
SHOPAHOLIC: A Crowd -Sourced Spatio -Temporal
Product -Deals Evaluation S ystem (Demo Paper)

Kruthika Rathinavel
Department of Electrical and

Computer Engineering,
Virginia Tech, USA
kruthika@vt.edu

Gaurav Dixit
Department of Computer

Science,
Virginia Tech, USA
gdixit@vt.edu

Michael Matarazzo
Department of Computer

Science,
Virginia Tech, USA
mfm11@vt.edu

Chang-Tien Lu
Department of Computer

Science,
Virginia Tech, USA

ctlu@vt.edu

ABSTRACT
The emergence of internet advertising, email marketing and social
networking has given rise to a new world of digital advertising
used by stores and consumers alike. While retailers aim to
promote all types of products, consumers also want to share this
information via social media. This paper presents Shopaholic, a
system that leverages social media to provide information on
trending deals and store sales in any given location. It is intended
to help shoppers identify great deals from the vast amounts of data
scattered among social networks. Personalized search results,
visualization of trends and sentiment analysis provided by
Shopaholic allow the user to identify optimal deals. The
application accounts for spatial and temporal data via a
customized ranking algorithm and features integration with
Twitter so that the user can share his or her actual experience
using a deal. Ultimately, the system gives back to the shopping
community by allowing users to share their experiences and
evaluations of deals. A recommendation algorithm uniquely
identifies the user’s tastes, shopping history and current location
to provide deal suggestions, thereby integrating temporal and
spatial entities in recommendations.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Information Filtering

General Terms
Economics, Human Factors, Design, Experimentation

Keywords
crowd-sourcing, product-deals, consumer sentiment, social media

1. INTRODUCTION
In today’s economy, we see many products ranging from

groceries to electronics selling at large discounts. These discounts
are generally represented in terms of percentages. However, the
fidelity of these deals is often questionable. In most cases,
shoppers assume that an advertised deal is the best deal available
on the market. But since retail prices are usually marked up to

begin with, no matter what the discount, the seller gains a profit
while the shopper pays more for the item. Finding the optimal
deal can be tricky and time-consuming. Many of these deals are
hidden in the millions of tweets and messages scattered across
social media where the consumers post about a great deal they
found. Our application attempts provide a single system to bring
together all the shopping deals posted on Twitter. By delivering
crowd-sourced shopping deals to one location, it becomes easier
for the shopper and boosts his or her confidence about a particular
deal, given the approval from the crowd.

As we browse Google’s Play Store or Apple’s App Store,
we see consumer-oriented applications like Shopular [2] and
RetailMeNot [3]. These applications generally obtain their data
via complex techniques that search the massive online databases
of retailers, re-sellers, and small businesses. Shopular provides a
collective space where current deals from the most popular stores
are listed. RetailMeNot provides all available coupons for popular
stores in one place. This information is obtained directly from the
stores, and in most cases the applications require that the user
have some type of store credit. In fact, some of these deals are not
new; they simply reiterate information that shoppers are already
aware of.

Shopaholic is developed as a tool to provide consumers with
a single space for browsing available deals that are crowd-sourced
from Twitter. User-generated information is largely scattered, and
while several ideas are published and incorporated into live
applications, none of them use crowd-sourced data to provide
shopping deals and consumer sentiments to ease the shopping
experience. Our major contributions are summarized as follows:
¥ Sentiment Analysis and Spatio-Temporal Data

Integration : Shopaholic provides an interface that efficiently
integrates textual and geographical representations of Twitter
results (i.e. the deals) using a combination of spatial,
temporal and textual processing techniques. Shopaholic also
provides sentiment analysis on deals that the user typically
looks for. Capturing other users’ reactions to deals will help
the user make an informed decision.

¥ Visualization of Historical Data and Personalized
Recommendations: Visualizations of current and past trends
allow the user to anticipate future deals and observe patterns
of deals over a time span.

¥ Personalized Recommendations: Based on interesting
profile data, location and past search history, Shopaholic
recommends deals to the user after login and within search
results.

¥ Mobile Platform: Crowd-sourcing data to Twitter, obtaining
deal information and current trends via the ubiquitous mobile
platform allows quick, convenient and on-the-go access to
ShopaholicÕs key benefits; an improved consumer experience

Publication rights licensed to ACM. ACM acknowledges that this
contribution was authored or co-authored by an employee, contractor or
affiliate of the United States government. As such, the United States
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.

