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a b s t r a c t

Appearance of objects lie in high-dimensional spaces. Feature selection improves not only the efficiency
of object recognition but also the recognition accuracy. In this paper, we propose a two-layer learning
framework of feature selection using spatial and discriminant influences. The first layer selects a number
of feature points of highest integrated influences by integrating spatial and discriminant influences, and

orientation histograms of their local appearances. The proposed framework can be categorized as a
global appearance based recognition approach. Unlike popular projection methods, such as PCA, LDA, the
proposed framework can present visual interpretability of selected features, which is desirable in
bioinformatics and medicine informatics. We present two case studies: (i) embryo stage recognition and
(ii) face recognition. Our case studies show the effectiveness of the proposed framework.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Appearances of objects lie in high-dimensional spaces. For a
given recognition task, feature selection aims to select most
effective features (specifically, feature points) in order to reduce
the computational cost of recognition and improve recognition
accuracies. Features can be selected based on their spatial influ-
ences [15,26,31,53], i.e., the bottom-up scheme [29,28,48,59]. For
example, the Harris detector [15] uses gradient auto-correlation of
image points to define their spatial influences. The bottom-up
scheme aims to output feature points repeatable across different
imaging conditions, which helps construct robust and compact
representation of image data. The bottom-up scheme has a wide
range of applications, such as object recognition [18], image
retrieval [33]. The bottom-up feature selection is an important
step to build a generative model for object recognition [54,8].
A generative model is basically a graph model with a relatively
small number of features [18]. Generative models are strong in
addressing “weak-alignment” recognition tasks where the shapes
of different objects contain significant variations. Features can also
be selected in terms of class or context information, i.e., top-down
schemes[13,29,28,48,59]. Gao and Vasconcelos [13] argued that
spatial information (such as edge, corners) may not always reveal
good saliency of visual objects, and thus proposed a discriminant
ll rights reserved.
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top-down selection method for visual recognition, where the
discriminancy is determined by the maximum marginal diversity
[49].

Recently, the integration of the bottom-up and top-down
feature selection received extensive attention in the area of visual
classification [29,28,48,59], including object detection [34], object
recognition [18], and scene understanding [48]. For example,
Holub and Perona [18] proposed a model to combine the gen-
erative model and Fisher kernels, which brings considerable
improvement of the performance of generative models. To
speedup object detection, Navalpakkam and Itti [34] proposed a
model to integrate bottom-up and top-down attention, where the
top-down component uses accumulated statistical knowledge of
the visual features of the desired search target and background
clutter, to optimally tune the bottom-up maps such that target
detection speed is maximized. More related work will be pre-
sented in Section 2.

In this paper, we propose a two-layer learning framework for
appearance based recognition via a hierarchical usage of spatial
and discriminant influences. The proposed framework assume that
images (objects) are aligned so that image points at the same
location in different images have “correspondence”, e.g., their
intensities tend to be correlated to each other. In other words,
the proposed framework stands on the techniques of image
registration [4,17,60], object localization [3,52,11], and image
segmentation [55,30,35].

The main idea of the proposed framework is illustrated in Fig. 1.
Given a set of training images, the first layer aims to select a

www.elsevier.com/locate/neucom
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2013.03.015
http://dx.doi.org/10.1016/j.neucom.2013.03.015
http://dx.doi.org/10.1016/j.neucom.2013.03.015
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.neucom.2013.03.015&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.neucom.2013.03.015&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.neucom.2013.03.015&domain=pdf
mailto:qi.li@wku.edu
mailto:ctlu@vt.edu
http://dx.doi.org/10.1016/j.neucom.2013.03.015


Orientation
Histogram

First Layer

Second Layer

Intensity/
Intensities

Integrated
Influence

LDAs

Discriminant
Orientation
Histogram

Fig. 1. Two-layer learning framework for appearance based recognition. The first
layer selects a number of feature points of maximal integrated influences, and the
second layer applies Linear Discriminant Analysis to an ensemble of descriptors of
these feature points (constructed by orientation histogram) and obtains an
ensemble of most discriminant representations of orientation histograms.
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number of feature points (visualized as small blocks in Fig. 1) by
integrating spatial and discriminant influences. The major output
of the first layer is the locations of feature points. In the second
layer, we first construct the orientation histogram (visualized by a
row vector in Fig. 1) for the local appearance of each feature point
(of each image). The collection of orientation histograms of the
same feature points of all training images forms an ensemble of
instances (visualized by an ellipse). Linear Discriminant Analysis
(LDA) [9,45,1] applies to an ensemble of instances to estimate the
discriminancy and compute the discriminant representation of
orientation histograms. So the major output of the second layer of
the proposed framework is a reduced set of feature points and LDA
subspaces associated with the highest discriminancy score.

