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Abstract Social media have ushered in alternative modalities to propagate news and devel-
opments rapidly. Just as traditional IR matured to modeling storylines from search results,
we are now at a point to study how stories organize and evolve in additional mediums such
as Twitter, a new frontier for intelligence analysis. This study takes as input news articles as
well as social media feeds and extracts and connects entities into interesting storylines not
explicitly stated in the underlying data. First, it proposes a novel method of spatio-temporal
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analysis on induced concept graphs that models storylines propagating through spatial
regions in a time sequence. Second, it describes a method to control search space complex-
ity by providing regions of exploration. And third, it describes ConceptRank as a ranking
strategy that differentiates strongly-typed connections from weakly-bound ones. Extensive
experiments on the Boston Marathon Bombings of April 15, 2013 as well as socio-political
and medical events in Latin America, the Middle East, and the United States demonstrate
storytelling’s high application potential, showcasing its use in event summarization and
association analysis that identifies events before they hit the newswire.

Keywords Spatial-temporal systems · Entity relationship modeling · Social media
networks · Spatial and physical reasoning · Semantic networks

1 Introduction

Social media, e.g., Twitter, have provided us an unprecedented opportunity to observe events
unfolding in real-time. The intelligence community has embraced its power, but has an
ongoing struggle on how to incorporate its vast resourcefulness. The reason is that the
rapid pace at which situations evolve on social media necessitates new tools for capturing
the spatio-temporal progression of entities (i.e., people, organizations, events, and objects).
Take for instance the Boston Marathon bombings of April 15, 2013. In the immediate days
afterward, law enforcement officers collected a significant number of eyewitness accounts,
photo and video footage, and background information on several suspects who were spa-
tially and temporally tagged. What followed was a succession of outcomes: several people
were detained near the blast spots; the residence of a Saudi national was searched; MIT
police officer S. Collier was killed; the Tsarnaev brothers were identified as two suspects.
All these developments could be observed on Twitter, but to the best of our knowledge there
exists no tool that can spatio-temaporally and semantically chain these events automatically.

The underlying problem is one of storytelling, the process of connecting entities through
their behavior and actions [32]. In this work, unlike other traditional methods, an event
is simply treated as a special type of entity that represents actions, such as a “riot” or a
“protest”. Information retrieval and web research have studied this problem, i.e., modeling
storylines from search results, and linking documents into stories [8, 10, 12] (the terms sto-
ries and storylines are used interchangeably). Textual storytelling attempts to link disparate
entities that are known ahead of time, such as the connections between two individuals.
In this study, however, the focus is not traditional text analysis. Rather, we explore spatio-
temporal entity analysis, which can fill some of the gaps left by traditional approaches. Our
goal is to not only find meaningful connections, but also to derive new stories for which we
do not know the endpoint, if one exists. For example, we would be interested in examining
the passing of a new law and the reactions it provokes, such as protests in nearby areas. This
falls in the field of exploratory analysis where the main focus is discovering new patterns
in the data. We target spatio-temporal techniques on short, ill-formed text of Twitter data as
well as news articles for which deriving stories has proven to be a difficult task.

Textual storytelling has been mostly successful on news articles, blogs, as well as
structured databases. In general, it makes one strong assumption: the availability of com-
prehensive data sources, where textual content is robust and ideas are well presented. In this
manner, it is able to perform document analysis using several techniques, some of which
include vector-space measures such as cosine similarity, natural language processing (NLP)
for parts-of-speech tagging, and keyword matching, among others.
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Fig. 1 Under textual storytelling, a and b represent two partial NY Times articles [2013]. The two documents
are weakly connected because no patterns other than two “government” entities relate the two documents,
making the link between the “suicide bomber attacks” and the “Al-Shabaab” terrorist group of difficult
identification

A common problem with such methods is that inferences may be missed whenever link-
age among documents cannot be strongly asserted. Consider the example of Fig. 1. In (a),
a partial NY Times news articles describes a suicide bomber attack in Somalia in 2013,
whereas (b) tells about a surge in terrorism activity. If the goal is to determine correlation
between the suicide bomber in document (a) and the terrorist group Al-Shabaab of document
(b), we would first have to link the two documents. Deriving this link is difficult for the
following reason: except for government - government , no other terms are shared between
the two documents. A simple cosine similarity calculation would yield a low score, and the
suicide bomber - Al-Shabaab link would most likely be missed due to weak connectivity between
the two sources.

