, and the latest end time of 
the sub-events ሼܧ௧ଵ, … ,  ௧௦ሽ. The reason of selecting the minimal sܧ
is that heavy consumption (a washer load) can always be 
decomposed into a large number of small activities (e.g., toilet 
flushes), which is not reasonable. 
    Phase 5 Hidden activity identification: For each abnormal 
event ܧ௧ א ܱሺ்ܧሻ, given ݏ, the estimated size of parallel activities, 
this phase estimates the disaggregated activities ሼܽ௧ଵ, … , ܽ௧௦ሽ: 
ሺܽ௧ଵ, … , ܽ௧௦ሻ ൌ arg max

ሺ௔೟భ,…,௔೟ೞሻאሼଵ,…,௠ሽೞ
Pr൫ܣ௧ଵ ൌ ܽ௧ଵ, … , ௧௦ܣ ൌ ܽ௧௦ | ࡱሺି௧ሻ ൌ

,ሺି௧ሻࢋ Aggሺܧ௧ଵ, … , ௧௦ሻܧ ൌ ݁௧ሻ, 

where ݉ is the total number of activity types (e.g., shower, washer).  
    Phase 6 Consumption decomposition: Given the hidden 
parallel activities ሼܽ௧ଵ, … , ܽ௧௦ሽ  estimated in Phase 5, the related 
water consumption of these hidden activities can be estimated as: 
൫݊݋ܥሺ݁௧ଵሻ, … ,  ሺ݁௧௦ሻ൯݊݋ܥ

ൌ arg max
஼௢௡ሺ௘೟భሻ,…,஼௢௡ሺ௘೟ೞሻ

௧ଵሻܧሺ݊݋ܥ൫ܮ ൌ ,ሺ݁௧ଵሻ݊݋ܥ … , ௧௦ሻܧሺ݊݋ܥ

ൌ ሺି௧ሻࡱ|ሺ݁௧௦ሻ݊݋ܥ ൌ ,ሺି௧ሻࢋ ௧ଵܣ ൌ ܽ௧ଵ, … , ௧௠ܣ
ൌ ܽ௧௦, ,௧ଵܧሺ݃݃ܣ … , ௧௦ሻܧ ൌ ݁௧ሻ, 

where ܮ  is the likelihood function, and  ݊݋ܥሺ݁௧௜ሻ  is the 
consumption feature of the sub-event observation ݁௧௜, i ൌ 1, . . , s.  
    To evaluate the correctness of GDF, we have the theorem as: 
Theorem: Given a sequence of aggregated consumption 
intervals ࢔࢕࡯ሺ்ሻ ൌ ሺ݊݋ܥଵ, … ,  ሻ, GDF is able to identify true்݊݋ܥ
hidden activities  ൫ሺܣଵ, ,ଵሻܧ … , ሺܣ௞,  ሺ்ሻ, if the following࢔࢕࡯ ௞ሻ൯ ofܧ

assumptions are satisfied: a) In Phase 1, The events can be 
correctly identified and the features extracted are sufficient; b) The 
distribution ࡰ൫ࡱሺ்ሻ;  ൯ is correctly selected and estimated; c) Allࣂ
anomalous events are due to parallel activities; d) The minimal s 
selected in Phase 4 is correct.  
Proof Sketchy: The four conditions stated above assure that the 
built statistical model by GDF is consistent with the true 
distribution of hidden activities of ሺ்ሻ࢔࢕࡯  . It follows that the 
activities identified by GDF are most probable results and should 
be consistent with true hidden activities. 

4. DISAGGREGATION APPROACHES 
    This section presents two approaches based on GDF to handle 
different disaggregation scenarios. When there is no sufficient 
training data available, which is true in many real-world scenarios, 
we propose an approach to learn hidden relationship among 
consumption events and activities without user input based on 
hidden Markov model (HMM). When labeled activities are 
available for training, we design the second approach to construct 
statistical models using classification techniques and disaggregate 
parallel activities using Gaussian mixture model (GMM).  

4.1 HMM-based Approach 
    This section presents an implementation of GDF based on HMM. 
It is trained based on unlabeled data and performs disaggregation 
without user input. For the purpose of simplicity, each event ܧ௜ is 
represented by a single feature, the total water consumption.  Other 
features, such as start/end time intervals, and duration can be 
included to this approach in a straightforward manner.  