The rationale of the hierarchical design of the proposed frame-
work lies in the following comparison between intensity blocks
and orientation histograms:
�
 Efficiency. Constructing orientation histograms is much more
computationally expensive than constructing intensity blocks,
which is the rationale of introducing orientation histogram in
the second layer rather than the first layer, i.e., being applied to
selected feature points rather than all image points.
�
 Sensitivity to localization. Orientation histograms are less sensi-
tive to localization error than intensity blocks, which is the
rationale of introducing Linear Discriminant Analysis (LDA) to
estimate the discriminancy of orientation histograms. Note that
LDA assumes that data fits Gaussian distribution.

In experiments, we present two case studies to demonstrate
the effectiveness of the proposed framework. The first case study
is on the recognition of developmental stages of Drosophila
embryos based on gene expression pattern images [22,14]. The
role of Drosophila (fruit fly) in explicating the function and
interconnection of animal genes has established the species as a
major model organism [44]. In situ hybridization is a recent
technique to document gene expression pattern of embryos along
their different developmental periods [7]. (An expression region
indicates the response of a gene to a probe RNA.) These docu-
ments, a set of embryos images contain rich information on the
spatio-temporal patterns that are extremely valuable for the study
of gene–gene interaction. Dark regions in an embryo image
indicate expression patterns of genes. Given two standardized
images of embryos (of pixel-to-pixel correspondence) at the same
developmental stage, the interaction strength of two genes can be
quantified by computing the similarity of expression patterns
[23,20,19,38,27,10], e.g., the ratio of overlapping expression
regions of the images. Compared with in situ hybridization, the
widely used microarray technique reveals very limited spatial
pattern information. The gene expressions obtained from micro-
array images are, precisely speaking, the average expression levels.
The second case study is on face recognition where we use dataset
PIE [43] that has 68 human faces. These studies convince us the
effectiveness of (i) the integrated influences in selecting good
feature points, and (ii) the discriminant representation of orienta-
tion histograms.

The rest of the paper is organized as follows: In Section 2, we
present related work. In Section 3, we introduce locality oriented
Fisher discriminant scores. In Section 4, we propose an integrated
model. In Section 5, we propose discriminant representation of
orientation histograms. Two case studies are presented in Section
6, and conclusions and future work are given in Section 7.
2. Related work

Appearance based recognition can be roughly categorized into
two different strategies: (i) global approaches and (ii) local
approaches [40]. Global appearance based recognition usually
assumes object regions have been aligned. It has been successfully
applied to some weakly textured images, such as face images [56].
A global approach is popularly performed in terms of a projection
method, such as Principal Component Analysis (PCA) [21], Linear
Discriminant Analysis [1], and their high-dimensional variations:
Generalized PCA [51], tensor Discriminant Analysis [46], etc. A
global appearance can be effectively “encoded” into a very low
dimensional vector for recognition, and thus brings appealing
recognition efficiency. Besides the advantage of recognition effi-
ciency, projection methods can achieve satisfying recognition
accuracy if global appearances do not contain significant local
outlier appearances. A limitation of projection methods is that
their performance is difficult to interpret. Note that interpretabil-
ity is desirable in many applications, such as object categorization
[39] and bioinformatics [16]. It is worth noting that sparse
learning, as a projection based feature extraction scheme, recently
received attention [58,24,47,57] since features extracted by a
sparse learning method can be interpreted psychologically and
physiologically [58].

In contrast to global approaches, local approaches are robust
with respect to localization error and local outlier appearances
[41,26]. (Precisely speaking, local approaches do not require object
localization.) In a local approach, a set of repeatable/stable image
point/regions are first extracted by an interest point/region detec-
tor [42,26,31], and then distinctive descriptors are constructed to
represent an image. However, local approaches are computation-
ally expensive. Moreover, local approaches are not effective for
weakly textured objects, such as face images, feature selection
method instead of a projection method.