IWGS'14, November 04-07 2014, Dallas/Fort Worth, TX, USA.
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3139-5/14/11�h $15.00
http://dx.doi.org/10.1145/2676552.2676558

and the opportunity for users to give back to the shopping
community.

2. SYSTEM ARCHITECTURE
 In this section, we describe the system architecture of
Shopaholic. Figure 1 shows the three main components of the
system: streaming of Twitter data, the application service and the
mobile interface.

Figure 1. Shopaholic System Architecture

A. Streaming of Twitter Data.
This component performs real-time streaming and

processing of Twitter data from the Washington D.C.
metropolitan area. Shopaholic uses Twitter’s streaming API to
collect the tweets and filter them based on the user’s location and
key terms related to shopping. A parser then transforms the JSON
data obtained into useful XML data and weeds out any
unnecessary information collected from the Twitter server. The
sentiment analyzer uses the coreNLP [5] package, processes every
incoming tweet, performs sentiment analysis and appends the
resulting sentiment information to the XML tree of each tweet.
B. Application Server.
 This is the core server component of the application. It
provides indexing, searching and ranking functionality. It also
provides access to archived user information used by the
recommender system. Because the recommender system accesses
the user profile, previous search history information and indexed
data, we split the underlying architecture to accommodate these
separate tasks. The indexing, searching and ranking features are
built using Apache Solr [6] as the underlying search engine.
Apache Solr is an open source enterprise search platform with
features including full-text search, hit highlighting, faceted search,
dynamic clustering and a web administration interface. The
recommender system uses the user profile information and current
location to provide personalized recommendations to the user
upon login and after searching for a deal.
 The Shopaholic application is hosted on Apache
Hadoop/HDFS 2.3 [7] making it highly scalable and robust. Since
the project is currently in the initial phase, and we have only about
4.7 billion documents, we limit the server to one, thus running
Hadoop in the pseudo-distributed mode (distributed, but with a
single server). Apache Solr ensures reliability by allowing
replication of the index. The system can run on a single index,
scale to provide access to several thousands of users and still be
reliable due to the replication mechanism.
C. Mobile Interface.
 This is the primary user interface of the application. It is
developed as a native Android [10] application. The client-server
interaction is accomplished using the HTTP protocol.

3. FEATURES
 Shopaholic is a three-tabbed Android application that
mobile users can use to search for current consumer deals. We
develop a recommender system based entirely on crowd-sourced
information from Twitter [1]. In addition to providing the user

with current deals on a search item, the application also provides
user experience information, i.e. user sentiments, for the results.
Visualization of historical trends for a search item can help the
user forecast deals and plan his or her shopping agenda.

3.1 Crowd-sourcing Real Time Data

Figure 2. Logging In and Posting a deal to Twitter from

Shopaholic

 Shopaholic provides the users with real time deal
information crowd-sourced from Twitter. Using Twitter’s
Streaming API [8], tweets are continuously streamed and indexed.
The Twitter streamer uses a customized filter relevant to shopping
deal information. This ensures that the user receives the most
current deal information from Twitter. The latency for the latest
data appearing on the application is roughly a few minutes, which
is acceptable for shopping deals. Each tweet represents one or
more possible deals, and is streamed, parsed, analyzed for user
sentiments and then indexed on the Solr server. In the mobile
interface, the SHARE tab allows users to login to Twitter via the
Shopaholic application (Figure 2). Users can then ‘share’ a deal
that he or she has discovered. This information will then be
instantly posted to the user’s Twitter account as his or her latest
tweet. For tweets posted via Shopaholic, the hashtag
#shopaholicVT is included. This facilitates further crowd-sourcing
of deal information.

3.2 Sentiment Analysis and Integration of
Textual, Spatial and Temporal Information
 Shopaholic aims to provide real time deal information to
users and therefore requires that, in addition to textual
information, time and location information be processed and used
for ranking. While indexing, the geo-location information is
tagged appropriately before it is fed into the Solr engine. A
comma separated string, providing latitude and longitude, is
stored in the XML that is fed to Solr for indexing.
 Upon launching the application, the user can choose from
the categorical options available in the SHOP tab, or input a
search keyword. Figure 3 displays some of the categorical options
and shows how a user might use the top search. Figure 3 also
shows a geographical view of the search results. A textual view of
the results is shown in the form of tweets as shown in Figure 4.
 A ranker is used to improve the quality of the results
obtained from textual, spatial and temporal parameters. We