4.1.1 Event Extraction (GDF Phase 1) 
    The key challenge of event extraction is the segmentation 
process. Without labeled historical data, it is necessary to define a 
set of heuristic rules to generate meaningful events based on 
domain knowledge. The basic criterion is to keep adjacent interval 
consumption in a single event if they possibly relate to one activity 
or parallel activities. This is to avoid the situation where one 
activity is divided to two separate events, which is not recoverable 
in our approach. If two nonparallel activities are mistakenly 
grouped to one event, they can still be identified in the consequent 
disaggregation process.   
    Similar to the idea of hierarchical clustering, a bottom-up based 
segmentation algorithm is proposed as follows: 
    Step 1: Preprocessing. Remove leaking effects, and filter out all 
zero-consumption intervals. 
    Step 2: Initialization. Regard each left interval as one event. 
Then we have the sequence of initial events ሺ݁ଵ, … , ݁௞ሻ, where ݇ is 
the number of nonzero consumption intervals. 
    Step 3: Merging heavy events. Define a water consumption 
threshold Ԃ (e.g., 5.5 gallons for 15-minute-size intervals). For each 
continuous event pair ሺ݁௜, ݁௜ାଵሻ, if ݊݋ܥሺ݁௜ሻ ൐ ሺ݁௜ሻ݊݋ܥ and ߴ ൐  ,ߴ
merge ݁௜ and ݁௜ାଵ. Repeat until no such pair exists.  
    Step 4: Merging light events. For each event ݁௜ with ݊݋ܥሺ݁௜ሻ ൐
ߴ , if  0 ൏ ሺ݁௜ିଵሻ݊݋ܥ , then merge ݁௜  and  ݁௜ିଵ . Similarly, if  0 ൏
ሺ݁௜ାଵሻ, then merge ݁௜ and ݁௜ାଵ. If there is an event ݁௜ with 0݊݋ܥ ൏
 ሺ݁௜ାଵሻ greater than Ԃ, then ݁௜݊݋ܥ ሺ݁௜ିଵሻ and݊݋ܥ ሺ݁௜ሻ, and both݊݋ܥ
is merged to the segment with the smallest consumption.  
    Step 5: Merging peak events. Merge two peak events 
( ,ሺ݁௜ሻ݊݋ܥ ൫݊݋ܥ ௝݁൯ ) if ݀݅ݐݏ൫݁௜,   ௝݁൯ ൑ τ , where ݀݅ݐݏ൫݁௜,   ௝݁൯ ൌ
 ௦௧௔௥௧൫ݐ ௝݁൯ െ ௘௡ௗሺ݁௜ሻݐ , and ݐ௦௧௔௥௧ሺڄሻ  and ݐ௘௡ௗሺڄሻ  refer to the start 
and end time of an event respectively. We define an event as a peak 
if its total water consumption is greater than a threshold γ (e.g., 20 
gallons). This step is specifically designed for fixtures like washers, 

(1)

(2)

(3)
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which consists of multiple peaks with more than 15 minutes empty 
cycle (no water consumption) between peaks.  
4.1.2 HMM Parameter Estimation (GDF Phase 2) 
    A hidden Markov model is usually trained based on EM 
algorithm, which can only guarantee local optimum. Given a large 
number of parameters to be estimated in a HMM model, including 
the number of hidden states, the initial probabilities, the emission 
distribution of each state, and the transition matrix, it is critical to 
find appropriate initial settings for these parameters. By   empirical 
evaluation, we decided a mixture model of three Gaussians for sink 
events, and Gaussian models for other activity events. This section 
presents a heuristic based approach to seek initial settings for each 
household based on generic domain knowledge: 
    Step 1: Toilet identification. Hierarchical clustering is applied on 
events to identify toilet clusters. By domain knowledge, toilet 
clusters could be identified by requiring the cluster size to be 
greater than 3 times the total number of days in the training data, 
and the consumption standard deviation smaller than 0.5 gallons. 
    Step 2: Sink identification. Sink events can be identified as the 
events with consumption lower than ሺߤ௜ െ 2 כ  ௜ߪ ௜ andߤ ௜ሻ, whereߪ
are the mean and standard deviation of the toilet cluster with the 
smallest mean consumption in all toilet clusters.  
    Step 3: Frequent pattern identification. After removing sink 
events and toilet clusters, hierarchical clustering is applied on the 
remaining events to identify other qualified clusters. In order to 
control the HMM complexity, we only keep the 12 clusters with 
the smallest standard deviation.  
    Step 4: Cluster labeling. This step gives labels to the qualified 
clusters based on predefined rules such as a shower usage should 
be within 5~25 gallons. If some clusters are still not labeled, we 
label these clusters as “others”, which may relate to some unknown 
activity state or frequent combination of parallel activities.   
    Step 5: Anomaly removal. The anomalous events are identified 
based on a Gaussian mixture distribution estimated from qualified 
clusters. These outliers will impact the training of HMM, therefore 
they are removed from training data. 
    Step 6: Probability estimation. Regarding each qualified cluster 
as a hidden state, we can get the number of hidden states, the mean 
and standard deviation of each hidden state. The transition matrix 
and initial probabilities can be estimated based on labeled events.  
4.1.3 Disaggregation and Labeling (GDF Phase 3-6) 
    First, several notations are defined as follows. The set of activity 
states is ሼ1, … ,݉ሽ, ܦ is an ݉ by ݉ transition matrix, ߨ is the initial 
probability of the ݉  states, ݌௜ሺ݁௧ ሻ ൌ ௧ܧሺݎܲ ൌ ݁௧ | ܣ௧ ൌ ݅ሻ , and 
ሻݐ௜ሺݑ ൌ ௧ܣሺݎܲ ൌ ݅ሻ. For the purpose of simplicity, we assume that 
each event ܧ୲ conditioned on activity state ܣ௧  follows a Gaussian 
distribution ሾܧ௧|ܣ௧ ൌ ݅ሿ ~ ࣨ൫ߤ௜, .௜ଶ൯ߪ  Note that the following 
derivations can also be straightforwardly extended to Gaussian 
mixture distributions.  