Walther et al. [53] proposed a bottom-up model for selective
attention, where bottom-up saliency map is contributed by the
color feature maps, intensity feature maps, and orientation feature
maps. They showed that the proposed bottom-up visual attention
can strongly improve learning and recognition performance in the
presence of large amounts of clutter.

Vasconcelos [49] proposed a discriminant feature selection via
maximization of marginal diversity (MMD); for multi-class pro-
blems, one-versus-all strategy is applied. Vasconcelos and Vascon-
celos [50] proposed an information theoretic feature selection to
achieve a good balance between maximizing the discrimin-
ant power of selected (local) features and minimizing their
redundancy. The method is tested on image retrieval, where the
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comparison between two images is achieved by the comparison of
Gaussian mixtures of the compact sets of discriminant (local)
features detected from the images. Gao and Vasconcelos [13]
presented a discriminant saliency method, based on MMD [49],
to detect visual objects from cluttered backgrounds.

Navalpakkam and Itti [34] proposed a SNR based model to
integrate bottom-up and top-down attention for optimizing detec-
tion speed, where SNR (signal-noise-ratio) characterizes the discri-
minant ratio of the spatial influence of target objects over the spatial
influence. Navalpakkam and Itti showed the model, with little
computational cost in the form of multiplicative top-down gains on
bottom-up saliency maps, predicts many reported bottom-up or top-
down influences on human visual search behavior.

Holub and Perona [18] proposed a model to combine genera-
tive model and Fisher kernels for object recognition. The gen-
erative model used in [18] is a constellation model that aims to
find optimal appearance and shape parameters fθa; θsg during the
mapping of interest points to model parts. A Fisher kernel is a
gram matrix constructed by “Fisher score” feature that is the
derivative of log likelihood of the parameters of a generative
model. (Note that Fisher score used in [18] is different from Fisher
criterion score used in this paper.)

Zhu et al. [59] formulated bottom-up models as data-driven
methods such as Hough transforms and data clustering, and top-
down models as templates of objects (targeted in a specific
application). Zhu et al. proposed Data Driven Markov Chain Monte
Carlo (DDMCMC) to integrate the bottom-up models and top-
down models. Mancas [29,28] proposed a bottom-up model based
on structures rarity within an image and a top-down model based
a mouse-tracking device that builds models of a global behavior
for a given kind of image. Toyoda et al. [48] proposed a framework
that integrates bottom-up information and top-down information
for scene understanding, such as road image labeling. In their
framework, bottom-up information is derived from local features
of texture and color, and top-down information is generated from
a holistic image context.

Fisher criterion score [2] has been widely used for feature
selection. In [12], Fisher criterion score is used to select most
discriminant features of microarray expression data and achieved
substantial improvement of recognition accuracy.
3. Locality oriented Fisher score

Denote p as an image point, c is a class label, J a set of training
data, and Jc is a set of training instances in class c, i.e., J ¼ ∪cJc.

Fisher score was proposed to maximize the ratio of between-
class variation over within-class variation. More specifically, given
an attribute p, its Fisher criterion score is defined as follows:

scoreðpÞ ¼ scoreðfvjðpÞgj∈JÞ

¼ ∑cjvcðpÞ−vtðpÞj2
∑c∑j∈Jc jvjðpÞ−vcðpÞj2

; ð1Þ

where vj is j-th training instance, vcðpÞ ¼ ð1=jJcjÞ∑j∈Jc vjðpÞ, and
vtðpÞ ¼ ð1=jJjÞ∑j∈JvjðpÞ. The most discriminant attribute is assigned
by the highest Fisher score. Thus by sorting attributes according to
their Fisher scores, a number of most discriminant attributes
contribute a good feature vector for recognition, e.g., the use of
nearest neighbor under Euclidean distance as a classifier. The
number of most discriminant attributes is usually determined via
cross-validation.