The above example illustrates why techniques that apply to textual storytelling tend to
perform poorly on social media content, such as Twitter, where text lacks proper form
and function, and word matching can be challenging. For this reason, social media story-
telling demands new techniques that can benefit not only from its textual content, but also
from embedded tweet features. These features come in two flavors: (1) spatio-temporal
knowledge of the entities described in text; (2) and intrinsic characteristics of social media
represented in the form of metadata. An example of how these features can be helpful is
given by Fig. 2 c d e and f, which shows four hypothetical tweets modeled after the NY Times
documents of (a) and (b), but written in a more “Twitter-like style” (showing the emitting
users and some hashtags). Just as in the NY Times example, performing cosine similarity on
any pair of the four tweets would also yield meaningless results, given that very few terms
are shared. At closer investigation, however, Twitter data allow us to link all four documents
through different means. First, tweets (c) and (d) can be linked because they were issued by

Fig. 2 Under spatio-temporal storytelling, c d e and f show four tweets with similar content to the NY
Times articles of Fig 1. These tweets are strongly connected through the following features: Twitter user
“@refugeesintl” in (c) and (d), hashtag “#helpsomalia” in (d) and (e), and locations “Mogadishu” and “Soma-
lia” in (e) and (f). Together, the four tweets provide a stronger belief that the suicide bomber attacks are
indeed linked to the Al-Shabaab terrorist group
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the same Twitter user (@refugeesintl). Second, tweets (d) and (e) are connected through
the hashtag #helpsomalia, a strong indication that they address the same general topics. To
close the gap, tweets (e) and (f) are connected by location: geocodingMogadishu and Soma-
lia allows one to determine that the latitude/longitude of the former is enclosed in the latter,
and thus making them geospatially related. Now that all four tweets are linked, it becomes
possible to discover a connection between the desired suicide bomber - Al-Shabaab entities,
one attractive aspect of this approach that textual storytelling did not cover.

The above shows that tweets can be linked in many ways, such as by users, locations,
and hashtags. This paper strongly emphasizes the spatio-temporal aspect of the data, con-
sidering only tweets that have locations and timestamps. Other features, which we explain
later, are also available. Five aspects of this approach can be observed. First, it allows one
to create a short storyline that, as concisely as possible, represents the four tweets with-
out replicating them. The storyline that we envision has the format as shown in Fig. 3. It
is composed of a sequence of entities identified in the tweets, such as suicide bomber and

government , and relationships, such as
attacks−→ and

surge→ , also from the tweets, which serve
to make connections between the entities. The first entity in the sequence ( suicide bomber )
is the storyline’s entrypoint, whereas the last one ( Al-Shabaab ) is the endpoint. Note that
storylines do not necessarily follow grammar rules since they are meant to capture the
semantics of the data stream rather than the syntax of the language. Later sections will
explain how to create storylines and discuss other mechanical aspects, such as why some
entities are included while others are ignored, and how to use the relationships. Second,
storylines can be made as elastic as necessary by injecting new tweets in an incremental
approach. Third, when represented as a graph, a theoretically-unlimited number of tweets
can be collapsed into fewer entities and their corresponding relationships. For example,
government or Al-Shabaab may appear thousands of times in the raw dataset, but in this
approach, they are only represented once each, minimizing resource usage. In this manner,
the number of generated storylines tends to be several orders of magnitude smaller than the
number of tweets that generate them; fourth, they enforce time sequencing, which promotes
storyline coherence by preserving the order of facts. In Fig. 2c, the storyline begins at 12:15
PM when the “suicide bomber attack“ takes place, and ends with Fig. 2e at 10:35 PM when
the “government announces the surge in Al-Shabaab activity”. Fifth, graph structures are
more machine-friendly than file systems, allowing efficient searches, spatial operations, and
automated data mining.

The importance of location and time Applying traditional network analysis tools to find
and link entities across tweets can lead to ‘runaway’ stories. Three important problems have
to be surmounted. First, to ensure meaningfulness, we must use spatio-temporal coherence
as both a desirable aspect of stories and as a way to control computational complexity. It is
desirable because entities might be related to one another only under certain circumstances,
and modeling spatio-temporal coherence ensures explainable stories. It is a way to control