Let ܲሺ݁ሻ ൌ ൥
ଵሺ݁ሻ݌ 0 0
0 … 0
0 0 ௦ሺ݁ሻ݌

൩ א Թ௦ൈ௦, ௧ߙ ൌ Prሺ݁ଵ, … , ݁௧, ௧ሻܣ א Թ௦,

௧ሺܽ௧ሻߙ ൌ ௧ߙ ൌ Prሺ݁ଵ, … , ݁௧, ௧ܣ ൌ ܽ௧ሻ א Թ, ௧ߚ ൌ Prሺ݁௧ାଵ, … , ௧ሻܣ|்݁ א Թ௦,
௧ሺa୲ሻߚ ൌ Prሺ݁௧ାଵ, … , ௧ܣ|்݁ ൌ ܽ௧ሻ א Թ, and ܤ௧ ൌ  .ሺ݁௧ሻܲܦ

The HMM implementations of GDF Phase 3 to 6 are as follows: 
    GDF Phase 3: Parallel activity detection 
    The probability density function  

ܲ൫ܧ௧ ൌ ሺି௧ሻܧ | ݁ ൌ ݁ሺି௧ሻ൯ ൌ
௧ିଵ்ߙ ௧ߚሺ݁ሻܲܦ
௧ିଵ்ߙ ௧ߚܦ

ൌ෍ ௜ሺ݁ሻ݌ሻݐ௜ሺݓ
௜

, 

where ݓ௜ሺݐሻ ൌ
ௗ೔ሺ௧ሻ

∑ ௗೕሺ௧ሻ೘
ೕసభ

, ݀௜ሺݐሻ ൌ ሾߙ௧ିଵ் .௧ሿ௜ߚሿ௜ሾܦ  It indicates that 

௧ܧൣ ൌ ሺ௧ሻܧ | ݁ ൌ ݁ሺି௧ሻ൧ follows a GMM:  

௧ܧൣ ൌ ሺି௧ሻܧ | ݁ ൌ ݁ሺି௧ሻ൧ ~ ෍ ,௜ߤ|ݔሻࣨሺݐ௜ሺݓ ௜ଶሻߪ
௜

 

    The outlying region of the GMM model can be calculated as 

,ሺି௧ሻࢋ൫ࡾ ൯ߙ ൌ ൜݁ฬ| ݁ െ |כ௞ߤ ൐ Φିଵכ௞ߪ ൬
1 െ ߙ
2 ൰ൠ, 

where ݇כ is the Gaussian component closest to ݁, and  ߔሺڄሻ is the 
cumulative density function (CDF) of a standard Gaussian 
distribution. Here, we assume that the statistics of outlying events 
are dominated by the component closest to the observation. This 
outlying region estimation has been justified in [4] using extreme 
value statistics.  
    GDF Phase 4: Parallel size estimation 
    The probability density function 

ܲ൫ܧ௧ଵ ൌ ݁௧ଵ, … , ௧௦ܧ ൌ ݁௧௦ | ࢋሺି௧ሻ൯ ൌ
௧ିଵ்ߙ ∏ ሼܲܦሺ݁௧௜ሻሽ௦

௜ୀଵ ௧ߚ
௧ିଵ்ߙ ௧ߚ௦ܦ

ൌ ෍ ௟భ,…,௟ೞݓ ௟ܲభሺ݁௧ଵሻ ڄڄڄ ௟ܲ೘ሺ݁௧௦ሻ
ሺ௟భ,…,,௟ೞሻאሼଵ,…,௠ሽೞ

, 

where ݓ௟భ,…,௟೘  is the weight that can be calculated based on the 
form ሼߙ௧ିଵ் ڄ ∏ ሼܲܦሺ݁௧௜ሻሽ௦

௜ୀଵ ڄ ௧ିଵ்ߙ/௧ሽߚ  .௧ߚ௦ܦ
    It implies that  

,௧ଵܧൣ … , ሺି௧ሻࡱ | ௧௦ܧ ൌ  ~ ሺି௧ሻ൧ࢋ

෍ ௟భ,…,௟ೞࣨݓ ቀൣߤ௟భ, … , ௟ೞ൧ߤ
், diag൫ߪ௟భ

ଶ , … , ௟ೞߪ
ଶ൯ ቁ

ሺ௟భ,…,,௟ೞሻאሼଵ,…,௠ሽೞ
  

    By linear transformation, we have that 
௧ଵܧൣ ൅ڄڄڄ ൅ܧ௧௦ | ࡱሺି௧ሻ ൌ  ~ሺି௧ሻ൧ࢋ

෍ ௟భ,…,௟ೞࣨݓ ൬෍ ௟೔ߤ
௦

௞ୀଵ
,෍ ௟೔ߪ

ଶ
௦

௞ୀଵ
 ൰

ሺ௟భ,…,,௟ೞሻאሼଵ,…,௠ሽೞ
. 