We introduce locality oriented Fisher scores to estimate dis-
criminant influences where the locality is captured by wavelets.
Engaging locality in Fisher score evaluation aims to stabilize
discriminant features with respect to image noise and illumination
conditions. In this paper, we apply one-level wavelet transforma-
tion to capture the locality of an image point. With one-level
wavelet transformation, an image is decomposed into 4 sub-bands: LL,
LH, HL, and HH. Denote ujð�; bandÞ is a wavelet sub-band of j-the
training instance vjð�Þ, where band is LL, LH, HL, or HH.We propose the
following Fisher scores:

Dðp; bandÞ ¼Dðfujðp; bandÞgj∈JÞ

¼ ∑cjucðp; bandÞ−utðp; bandÞjl
∑c∑j∈Jc jujðp; bandÞ−ucðp;bandÞjl

; ð2Þ

where l is a positive number, ucðp; bandÞ ¼ ð1=jJcjÞ∑j∈Jc ujðp; bandÞ, and
utðp; bandÞ ¼ ð1=jJjÞ∑j∈Jujðp; bandÞ.

Next, we briefly illustrate the theory why a wavelet can be used
to capture the locality. It is known that wavelets have several
desirable properties: compact supports, symmetry, and/or high-
vanishing moments, orthogonality, etc. Given a wavelet ψ (for
simplicity, let us assume it is on R), compact support indicates
ψðxÞ≡0 out of some finite interval; symmetry indicates ψðx0−xÞ ¼
ψðxÞ, for some x0∈R; vanishing moment k indicates

R
xlψ ðxÞ dx;

l¼ 0;…; k; orthogonality indicates
R
ψðxÞψðx−jÞ dx¼ 0; ∀j∈Z. Com-

pact support is the key property for a wavelet technique to
perform the local analysis. Vanishing moment is also a useful
property for local analysis. Note that if a local region is smooth, it
can be approximated by some low-order polynomials. Convolving
with a wavelet of some-degree vanishing moment, its associated
wavelet coefficients are small. Thus the magnitude of wavelet
coefficients can characterize the smoothness of a local region. The
work in signal or visual processing has found the importance of
symmetry. Orthogonality may be arguable depending on what
space the data lies in. If the data is in L2, it is desirable; Otherwise,
it may be worthless.

We will use least asymmetric Daubechies wavelet to capture
the locality in determining the Fisher criterion score. The least
asymmetric Daubechies wavelet is constructed by constraining the
phase of the so-called transfer function as close to linear as
possible. (More details can be found in [6, Chapter 8].)

It is worth noting that in our Fisher score formulation, we
introduce the norm parameter l. In standard Fisher score, l is
always fixed as 2, i.e., Euclidean norm. It is known that in resisting
outlier attributes, Euclidean norm may not perform best. In the
later case study, we will observe the value of this generalization.
4. Integrating spatial and discriminant influences

Recall that p is an image point and J is a set of training data.
Denote i the index of a certain spatial filter such as Gradient auto-

correlation [15,42], Laplacian [31], and DoG [26]. Denote fSijgj∈J as the
spatial influence maps of all training images associated with a certain

spatial filter. Denote T0 as the unsupervised operator T0ðfSijðpÞgj∈JÞ ¼
ð1=jJjÞ∑j∈JS

i
jðpÞ, which gives bottom-up feature selection. Denote

ui
jð�; bandÞ is a one-level wavelet sub-band of Sijð�Þ. For convenience,

we index LL, LH, HL, and HH as 1, 2, 3, and 4 respectively. Denote

TkðfSijðpÞgj∈JgÞ ¼Dðfui
jðp; kÞgj∈JÞ, k¼1,…,4, (see Eq. (2)), as a supervised

operator, which gives top-down feature selection.
Our model integrates a set of unsupervised and supervised

operators that are applied to a set of spatial influence maps as
follows:

influenceðpÞ ¼ ∑
0≤k≤4;i

αk;iT
kðfSijðpÞgj∈JÞ; subject to ∑

0≤k≤4;i
αk;i ¼ 1; ð3Þ

where the weight parameters αk;i reveal the prior of different
bottom-up and top-down influences in a specific appearance
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based recognition task. The weight parameters can be learned by
applying cross-validation to training data, i.e., optimal weights are
decided by the recognition accuracy on validation data.

After each image point is assigned with a certain influence
value, best features can be selected according to the order of their
influence. Fig. 2 shows the influence maps of embryo images
overlaid by fifty best feature points (i.e., pixels of strongest
influence), illustrating the integration of two popular spatial
influences—gradient auto-correlation and Laplacian—with discri-
minant influence, respectively. We can observe that feature points
under gradient auto-correlation influence spread in the entire
image plane with any specific concentration, and feature points
under integrated influence have better concentration. (The higher
recognition accuracy achieved by integrated features, shown in
later experiments, explains the value of the concentration.) Face
images may give us better visual verification on the value on
integrated influence. Fig. 3 influences maps and fifty best pixels of
face images (from CMU-PIE dataset [43]), from which we can see
that most features points under integrated influence occur in the
facial areas, such as the eyes, nose and mouth.
Fig. 2. Influence maps of embryo images overlaid by 50 best feature points. First row¼g
and (c) discriminant.