Fig. 3 A storyline composed of four entities linked by three relationships
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computational complexity because it avoids searching for stories that might not be central
to the topic under consideration. For instance, tweets that refer to suicide bombing in South
America are most likely not related to suicide bombing cases in Somalia. Thus spatial is
a fundamental consideration. Second, time and space must support the notion of typing to

connections. For instance, a suicide bombing
met−with−→ Al-Shabaab link can potentially be

inferred by the intelligence analyst if these entities are both in proximal areas and close
in time. Otherwise, stating that one is related to the other in different places and times is
mere speculation. Again such a notion of typing aids in both explainability and scalability
objectives. Third, we require algorithms that can operate without specific provision of start
and end points as long as entities can be coherently identified in a location and within
a timeframe. The ability to support these dynamic aspects of storylines as they evolve
is critical to modeling fast-moving social media streams such as Twitter. The goal of this
paper is to address the above issues and enhance the current state of storytelling. The key
contributions are:

1. Modeling short text over space and time: This research describes arguably the first
algorithm to conduct storytelling without specific endpoints (i.e., without supervision)
over short text (tweets), represented as an entity graph, and provides strategies to
enforce coherence, precision, and the influence of spatial entity types on the generated
storylines.

2. Reasoning over spatio-temporal features: Key to obtaining coherent stories is to iden-
tify regions of spatial propagation where related entities cluster. We demonstrate the use
of Ripley’s K function for this purpose and its use in conjunction with temporal prop-
agation where time windows help keep stories succinct and coherent. In combination,
they limit the search space from possibly millions down to the thousands of entities.

3. Devising spatio-temporal storylines based on connectivity: We provide a parameter-
free relevance measure based on ConceptRank, which differentiates relationship types,
boosts strongly-connected spatial entities, and helps eliminate large numbers of poorly-
connected ones. In addition, storylines are found “on the fly”, demonstrating our ability
to generate lines of exploration that span across space and time.

4. Performing extensive experiments on social media: To show the effectiveness of
spatio-temporal storytelling on both Twitter data and news articles, this approach is
evaluated on current events related to the evolution of the Boston Marathon Bombings
of 2013. Included is a comparison of this approach to others based on an event sum-
marization task, and the discussion of a case study related to association analysis. The
experiments showed that spatio-temporal storytelling was able to mimic other event
summarization methods with as much as 80 % success rate in terms of event matching,
and determine association among events 2 days before they hit the newswire.

Throughout this study, various components needed for storytelling are introduced. Section 2
elaborates on existing work, highlighting differences. Sections 3 and 4 explain the spatio-
temporal mechanics of entity discovery, ranking, and storyline generation. Experiments are
presented in Section 5 and a conclusion is given in Section 6.

2 Related works

Storytelling is not a single analytical task confined to a singular purpose. It can be better
understood as a framework of intelligence analysis in which various tasks can be accom-
plished by different means. Very broadly, entities must be extracted, ranked, and connected,
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in order to make storylines visible. In this sense, storytelling involves a mix of quantita-
tive analysis and semantic reasoning over which the boundaries are flexible. Similarly, the
work proposed in this paper spans many areas of expertise, from clustering to geographic
networks. This research best lines up with the approaches described below.

2.1 Storytelling

The phrase ‘storytelling’ has been introduced in an algorithmic context by Kumar et al.
[12] who proposed it as a generalization of redescription mining. At a high level, redescrip-
tion mining takes as input a set of objects and a collection of subsets defined over those
objects with the goal of identifying objects described in two or more different ways. Such
objects are interesting because they may signal shared characteristics and similar behav-
ior, which can be a powerful tool in the context of storytelling. One such algorithm is
CARTWheels [24] which utilizes induced classification trees to model redescriptions along
with the A* Algorithm for least-cost path traversal. Hossain et al. [10] develop this idea to
connect two unrelated PubMed documents where connectivity is defined based on a graph
structure, using the notions of hammocks (similarity) and cliques (neighborhoods). This
work was generalized to entity networks in [9] and specifically targeted for use in intelli-
gence analysis. Their motivation is that current technology lacks better support for entity
linkage, explanation of relationships, exploration of user-specified entities, and automated
reasoning in general. The tools used in this work include concept lattices as a network
where candidate entities are identified with three nearest neighbor approaches (Cover Tree,
k-Clique, and NN Approximation). The Soergel Distance measures the strength between
entities, while coreferencing serves to identify entities mentioned in various parts of the
text using differing terms. All these works require specific start and endpoints, and link
entities according to a desired neighborhood size and distance threshold. In many of
these works, edge weight has been based on a variation of term frequency × inverse-
document-frequency (TF-IDF). This class of works represent traditional storytelling
approaches even though neighborhood distances are considered, albeit not from a geospatial
perspective.