    Note that here ,௧ଵܧሺ݃݃ܣ  … , ௧௠ሻܧ ൌ ௧ଵܧ ൅ڄڄڄ ൅ܧ௧௦ . Since 
,௧ଵܧሺ݃݃ܣൣ … , ሺି௧ሻࡱ |௧௠ሻܧ ൌ ሺି௧ሻ൧ࢋ  follows a Gaussian mixture 
distribution, the normal region ࡾ஺௚௚ି ሺڄሻ can be estimated similarly 
as in the above GDF Phase 3.  
    GDF Phase 5: Hidden activity identification 
    The probability density function 

Pr൫ܣ௧ଵ ൌ ܽ௧ଵ, … , ௧௦ܣ ൌ ܽ௧௦ | ࡱሺି௧ሻ ൌ ,ሺି௧ሻࢋ ௧ଵܧ ൅ ൅ڮ ௧௦ܧ ൌ ݁௧൯ ൌ 

∏௧ଵሺܽ௧ଵሻߙ Pr൫ܽ௧ሺ௜ାଵሻ|ܽ௧௜൯௦ିଵ
௜ୀଵ Prሺ∑ ௧௞௞ܧ ൌ ݁௧|ܽ௧ଵ, … , ܽ௧௦ሻ ௧௦ሺܽ௧௦ሻߚ

்ܮ
, 

where ்ܮ  is the likelihood of the whole sequence and can be 
neglected when solving the problem ሺ2ሻ . Note that the random 
variables ܧ௧ଵ, … , ௧௦ܧ  are independent to each other given their 
hidden activity states ܣ௧ଵ, … ,  ௧௦. The probability density functionܣ
Prሺ∑ ௧௞௞ܧ ൌ ݁௧|ܽ1ݐ, … , ሻݏݐܽ  can be calculated by simple linear 
transformation of independent Gaussian random variables.  
    GDF Phase 6: Consumption decomposition 
    Given the hidden activity states ሼܽ௧ଵ, … , ܽ௧௦ሽ, we have that  

ሾܧ௧ଵ, … , ,௧௦ | ܽ௧ଵܧ … , ܽ௧௦ሿ ~ ࣨሺࣆ,  ,ሻࢳ

where ࣆ  ൌ ,௔೟భߤൣ … , ௔೟ೞ൧ߤ
், ࢳ ൌ diag൫ߪ௔೟భ

ଶ , … , ௔೟ೞߪ
ଶ ൯.  The optimal 

solution of the problem ሺ3ሻ can be obtained as [5] 
ሾ݁௧ଵ, … , ݁௧௦ሿT ൌ ࣆ െ ࣆ૚ሻିଵሺ૚்ࢳଵ૚்ሺ૚்ିࢳ െ ݁௧ሻ. 

4.2 Classification-GMM-based Approach 
    Different from the HMM-based approach, this section presents a 
mixed model approach to the disaggregation problem that requires 
labeled data for training. It first applies a classification model (e.g., 
support vector machine, neural network, and k-nearest neighbor 
classifier) to classify each event as a single activity, or a known 
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frequent combination of parallel activities, or an unknown 
infrequent combination of parallel activities.  For the events 
classified to the last category (unknown infrequent combinations), 
it applies an implementation of the GDF framework based on 
GMM to disaggregate parallel activities.  
    Assume that we are given a sequence of aggregated interval 
consumption ሺ࢔࢕࡯  భ்ሻ ൌ ൫݊݋ܥଵכ, … , ݊݋ܥ భ்

כ ൯  and the related hidden 
activities  ൫ሺܽଵכ, ݁ଵכሻ, … , ሺܽ௞כ , ݁௞כሻ൯  as the labeled training data. The 
objective is to build a model on ࢔࢕࡯ሺ భ்ሻ that can identify unknown 
hidden activities ൫ሺܽଵ, ݁ଵሻ, … , ሺܽ௞, ݁௞ሻ൯  of a new aggregated 
intervals consumption sequence ࢔࢕࡯ሺ்ሻ ൌ ሺ݊݋ܥଵ, … ,   .ሻ்݊݋ܥ

4.2.1 Event Extraction (GDF Phase 1) 
    This phase first applies the same procedure as in Section 3.2.1 to 
identify a sequence of events. Here each ݁௜ has six features, which 
include the start time, duration, total consumption, minimal interval 
consumption, maximal interval consumption, and number of peaks.  

4.2.2 Classification (GDF Phase 2) 
    The event extraction phase returns an event sequence ሺ݁ଵ, … , ݁௞ሻ, 
where each ݁௜ is represented by a vector of six features (݁௜ א Թ଺). 
Note that all the features are mapped to real type values, in order to 
apply classification models such as SVM and neural network.  
    Here, we neglect the dependencies between events and treat 
ሺ݁ଵ, … , ݁௞ሻ as a set of independent training instances: ሼ݁ଵ, … , ݁௞ሽ. 
Based on the labels  ሺܽଵכ, ݁ଵכሻ, … , ሺܽ௞כ , ݁௞כሻ , it is able to identify 
hidden activities of each event ݁௜. To decide class labels, not only 
single activities (e.g., toilet, shower, and washer) are treated as 
distinct classes, but also frequent combinations of parallel activities 
are regarded as distinct classes. The current setting is that frequent 
parallel activities should occur at least once per week.  