Fig. 3. Influence maps of face images overlaid by 50 best feature points. First row¼gradie
(c) discriminant.
With a set of feature points P, we can construct feature vectors
(compact image representations) for appearance based recogni-
tion. A convenient and efficient way for constructing feature
vectors is to use the intensities of those feature points, i.e., fIðpÞgp∈P .
5. Discriminant representations of orientation histograms

This section includes three parts. The first part describes how to
construct orientation histograms, the second part presents LDA
discriminant orientation histograms, and the third part presents
the recognition scheme based on the LDA discriminant orientation
histograms.

5.1. Orientation histograms

An orientation histogram is more precisely called histogram of
oriented gradients [5]. Denote O(p) a neighborhood of an image
point p, q∈OðpÞ a neighboring point of p, gq ¼ ðIxðqÞ; IyðqÞÞ the
gradient of a point q, θðgqÞ the orientation of the gradient gq, and
radient auto-correlation; second row¼Laplacian. (a) Spatial, (b) integrated (α¼ 0:5),

nt auto-correlation; second row¼Laplacian. (a) Spatial, (b) integrated (α¼ 0:5), and
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θk; k¼ 1;…;n are digitized orientations. An orientation histogram
of an image point p is n number of bins, each of which accumulates
the magnitudes of the gradients of neighboring points that have
the same orientation, this is,

hðθkÞ ¼ ∑
q∈OðpÞ;θðgqÞ ¼ θi

∥gq∥; k¼ 1;2;…;n; ð4Þ

where ∥gq∥ denotes the magnitude of the gradient gq. Weighting
scheme, e.g., Gaussian weighting can be applied to the magnitude
of a gradient gq based on the distance of q to p.

The number of bins n is an important parameter that may affect
the effectiveness of orientation histograms. Theoretically, a larger
n (i.e., higher dimension of a histogram) is expected to construct a
more distinctive representation (descriptor) of an image point.
However, a larger n, in practice, also likely implies an over-refined
angular space of gradients, which tends to cause higher sensitivity
to imaging conditions (such as illuminations, rotations) and
localization errors.

Aiming to construct distinctive representation robust to various
imaging conditions, Lowe [26] proposed to a concatenation
strategy that concatenates multiple low-dimensional histograms
to build a relatively high-dimensional histograms. More specifi-
cally, a neighborhood of an image point p will be first sub-divided
into m�m (e.g., m¼4) of blocks. For each block Oij(p), we build a
low-dimensional histogram hij (e.g., the dimension n¼8). The final
representation is then defined as

h¼ ðh11;h12;…;hmmÞ: ð5Þ
It is easy to see that the concatenation of multiple histograms is
more robust to localization error [26].

5.2. LDA discriminant orientation histograms

Based on orientation histograms (of a set of feature points), we
next apply Linear Discriminant Analysis (LDA) [9,1] to rank the
discriminancy of feature points and discriminant representation.

Different from the single-attribute strategy used in Fisher
criterion score above, the Fisher criterion for LDA concerns with
the discriminant ratio covering all attributes. More specifically, for
an ensemble of orientation histograms, the Fisher criterion for LDA
computes an optimal discriminant linear projection W as follows:

W ¼ arg max
W

jWTSbW j
jWTSwW j

; ð6Þ

where Sb and Sw are so-called between-class and within-class
scatter matrices, respectively, andWT indicates the transpose of W.
More specifically, given a training set H of N orientation histo-
grams (see Eq. (5)), Sw and Sb are constructed as follows:

Sw ¼ 1
N

∑
L

c ¼ 1
∑

h∈Hc

ðh−hcÞðh−hcÞT

Sb ¼
1
N

∑
L

c ¼ 1
Ncðhc−htÞðhc−htÞT

L is the number of classes, Hc is the collection of orientation
histograms in c-th class, Nc is the size of Hc, hc is the mean of Hc,
and ht is the (total) mean of H.