2.2 Connecting the dots

The primary focus of these works is on document linkage rather than entity connectivity.
For this reason, textual reasoning is a strong facet of the targeted methods, which departs
from a spatio-temporal view of events. Endpoints must (again) be specified and link strength
utilizes the notion of coherence across documents, which is proposed by [27]. In this work,
stories are modeled as chains of articles, where the appearance of shared words across doc-
uments help establish their relatedness. Another important aspect is the determination of
influence between documents based on the presence of a given word. For this purpose, a
bipartite graph is built using documents and words as nodes, where edge strength among
them can be obtained by third-party tools or with TF-IDF scores. Extending that work, they
also propose related methods to generate document summaries, i.e. Metro Maps, in [29]
and [28], which target scientific literature. Some of the goals are to measure the impor-
tance of a paper in relation to the corpus, find the probability that two papers originate
from the same source, and identify research lines. The basic data structure is also a directed
graph, where for each map that has been generated, its coverage is calculated using each
document as a vector of word features. The coverage is then defined for a set of words as
TF-IDF values, which can be extended to sets of documents. Connectivity between maps is
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measured by the number of paths that intersect two maps. Overall, connecting the dots
methods rely heavily on the abundance of robust content such that the aforementioned cal-
culations (coherence, influence, coverage, etc.) can be calculated acceptably. Social media,
however, breaks the assumption of robust content, limiting the amount of textual reasoning
that can be performed. Thus, connecting the dots is less than ideal for environments that
utilize Twitter data feeds.

2.3 Event detection and summarization

The goal of storytelling is to find meaningful streams of information that are neither spelled
out in text nor apparent to the naked eye. As such, storytelling should not be labeled as an
event detection technique or a summarization tool. However, because storytelling captures
the underlying relationships among entities, it can serve broadly to summarize real-world
developments or to aid in event forecasting.

In terms of event detection, event expansion and topic trending are two commonly-
studied aspects. Event expansion starts with limited bits of information about an event and
seeks to expand it using social media data. Topic trending, on the other hand, monitors
large volumes of social streams to find the most popular themes of discussion. The work
of Sakaki et al. [26] targets the detection of earthquakes in Japan using common classi-
fication techniques. Events are defined by the user by selecting keywords. TEDAS [15]
describes a system for detecting new events related to crime and natural disasters, and iden-
tify their importance. It first crawls tweets, classify them as event-related or not, and stores
spatio-temporal information. Users then issue queries that contain location, time, and key-
words, which the system uses to retrieve and display related events. The importance of
event reporting over Twitter is questioned by the work of Petrovic et al. [22]. The authors
claim that the benefit of tweets comes from increased coverage, not timeliness. They devise
a system that clusters both tweets and news articles, and measure their overlap to discover
the coverage of one versus the other. Comparisons can then be done on their spread over
time. Twevent [14], a different approach, proposes segment-based event identification. Ini-
tially, it detects bursty events and clusters them using frequency and content similarity. The
similarity between segments is computed using their associated tweets, while Wikipedia is
searched to verify which events are realistic or not. In [34], Walther and Kaisser monitor spe-
cific locations of high tweeting activity. They further analyze clusters of those tweets, using
machine learning to detect if the identified posts during high activity represent real events
or not.

Textual summarization has been well studied in IR, using a wide variety of techniques,
such as latent semantic analysis and machine learning [3, 5]. Event summarization, as an
extension, has gained strength in recent years due to social networks. TwitInfo describes a
system that allows users to navigate a repository of tweets, where the system discovers high
peaks of twitter activity [19]. In addition, the system allows geolocation and sentiment visu-
alization. A more comprehensive approach to event summarization is detailed in [2]. The
authors propose a segment-based approach where summarization takes places within each
segment. This technique can take on different variations. The first uses cosine similarity as
a straightforward method. The second applies a similar approach, but considers tweets that
fall within a specific time window. A third approach uses a Hidden Markov Model (HMM)
where each state can be a sub-class of events (e.g., “touchdown” in a football event). An
alternative technique also based on time segmentation is given by [20], but with the added
assistance of synonym expansion for keywords. For each of these approaches, the output is
the set of tweets that best summarizes the events.
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Differences Each of the above approaches have different goals and apply vastly different
techniques to accomplish their objectives. As a result, direct comparisons to this proposal
must be done with care. This study does not seek to summarize or detect events as the end
goal, but to show them as potential applications. A better description would be to determine
how entities are involved in particular events, and if so, show them as a meaningful storyline.
This approach relies on a spatio-temporal model in which both geographical proximity and
time ordering are favored over textual content. Most of the other approaches, instead, rely on
the textual nature of documents. For these reasons, this article does not propose a competing
method. Rather, it shows complementary approaches that fill a niche which has remained
mostly understudied. The experiments section compares this proposed approach to three
methods described in [2] and [20], explaining the differences along the way.