4.2.3 GMM-based Disaggregation (GDF Phase 3-6) 
After the classification process, each event has been labeled as a 
single activity, or known/unknown combination of parallel 
activities.  For parallel activities, a GMM-based implementation of 
the GDF framework is proposed to disaggregate parallel activities. 
The basic procedures are as follows: 
    Based on the labels of training events ሼ݁ଵ, … , ݁௞ሽ, it is able to 
collect training instances for each activity state, such as toilet, 
shower, and washer. For simplicity, in this disaggregation step, we 
only consider a single feature (the total water consumption), for 
each event ݁௜. Each single-activity related event (ܧ௧) can modeled 
by a Gaussian mixture distribution as ܧ௧~∑ ,௜ߤ௜ࣨ൫ߨ ௜ଶ൯௠ߪ

௜ୀଵ , where 
,௜ߤ௜ is the prior probability of the activity state ݅, and ࣨ൫ߨ  ௜ଶ൯ isߪ
the event distribution of activity ݅.   
    Given an event ݁௧  that is classified as parallel activities, the 
objective is to identify the most probable hidden activities 
 ൫ሺܽ௧ଵ, ݁௧ଵሻ, … , ሺܽ௧௦, ݁௧௦ሻ൯  with ݃݃ܣሺ݁௧ଵ, … , ݁௧௦ሻ ൌ ݁௧ . Here the 
aggregation function ݃݃ܣ  is the summation function  ∑ሺڄሻ . The 
 disaggregation framework can be employed here, which can ܨܦܩ
be regarded a simplified case of HMM based approach. Readers are 
referred to [15] for detailed specifications.  

5. EVALUATION & FINDINGS 
    The framework has been implemented using JDK 1.5 and 
deployed in the Custom Analytics Layer of the Smarter Water 
Service (Figure 4). Pie charts of activity consumption distribution 
are generated to illustrate how each fixture has been used on 
monthly basis. From the Smarter Water Service layer interface, the 
residents can browse their own consumption distribution; 
meanwhile, the government agency and utility manager can explore 
how water has been consumed by each activity at regional level. 

    Both HMM-based and GMM-based approaches have been 
implemented and evaluated. Specifically, for the GMM-based 
approach, we have assessed three classification methods, k-Nearest 
Neighbor classification (kNN-GMM), Artificial Neural Network 
(ANN-GMM), and Support Vector Machine (SVM-GMM) 
accordingly. Given the available labeled activities, the evaluation 
focused on identifying toilet flushes, showers, and washer loads.  
    To evaluate the effectiveness of consumption disaggregation on 
identifying these activities, we adopted three metrics, precision, 
recall, and F-measure. The major reason of using these metrics is 
that the disaggregation evaluation is similar to an information 
retrieval process, where subsets of intervals represent certain true 
activities and the testing results are also subsets of intervals labeled 
as activities. The metrics need to capture not only how many labels 
are matched, but also how many true activities are missed and how 
many false labels are placed. These metrics are defined as follows: 
Precision refers to the portion of matched activities within the 
corresponding disaggregation results; Recall refers to the portion of 
matched activities within the corresponding true activities; F-
measure is the harmonic mean of precision and recall. 
    To evaluate the proposed disaggregation solution, we have 
applied both HMM-based and GMM-based approaches on the 
consumption of 6 volunteer households, as well as 50 simulation 
datasets that were generated based on their labeled consumption. In 
addition, we varied the sample rate in these datasets to investigate 
its impact on disaggregation results. The correlation between 
sample rate and effectiveness can provide guidance to future 
planning and deployment of human activity analysis applications. 
    Due to the lack of labeled activities from most of the pilot 
households, we only applied the HMM-based model to analyze 
activities of the 300+ pilot households. Some interesting patterns 
discovered can illustrate common human behavior characteristics.  
5.1 Datasets 
    A real-world dataset was collected from 6 volunteer households. 
It consists of 1/10 Hz water reading and the corresponding usage 
journaling records for 7 days. The usage journaling was input 
manually by these volunteers, so it always has approximated 
timestamps and missing activities, which introduce inaccuracy 
which needs to be handled carefully. Note that these households 
came from various demographic categories and showed 
significantly different consumption patterns. A summary of labeled 
activities from one volunteer is listed in Table 2 as an example. 

Table 2. Water Journaling of One Household. 
Fixture Occurrences Total Amount  Percentage 
Shower 1 5 71 7% 
Shower 2 5 57 6% 
Washer 9 366 38% 
Toilet 1 43 217 24% 
Toilet 2 33 68 7% 
Others (sink & unlabeled) N/A 186 19% 

    50 simulation datasets were generated by simulating occurrences 
and corresponding consumption of activities according to their 
distributions in the labeled dataset from the 6 volunteer households. 
Firstly, from the labeled activities, the number of instances of each 
activity in a week was estimated using Poisson distribution. Each 
instance was randomly assigned to a day and time according to the 
distributions of labeled activities in day-of-week and time-of-day 
domains. These distributions were captured by activity occurrence 
histograms generated from labeled activities and smoothed by 
kernel density. Once date and start time of an instance was 
determined, its consumption and duration was randomly picked 
from a dictionary of the corresponding labeled activities. Finally, 
consumption noise of each day was randomly picked from 42 (6 
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households * 7 days) samples, of which each contains unlabeled 
consumption (<2 gallons) of a whole day. In this way, simulated 
consumption data for 6 months were generated in each dataset. 
    A live dataset was constructed from the 15-min consumption of 
all the pilot households since August 2010. This dataset has 
inconsistent reading intervals all the time, missing readings due to 
communication failure, and even water leaks that can impair the 
disaggregation results.  