Note that jWTSbWj=jWTSwW j, as the discriminancy, will be
used to rank the corresponding feature point.

The optimal W can be computed by the generalized eigen-
analysis, i.e., S−1w Sb. The rank of W is usually chosen as k−1 (k is the
number of classes), which implies effective dimensionality reduc-
tion in many real-life applications, in contrast to Fisher feature
selection. LDA can also be used to visualize the degree of linear
separability of high-dimensional data.
LDA has the singularity issue for small sample size problems,
i.e., the dimension is larger than the number of training samples. A
popular method to overcome the singularity issue is to apply PCA
(Principal component analysis) to reduce the dimension of original
data before LDA (so called Fisherface/PCA+LDA [1]). Under the
basic constraint that the retained dimension should be less than
the number of training samples, it is important to choose an
optimal retained dimension, which can be obtained via cross-
validation.
5.3. Ensemble recognition

As illustrated in Fig. 1, the appearance based recognition under
the proposed framework should be, more precisely speaking,
called ensemble recognition since an image is represented by
multiple instances (discriminant orientation histograms) asso-
ciated with different point location. More specifically, given a set
of training (gallery) images, we perform the following training
steps:
(1)
 Apply the first layer of the proposed framework to select a
number of feature points.
(2)
 Construct orientation histograms for each selected
feature point.
(3)
 Compute LDA discriminancy and LDA subspaces W.

(4)
 Select d most discriminant feature points.

(5)
 Compute d LDA discriminant representations.
Given a query image, we perform the following recognition
steps:
(1)
 Construct d orientation histograms based on d most discrimi-
nant feature points.
(2)
 Compute d LDA discriminant representations.

(3)
 Apply a nearest neighbor classifier to each representation.

(4)
 Apply majority vote to the output of step (3).
6. Case studies

In this section, we test the proposed framework in two case
studies: (i) recognition of stages of Drosophila embryos [23], and
(ii) face recognition. For each case study, images have been
aligned, which is an assumption for the application of the
proposed framework. An embryo is aligned based on the centroid
and the orientation of the contour of the targeting embryo object,
and a face image is aligned based on the locations of the two eyes'
centers of a face object.

It is worth noting that the studies of localization techniques
provide a base for the above assumption. Automatic localization of
Drosophila embryos recently received intensive attentions
[37,36,10,27,38,25], and the-state-of-the-art techniques achieved
successful rates higher than 92% [25]. Face localization/detection
received longer attentions, and some proposed techniques, such as
Viola–Jones method [52], have been widely used in real-life
applications and research.

The datasets used for our case studies are the following:
�
 Embryo. Our dataset has 500 images of fruit fly embryo, in three
classes. The goal of classifying embryo images is to identify
embryo developmental stages that is an important step
towards gene expression analysis. The raw images, as shown
in Fig. 4, contain severe illumination variations. We apply the
histogram equalization method to normalize embryo images.
Recall that the nature of weak texture of embryo images



Table 1
Recognition accuracy. A comparison between standard Fisher score and locality

Fig. 4. Weakly textured appearances of fruit fly embryos in three different stages. Images in the same row belong to the same stage. Embryos in an earlier stage have
smoother contours and simpler appearance textures. Dark regions are gene expression regions. Gene expression regions may spread in the entire appearance of an embryo
(as shown in the top-left image), or they may be just a small portion of the appearance of an embryo (as shown in the bottom-middle image). The variation of gene
expressions is one of challenges in the recognition of embryo stages.
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motivates us to explore the opportunity of using relatively large
number of features.
oriented Fisher scores.
�

Discriminant methods Embryo Face (PIE)

Standard Fisher score 0.80 0.95
LO Fisher score (l¼1) 0.83 0.96
LO Fisher score (l¼2) 0.84 0.97
CMU-PIE [43]. PIE has 68 human faces, each of which has 22
illumination instances. We also apply histogram equalization to
normalize the face images.

In our experiments, a dataset is randomly split into two: one
half is used as training and validation set, and the other half as the
test set. We run 5-fold on training and validation data to decide
the optimal parameters: weights (bottom-up and top-down
priors) and the number of feature points. To reduce the variability,
the splitting is repeated 5 times and the resulting accuracies are
averaged. The number of feature points (n) in our experiment is
from 400 to 2000. We use nearest neighbor as the classifier. Our
test configuration consists of a computer of CPU Pentium 4
(3.40 GHz) and Memory 4 G with Matlab.