provide a combination of three independent ranking methods and
rank the final query results as a combination of these.
 (1) The vector model’s cosine similarity is used with
modified weights for relevance between the textual query and the
search results.
 (2) The spatial ranking is based on Euclidean distance. We
use the geospatial circular distance from a given point to provide
the spatial filter for the search query. The given point here refers
to the user’s current location. We also use the Google Places API
to improve geographical results by providing additional details
about stores mentioned or related to the tweets. The query to the
Google Places API is a HTTP ‘get’ request and uses spatial filters
determined by the user's location. If this returns minimum results,
we use the bounding box filter surrounding the calculated circle.
 (3) We use the time filter for the search query to rank the
result temporally.

Figure 3. Shopaholic SHOP and MAPS Tabs

 A weighted linear combination of these provides a score by
which the results are ranked. The combined weighted ranking is
used to rank the system.

! ! ! ! ! ! ! ! ! ! ! ! ! !" ! !"

! ! , ! ! and ! !" are ranking parameters corresponding to the
textual, spatial and temporal ranking, respectively, and ! ! , ! ! ,
! !" are weights associated with the textual, spatial and temporal
ranking method, respectively. The weights ! ! , ! !, ! !" have the
same range, normalized ranking scores are used, and the record is
ranked higher when the normalized score is lower from the
individual ranking methods. The latency of search results is
attributed to the network speed of the user’s mobile network.
 Shopaholic analyses the sentiment of every tweet collected.
Our sentiment analyzer is based on Stanford’s coreNLP [5]. The
terms in the tweet are first parsed to remove URLs, hashtags and
Twitter handles. They are then tokenized, scored individually and
the aggregate score is calculated for the entire tweet. In most
cases, tweets are tokenized into phrases rather than individual
terms. Pre-processing also includes sentence splitting, part of
speech tagging, lemmatization and named entity tag annotation.
The model is pre-trained to analyze tweets and categorize them as
positive, negative or neutral by using the coreNLP API for each
sentence in the tweet.

 The final sentiment for every tweet is positive, negative or
neutral. Shopaholic also provides an overall sentiment for the
entire collection of results returned by a search. This gives the
user a better idea of the overall quality of deals pertaining to a
particular item. Figure 3 gives a list of deals along with the user
sentiments; the user can also view the sentiments against a deal in
the map view. Clicking a result in the text view takes the user to
the corresponding tweet location in the map view. This gives the
user a visual of where the deal corresponding to the tweet is
located. A custom sentiment analyzer that considers shopping
related aspects, including emoticons, is under development.

Figure 4. Sentiment Assessments of Deals

3.3 Visualization of Historical Data
 In the event that the textual list or map view of deals for a
search query does not assist the user in deciding on any particular
deal, Shopaholic provides a time-series plot of both trends for
deals pertaining to the item or category searched as well as trends
for the overall consumer sentiment of the result-set of deals. The
time-series plots are adjustable and can cover a user specified date
range. The plots can also display the popularity of deals for an
item by showing the number of re-tweets.
 The visualizations are intended to consolidate important
data for assisting the user with deciding on a deal. By showing
current trends, historical data and statistics, the graphs would
ideally allow users to predict upcoming “hot” periods for
particular items that are not necessarily common sense, e.g. if a
particular designer brand of shoes appears to have excellent deals
at a certain time of year for no particular reason. As an example,
Figure 5 shows how many deals are posted on average for the
search term ‘shirt’ over the last few months. This gives the user an
idea of how many deals might be available to search from.
 Visualizations are created using the lightweight Plot API
[9] in order to avoid the overhead of a more robust data analytics
API for Android, of which there are not many. It may help the
user to know not only where the deals are, but also what the hot
venues are and how much time they have to take advantage. An
Android-based Google Map, provided by Google Play Services, is
used to provide a geographical layout of search results.

3.4 Personalized Recommendations
 When a user logs in to Shopaholic, he or she sees a list of
recommendations based on various parameters collected from
previous visits (Figure 5). For a first time user, Shopaholic

captures user profile information and tweet history to provide a
basic list of recommended deals.
 Apache Lucene, which powers Solr, is a multi-dimensional
sparse matrix with very fast look up capabilities. We utilize this
feature in combination with a clustering algorithm to define our
recommendation system. The recommendation is also ranked
temporally, giving the user the latest deals available, and can
incorporate search history.