5.2 Parameter Settings & Baseline Methods 
    For HMM-based approach, the major settings are as follows: 1) 
in GDF Phase 1 (event extraction) Step 3 (merging heavy events), 
the threshold Ԃ was set to 5.5 gallons; 2) in GDF Phase 1 (event 
extraction) Step 5 (merging peak events), the thresholds τ and γ 
were set to 15 minutes and 20 gallons, respectively; 3) in GDF 
Phase 2 (HMM parameter estimation) Step 4 (cluster labeling), the 
clusters with mean consumption between 1.2 gallon and 6 and 
frequency greater than two times per day were labeled as toilets; 
the clusters with mean consumption between 8 and 30 were labeled 
as showers; the clusters with mean consumptions between 30 and 
55 gallons were labeled as washers; the clusters with frequency 
smaller than 1 times per day were disregarded; and the left clusters 
were labeled as “others”; 4) the number of states in HMM was 
decided automatically (See GDF Phase 2 step 3). Note that all the 
preceding parameters were decided based on domain experiences. 
    For kNN-GMM-based approach, the event extraction phase was 
the same as that in HMM-based approach. Note that the same event 
extraction process was also used in all other compared approaches. 
The kNN classifier used in the experiments was provided by 
MATLAB-2008a Bioinformatics Toolbox. One major parameter is 
the number of nearest neighbors used in the classification. We 
applied 10-folder cross validation to select the best k from the 
candidate values from 5 to 15. 
    For ANN-GMM-based approach, the neural network classifier 
was provided by MATLAB 2008a Neural Network Toolbox. We 
used one-per-class cording for multiclass classification. In one-per-
class coding, each output neuron is designated the task of 
identifying a given class. The output code for that should be 1 at 
this neuron and 0 for others. We used Levenberg-Marquardt 
backpropagation, which is the default training algorithm in 
MATLAB. 10-folder cross validation was used to select the best 
parameter “the number of hidden layers” in the range from 2 layers 
to 8 layers. Other parameters were the default settings. Note that, 
another popular training algorithm is “Gradient descent back 
propagation” with two major parameters “learning rate” and “the 
number of hidden layers”. We have also tried this training 
algorithm in experiments. But results indicate that the Levenberg-
Marquardt backpropagation method is more accurate and efficient.   
For SVM-GMM-based approach, the SVM classifier was provided 
by LIBSVM [6]. We used the popular radial basis function as the 
kernel function. There are two parameters including cost (c) and 
gamma (g). These two parameters were tuned by 10-folder cross 
validations, and the best parameters was selected from different 
combinations of the cost parameter (c) range: ݈݃݋ଶሺܿሻ ൌ 1: 0.25: 5, 
and the gamma parameter (g) range: ݈݃݋ଶሺ݃ሻ ൌ െ7: 0.25:െ1. We 
used the “one-against-one” method for multiclass classification. 
    Two baseline approaches, named random-pick and knapsack 
based, were applied to evaluate the effectiveness of the above four 
proposed methods. The random-pick method is described as 
follows: First, conduct the same event extraction as in HMM-based 
method; second, the events with consumption smaller than 2 
gallons are labeled as sink uses; third, the left events are randomly 
labeled to toilet, shower, and washer uses.  

    The knapsack based method is described as follows: First, 
conduct the same event extraction as in HMM-based method; 
second, knapsack each segment to the best combination of the 
following activities: “Toilet-old (1.6 gallons)”, “Toilet-new (4 
gallons)”, “Shower-Low-flow (15 gallons)”, “Shower-Standard (30 
gallons)”, “Laundry (50 gallons)”, and “Sink (<=1.6)”. 

5.3 Effectiveness Comparison  
    To demonstrate the effectiveness of proposed approaches, we 
used the labeled activities from water journaling and the simulation 
datasets as ground truth, and compared the proposed approaches. 
The comparison was conducted among 4 versions of disaggregation 
approaches, HMM, kNN-GMM, ANN-GMM, and SVM-GMM; 
and the two baseline solutions, random pick and knapsack. Cross 
validation was applied to find the best parameters for the 
corresponding classification methods. 
    As shown in Table 3, all the proposed approaches achieved 
about 95% precision on shower identification, while the recall was 
relatively low (77~81%). It was because the deviation of shower 
consumption is very high in real life. In many cases, consumption 
of a shower may be similar to that of two toilet flushes, or a front-
load washer. Therefore, some true showers could not be correctly 
identified. But once an activity is labeled as a shower, it’s very 
likely to be true. Although these four methods performed similarly 
on labeling showers, SVM-GMM achieved the highest scores. 
Table 3. Precision, Recall, and F-measure on Simulation Data. 

Precision, 
Recall,      
F-measure 

Toilet 
Mean (Standard 

Deviation) 

Shower 
Mean (Standard 

Deviation) 

Washer 
Mean (Standard 

Deviation) 
HMM 0.7704 (0.08),  

0. 6651 (0.04), 
0.7110 (0.04) 

0.9471 (0.04),  
0.7883 (0.04), 
0.8594 (0.03) 

0.7839 (0.06),  
0.9610 (0.04), 
0.8620 (0.04) 

kNN-GMM 0.7291 (0.07), 
0.8552 (0.03), 
0.7850 (0.04) 

0.9552 (0.02),  
0.7723 (0.05), 
0.8530 (0.03) 

0.8536 (0.06), 
0.8937 (0.09), 
0.8702 (0.06) 

ANN-GMM 0.5982 (0.05), 
0.8709 (0.03),  
0.7075 (0.04) 