6.1. Fisher score: standard versus locality oriented

First, we present a comparison between the standard Fisher
score and the locality oriented Fisher score (l¼1 or 2) in two
different appearance based recognition tasks. Table 1 shows the
results, and it is clear that the locality oriented Fisher score
outperforms the standard Fisher score, and two Fisher scores are
comparable to each other. We observe that the performance of
norm l¼2 is slightly better than norm l¼1, in the case of pure
discriminant selection. However, as we will see soon, the observa-
tion will be different when the locality oriented Fisher scores are
integrated with a certain bottom-up scheme, which in turn leads
to the use of both norm in the integrated model.

Furthermore, we measure the performance of locality oriented
discriminant influence with different norms integrated with a
certain bottom-up scheme. Fig. 5 illustrates the behavior under a
simple version of integrated model (spatial influence is contrib-
uted by gradient auto-correlation only). We can observe that
highest accuracy is achieved by the integrated influence associated
with norm l¼1. It is worth noting that this interesting observation
occurs consistently across varied n, which reveals the benefit of
introducing l in the locality oriented Fisher criterion score. In the
later experiments, we use two discriminant operators, i.e., T1 and
T2 are associated with norm 1 and 2, respectively.

Fig. 6 shows the validation accuracy in cross-validation, where
X-axis indicates the weight α, Y-axis indicates the length of feature
vectors, and Z-axis indicates the validation accuracy. Fig. 6(a) and
(b) are associated with gradient auto-correlation, and Laplacian
(two spatial influence assignments), and the norm l in the
discriminant influence is 2. First of all, Fig. 6 gives an example
that discriminant influence does not always outperform spatial
influence. More importantly, Fig. 6 shows the mutual benefit of
spatial and discriminant influences, for example, the highest
accuracy is always achieved by a certain degree of integration of
spatial and discriminant influence. The optimal parameters for
gradient auto-correlation are (α¼ 0:5, n¼400), and the ones for
Laplacian are (α¼ 0:6, n¼2000).

In the following, we have a visual comparison among the linear
separability of these feature vectors where the feature points are
selected via spatial, discriminant and integrated influence, respec-
tively. (Note that linear separability is desirable to support efficient
classifiers.) We use embryo images as examples, and apply Linear
Discriminant Analysis (LDA) to visualize the feature vectors in 2-D
plane. The dimension of embryo images is 320�128. Our data
contains three classes (leading to two-dimensional LDA space). We
will show a PCA+LDA representation as a comparison. Fig. 7 shows
four different LDA representation. The first two classes of embryo
data are shown for the clarity of comparison of the representation.
The bold labels indicate the data items violating linear separability.
From Fig. 7, we can see that the integrated influence contributes to
feature vectors of best linear separability. This example gives us an
insight of the effectiveness of integrating spatial and discriminant
influences in improving the linear separability of the image
representation.

6.2. Main results

Next, we test the performances of various features by the two
case studies: (i) embryo stage recognition and (ii) face recognition.
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Fig. 7. Visualization of 4 different feature vectors. The bold labels indicate the data items violating linear separability. The integrated influence contributes feature vectors of
best linear separability. (a) PCA, (b) spatial influence, (c) discriminant influence, and (d) integrated influence.
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Table 4
Comparison of the first layer and the second layer in terms of recognition accuracy
and recognition time (in second). Without feature selection, the computational cost
of the second layer is much higher than the first layer.

Methods Embryo Face

Accuracy Time Accuracy Time

1st layer 0.94 1 1.0 2
2nd layer 0.95 12 1.0 23
Two layer 0.95 3 1.0 5

Table 5
Comparison of the recognition accuracy of the proposed framework with four
appearance-based recognition approaches. Results show the superiority of the
proposed framework.

Dataset Proposed Global Local

PCA LDA SIFT MSER

Embryo 0.95 0.78 0.71 0.61 0.63
Face 1.00 0.85 0.93 0.89 0.91

Q. Li, C.-T. Lu / Neurocomputing 119 (2013) 425–433432
Tables 2 and 3 show the comparison of the effectiveness of one-
layer features, simple discriminant representation of one-layer
features, and two-layer features under different integration of
spatial influence. Specifically, the second and third column of the
tables show recognition accuracies under the gradient auto-
correlation and Laplacian spatial influence, respectively. The last
column shows the accuracy under both spatial influence.