Figure 5. Recommendations After User Login and Trends of
Deals / User Sentiments

 When the user logs in, Shopaholic collects the profile
information about the user and uses it to find deals relevant to the
current location and previous tweets related to shopping (if any).
When the user types in the first keyword to search, this keyword
is stored in a local user profile for the mobile application. This
keyword list grows every time the user types in a key word to
search. A weight is assigned to each keyword based on the
number of times it is searched. The list looks as follows:

Bike rack (15), Helmet (9), Hiking shoes (5), É

 In combination with the user’s Twitter profile and current
location, this list is used to provide recommendations to the user.
As the list grows, we generate clusters. Shopaholic uses a
customized clustering algorithm derived from Carrot2 clustering
algorithm [4]. We apply the clustering algorithm to the tweet,
hash tags and location from where the tweet was posted.
 The pre-processing stage is the same as that of document
indexing. This includes using Porter Stemmer for stemming and a
customized stop word list. Under feature extraction, we discover
phrases and single terms that can form a cluster-label for the
abstract concepts to be discovered. We identify frequently used
terms and phrases [11] using a variant of suffix arrays extended
with a longest common prefix array. We use a term frequency
threshold to choose the terms and phrases whose frequency
exceeds the threshold value.
 For the next step, we build the term-document matrix, and
then perform Singular Value Decomposition [12] based on the
matrix to obtain ! ! ! and ! matrices. Using ! matrix, we obtain
the ! abstract concepts. We obtain the ! ! matrix by using first !
columns of the ! matrix, and perform tf-idf weighting to obtain
phrase matrix ! . To find best matching phrase, we perform 𝑈! ! !
for every column in ! ! matrix, and find the largest value of
resulting vector. Then the similarities between all pairs of labels
are calculated. We again use a similarity threshold to find groups

of labels that are above this threshold. For every group, we find
one label with the highest score, and this will be the cluster label.
Cluster content is identified using the Vector Space Model, which
we modify by matching the input snippets against every single
cluster label instead of just matching with a single query, we
match it against every single cluster label. Finally cluster scores
are calculated as:

cluster score = label score * member count

4. SUMMARY
 Shopaholic is developed to meet the needs of the user who
is looking cautiously to pick the right deal without falling prey to
discounter-marked up prices. Our unique combination of
customized algorithms and integration of spatial, temporal and
textual information provides users with real time information on
useful shopping deals. In addition to search, the user is also
provided with personalized recommendations of the latest deals,
and can also share a deal he or she likes or has used and found to
be worthy of using. From this, other Shopaholic or Twitter users
can benefit. The recommender system and the crowd sourcing of
information make Shopaholic a compelling system for end users.
We envision Shopaholic to be the go-to platform for browsing
shopping deals. By sharing more deals, consumers can spend less
and shop more, making the entire shopping experience more
enjoyable.
 A video demonstration of Shopaholic can be viewed at the
following YouTube URL:
http://www.youtube.com/watch?v=qo5tvCAgyKM

5. REFERENCES
[1] Twitter. Available from: https://about.twitter.com

[2] Shopular. Available from:
http://www.youtube.com/watch?v=jNGv0ehFiJE

[3] RetailMeNot. Available from: http://www.retailmenot.com

[4] Osiński, S. and Weiss, D. 2005. Carrot2: Design of a
Flexible and Efficient Web Information Retrieval
Framework. Springer Berlin Heidelberg, Advances in Web
Intelligence (2005), 439-444.

[5] CoreNLP. Available from:
http://nlp.stanford.edu/software/corenlp.shtml

[6] Apache Solr. Available from:
https://lucene.apache.org/solr/features.html

[7] Apache Hadoop/HDFS. Available from:
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[8] Twitter Streaming API. Available from:
https://dev.twitter.com/docs/api/streaming

[9] Android Plot. Available from: http://androidplot.com

[10] Android SDK. Available from:
http://developer.android.com/guide/index.html

[11] Dell Zhang and Yisheng Dong. Semantic, Hierarchical,
Online Clustering of Web Search Results. Accepted by 3rd
International Workshop on Web information and data
management, Atlanta, Georgia, 2004, 69-78.

[12] Computation of a singular value decomposition. Available
from:
http://www.cs.utexas.edu/users/inderjit/public_papers/HLA_
SVD.pdf