0.9584 (0.03), 
0.7670 (0.06), 
0.8505 (0.04) 

0.8554 (0.08), 
0.8994 (0.12), 
0.8710 (0.09) 

SVM-GMM 0.4669 (0.07),  
0.8873 (0.02),  
0.6086 (0.06) 

0.9622 (0.02), 
0.8057 (0.05),  
0.8761 (0.03) 

0.8613 (0.06),  
0.9329 (0.06),  
0.8940 (0.04) 

Random Pick 0.1022 (0.03),  
0.0531 (0.01) 
0.0699 (0.02) 

0.1514 (0.03),  
0.1608 (0.04) 
0.1560 (0.03)) 

0.0737 (0.02),  
0.3237 (0.10) 
0.1201 (0.07) 

Knapsack 0.0655 (0.01),  
0.1534 (0.02) 
0.0918 (0.02) 

0.4570 (0.05),  
0.3294 (0.05),  
0.3828 (0,05) 

0.8619 (0.16),  
0.3516 (0.13) 
0.4995 (0.19) 

 

    Different to shower, washer loads were disaggregated with very 
high recall (89~96%), and relatively low precision (78~86%). 
Generally, cloth washer is the heaviest and meanwhile the least 
frequent activity on water consumption in a household. Based on 
the specifications and settings of a washer, its water consumption is 
usually consistent. That’s the reason why almost all of the washer 
instances can be learned and identified. On the other hand, a 
washer usage usually crosses multiple intervals. This usage pattern 
may be similar to certain combinations of other consumption. 
Therefore, some other consumption was classified as washer by the 
disaggregation approaches. In overall, SVM-GMM achieved the 
best overall performance, and HMM got the highest recall.  

Detecting toilet flushes is the most difficult task comparing to 
shower and washer. Because toilet usage typically happens very 
frequently and costs a small amount of water, it is hard to be 
distinguished from sink usage in 15-minute interval, or be 
identified when combined with heavy activities such as a shower or 
a washer load. All the four approaches had F-measure between 61% 
and 78%. HMM was the only approach with precision higher than 
recall. KNN-GMM performed the best in terms of F-measure. 

Due to the small number of training data (<= 4 days per house), 
GMM-based approaches failed to disaggregate consumption on the 
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volunteer households. As shown in Table 4, HMM perfectly 
identified the washer usage, and disaggregated showers with high 
scores. The F-measure for toilet disaggregation with HMM only 
achieved 55%, although still much better than the baselines. 

Table 4. Precision, Recall, and F-measure on Volunteers. 
Precision, 
Recall,      
F-measure 

Toilet 
Mean (Standard 

Deviation) 

Shower 
Mean (Standard 

Deviation) 

Washer 
Mean (Standard 

Deviation) 
HMM 0.516 (0.27),  

0.597 (0.17) 
0.5536 (0.22) 

0.831(0.138), 
0.818 (0.144), 
0.8244 (0.14) 

1 (0),   
1 (0) 
1 (0) 

Random Pick 0.20 (0.18),  
0.19 (0.08) 
0.1949 (0.13) 

0.08 (0.09),  
0.19 (0.16) 
0.1126 (0.17) 

0.07 (0.09),  
0.29 (0.34) 
0.1128 (0.27) 

Knapsack 0.20 (0.10),  
0.904 (0.01) 
0.3275 (0.05) 

0.52 (0.34),  
0.47 (0.16) 
0.4937 (0.25) 

0.44 (0.52),  
0.23 (0.27) 
0.3021 (0.39) 

5.4 Impact of Sample Rate 
    Choosing an appropriate sample rate for smart meter deployment 
is a very important decision that may affect hardware and 
maintenance cost. This set of experiments can provide practical 
suggestions from the requirement of activity analysis. Reading 
intervals of the simulation datasets were varied from 15 min to 3 
hours in this set of experiments to evaluate its impact on the 
accuracy of disaggregation results. Both HMM and GMM methods 
were evaluated in this set of experiments. SVM-GMM was selected 
to represent GMM, because it had shown practically good accuracy 
and efficiency in previous experiments. As suggested in Figure 5, 
both 15 and 30 min intervals provide acceptable results. 1 hour 
interval supports fair disaggregation of washer and shower, but 
cannot identify more than half of toilet flushes. 

 
Figure 5. Impact of Interval Length. 

5.5 Disaggregation for Pilot Households 

  
a) Pilot Households        b) Single Adult          c) Two Adults 

         
d) Households with Kids    e) Households with Toddlers 

Figure 6. Distribution vs. Demographic Info. 
The proposed HMM-based approach has been applied on 300+ 

pilot households with 15 minute meter readings. Hidden Markov 
models were constructed for each household, and water 
consumption since August 2010 was disaggregated into activities 

to provide insights to residents and the city management team. 
Some interesting usage patterns discovered from the disaggregation 
results are illustrated in the following paragraphs.  