The first rows of Table 2 (on embryo stage recognition) and
Table 3 (on face recognition) show the test results using features
generated by the first layer of the proposed framework. Recall that
an image, in terms of the first layer, is represented as a single
vector constructed by the intensities of selected feature points. The
results convince the effectiveness of the integration model in
integrating different spatial influence maps, i.e., higher accuracy
and smaller deviation. It is also worth noting that the integrated
model outperforms some baseline methods. For example, on face
recognition, using entire face images as representation gives us
fairly low recognition accuracy (0.64). With Fisherface technique
[1], the accuracy is around 0.90.

The second rows of the tables show the results using LDA
representations of first-layer feature vectors, denoted as 1st layer +
LDA. As well as the test above, an image under this test is
represented a single vector too. The results in Tables 2 and 3
show that LDA representation degrades the performance of the
feature vectors. After all, the dimension of the LDA representation
is much lower than the dimension of the feature vectors.

The third rows of the tables show the results using two-layer
features. Unlike the first two rows, an image under this test is
represented multiple vectors, i.e., a number of discriminant
representations of orientation histograms. We apply exhaustive
search scheme to the training data to select an optimal number of
representations from a range of values from 10 to 100, and obtain
that optimal numbers for two case studies are 60 and 85,
respectively. Recall that the recognition output is based on the
majority vote on the nearest neighbor classifier applied to differ-
ent ensembles of discriminant representations. The results in
Tables 2 and 3 demonstrate the effectiveness of the proposed
framework—it not only outperforms the 1st layer+LDA signifi-
cantly, but also improves the performance of the first layer.

Table 4 shows a comparison of the first layer, the second layer,
and two layers in terms of recognition accuracy and recognition
time (measured in second). We can observe that the first and
Table 2
Recognition accuracy (with deviation) on embryo stage recognition. The second
and third column of the tables show recognition accuracies under the gradient
auto-correlation and Laplacian spatial influence, respectively. The last column
shows the accuracy under both spatial influence.

Methods Gradient auto-correlation Laplacian Both

1st layer 0.93 (0.04) 0.91 (0.05) 0.94 (0.03)
1st layer+LDA 0.83 (0.04) 0.82 (0.05) 0.85 (0.03)
Two layers 0.94 (0.03) 0.93 (0.04) 0.95 (0.03)

Table 3
Recognition accuracy (with deviation) on face recognition. The second and third
column of the tables show recognition accuracies under the gradient auto-
correlation and Laplacian spatial influence, respectively. The last column shows
the accuracy under both spatial influence. The accuracy achieved by Fisherface is
around 90%.

Methods Gradient auto-correction Laplacian Both

1st layer 0.98 (0.01) 0.99 (0.01) 1.00 (0.0)
1st layer +LDA 0.92 (0.02) 0.92 (0.02) 0.94 (0.01)
Two layers 0.99 (0.01) 0.99 (0.01) 1.00 (0.0)
second layers are competitive to each other in terms of the
recognition accuracy, while the second layer has much higher
computational cost than the first layer. The computational cost of
the two-layer approach is much lower than the second layer's. But
it is worth noting that the training cost is very high—the training
time in two case studies is 1830 and 6250 seconds, respectively.

Table 5 shows a comparison of the proposed framework with
four appearance-based recognition approaches. Two of them are
global approaches: (i) PCA [21] and (ii) LDA [1]), and another two
are local approaches: (i) SIFT [26] and (ii) MSER [32]. We can
observe that the proposed framework outperforms the four exist-
ing approaches. We can also observe the superiority of global
approaches over local approaches in these two case studies. Note
that both embryo images and face images are weakly textured,
which is a challenge for local approaches.
7. Conclusions and future work

In this paper, we propose a two-layer framework for appear-
ance based recognition using spatial and discriminant influence.
The hierarchical design of the proposed framework is mainly
motivated by the high computational cost of the construction of
orientation histograms. We present two case studies to demon-
strate the effectiveness of the proposed framework. Note that an
assumption of the proposed framework is that images (objects) are
aligned. In the future, we plan to integrate shape analysis with the
two-layer framework for object recognition.
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