By combining with demographic survey results, we first 
summarize the consumption distribution of different types of 
households in pie charts as shown in Figure 6. Each pie chart 
shows the portion of water each activity used by a given group of 
households. The consumption that cannot be disaggregated is 
included in category ‘others’. The consumption distribution of all 
the pilot households is illustrated in Figure 6 a), where toilet and 
shower used about 30% each, and washer used about 25%. 
Households with single occupant (Figure 6 b)) showed different 
usage pattern, where shower only consumed 21% of the overall 
usage and washer reduced to 22%. Figure 6 c) shows the pie chart 
for households with two adults only. Compared to the single adult 
households, households of two adults consumed significantly 
higher in shower. On the other hands, kids in general caused more 
washer usage. As shown in Figure 6 d) and e), households with 
kids brought washer usage to 28%, and more specifically, 
households with toddlers had increased washer usage further to 
30%. By comparison, a resident can easily figure out on which 
activity his or her household needs more efforts to conserve water. 
    Temporal patterns of washer and shower usage have been 
identified from the disaggregation results. As shown in Figure 7, 
the pilot households preferred to use washer in weekends, and each 
weekday there was about 0.9 load per household in average. Not 
only the number of loads, but also the size of each load increased in 
weekends. Figure 7 b) illustrates that each load on Saturday used 9% 
more water than a load on Tuesday or Wednesday. This is 
reasonable because usually heavy laundry is saved to weekends. 

  
a) Daily Occurrences                 b) Gallons per Load 

Figure 7. Washer Usage vs. Day of Week. 
    Similar to washer, as can be seen in Figure 8 a), more showers 
happened during the days in weekends. However, interestingly, an 
average shower on Sunday used the least water in a week, which 
was 10% less than one on Saturday. Furthermore, a shower on 
Friday consumed the highest amount of water in a week. It seemed 
that people wanted to relax and enjoyed longer showers on Friday, 
while the stress from work arrived early on Sunday. 

 
a) Daily Occurrences                 b) Gallons per Load 

Figure 8. Shower vs. Day of Week. 
    Figure 9 demonstrates the time of day distributions of shower 
and washer across the pilot households. As expected, the peaks of 
showers happened during 8~9 am and 6~7 pm in a day, which are 
before and after work. Washer usage showed a similar distribution 
in b), although the pm peak was not significant. That consistency 
could be explained as that many washer loads occurred right after a 
shower to handle the changed clothes. 
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a) Shower                             b) Washer Usage 
Figure 9. Shower/Washer vs. Time of Day. 

6. RELATED WORK 
    Non-intrusive load monitoring has been proposed based on 
analyzing steady state change and transient state change. So far 
most of the research effort has been focused on electricity load 
disaggregation with high sample rate [7-13]. A power meter with 
high sample rate (>= 1Hz) can identify most of the state changes of 
multiple metrics (e.g., power, reactive power, voltage, and 
harmonics) caused by individual appliances in a real-world home. 
Based on state change of current and voltage, a non-intrusive load 
monitoring approach [7] was proposed to determine power 
consumption of individual appliances. An electrical noise sensor 
has been used to disaggregate consumption by running SVM on 
transient noise of turning on and off appliances [8]. By measuring 
voltage of each outlet in a house, one approach [12] applied kNN 
and SVM to classify appliances. This approach collected peak, 
average, and RMS of voltage of a single target with 4kHz sample 
rate, and achieved best results using an NN classifier. An NN-
based disaggregation approach has been proposed to identify 
appliances with 90% accuracy using only the main power meter [9, 
13]. The features it used consist of power, reactive power, voltage 
RMS, and harmonics for state transition. RECAP has recently been 
proposed using artificial neural network (ANN) to disaggregate 
electricity usage [11]. Features including power factor, peak and 
RMS of voltage and current were aggregated every minute and 
analyzed in a 3-layer ANN. To extract better features, Matrix 
Pencil [10] has been proposed to model each signal as complex 
plan, and use residues and poles as features for disaggregation. 
Improved disaggregation results have been demonstrated. 
    Compared with electricity disaggregation, residential water 
disaggregation has attracted much less research effort. To the best 
of our knowledge, there has not been any design that can 
disaggregate water consumption either using a single water meter 
or from a sample rate lower than 500Hz. Microphone-based 
sensors were applied on major water pipes (cold inlet, hot inlet, and 
sewing) to recognize usage activities [14]. Combining the 
timestamps that these microphones detect noise, the authors 
identified most of the water usages. However, this approach has 
difficulties to disaggregate concurrent activities and cannot 
determine water volume. Integration of a water meter and a 
network of accelerometers [15] has been proposed to estimate the 
flow rates based on pipe vibration. This approach has been applied 
in laboratory environments to disaggregate water usage. To avoid 
accessing water pipes, an approach using pressure sensor on main 
source [16] was proposed to identify fixtures. This approach 
applies hierarchical classifiers to first detect valve open and close 
events, and then label fixtures. Due to the 1 kHz sample rate, it can 
clearly capture on and off signals of fixtures from water pressure. 

7. CONCLUSION 
    This paper describes a design and deployment of activity 
disaggregation using low sample rate smart water meters in 
Dubuque, IA. In the proposed general disaggregation framework, 
fixture characteristics, household behavior, and activity 

correlations are modeled to disaggregate water consumption. 
Implementations based on Hidden Markov Model and Gaussian 
Mixture Model have been developed accordingly to provide 
insights for helping residents improve their behavior and 
supporting utility manager’s decision making. Evaluation on both 
real and simulation datasets have demonstrated the effectiveness of 
the disaggregation approaches, and revealed some interesting 
patterns from pilot households. Future efforts may include 
providing user annotation interface to support learning from 
feedback; and expanding the disaggregation service to electricity 
smart meters. 
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