3 Spatial modeling

This section provides a visual representation of the proposed methods and explain the tech-
nical aspects of spatio-temporal storytelling. Figure 4 shows the three stages taken: (1) in the
pre-processing stage, entities such as people and events, as well as concepts (i.e., relation-
ships), are extracted from Twitter data and news articles. Combining the extracted entities
and their relationships allows a concept graph to be constructed; (2) in the spatio-temporal
modeling stage, entities are discovered in regions through which a storyline is most likely
to propagate, using the concept graph to further rank those entities, and temporally order
them; (3) Storylines are then generated using the highest-ranked entities and their observed
relationships. First, the definitions used throughout the remainder of this paper are provided.

3.1 Definitions

In the scope of this study, an entity network is a graph G(E, R) where entities E = {e1,
. . ., en} can be linked to one another through relationships R = {r1, . . ., rn} defined by
conceptual interactions, and thus called a concept graph. Given a set of documents D = {d1,
d2, . . ., dn}, the following definitions apply:

Definition 1 An entity e represents a person, location, organization, event, or object
described in at least one document di ∈ D. Only entities for which a location and a
timestamp can be obtained are considered in this study.

Fig. 4 Three-step process for spatio-temporal storyline generation using Twitter data. In the pre-processing
stage, entities and concepts (relationships) are extracted and used to build the concept graph. Under
spatio-temporal modeling, spatial propagation first discovers entities in nearby locations. For each entity,
ConceptRanking determines its relevance in the graph, and the entities are subsequently time-ordered for
proper temporal propagation. Storylines are then generated by linking the top-k ranked entities in time order
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Definition 2 An event represents a special type of entity denoted by an action. Our previous
examples mentioned several events such as an “attack” and an “explosion”.

Definition 3 A semantic constraint is a user-defined data delimiter similar to a query
parameter. For example, if one seeks stories related to “explosion” and other related terms
(e.g., “bombing” or “blast”), he/she may use these terms as semantic constraints to guide
the storytelling process toward those concepts.

Definition 4 A relationship, connection, or link defines a unit of interaction between two
entities and is denoted by ei

interaction
e j . It is deemed explicit if it is extracted from tweet

text, such as in D.Tsarnaev
talks−to→ T.Tsarnaev. A relationship is implicit if it comes from

metadata, as in the Twitter case of “follows”. Note that all relationships ei
interaction

e j are
intended to be directional.

Definition 5 An entrypoint is any entity e in the dataset and the point from where the story
evolves. It is application-dependent from the perspective of the intelligence analyst. For
instance, in the Boston Marathon Bombings scenario, the entrypoint can be the blast site
(i.e., a location), an individual seen in the vicinity (i.e., a person), or any other entity of
interest. The endpoint is the entity where the story ends.

Definition 6 A storyline is a time-ordered sequence of n entities {e1, . . . , en} where con-
secutive pairs (ei, ej ) are linked by one relationship. The number of entities n is the length
of the storyline.

Twitter features In order to capture the importance of entities, both tweet metadata and
textual content are used in the following manner:

1. Users are person entities and the subject and objects ofmentions, reply-to, following,
and follower relationships. They help establish implicit relationships, as defined above
in 4.

2. Countries, states/provinces, cities, and addresses are geocoded and become loca-
tion entities, both coming from metadata and text. Tweets without location are not
considered.

3. Hashtags implicitly link entities either in the same or across tweets.
4. Created At (from tweet metadata) and dates (when available from tweet text) are both

used for temporal analysis. Whenever an entity is extracted from text, a timestamp is
associated to it. If the tweet text has an inline timestamp that can be associated to the
entity, this timestamp will be used. Otherwise, the timestamp of the tweet metadata is
used instead. Dates extracted from text are always given preference, if available.

5. Organizations are extracted from text (i.e., not metadata).

Figure 5 shows a simple concept graph related to the Boston Marathon Bombings where
the entities were extracted from several tweets. Solid lines represent explicit relation-
ships, while dashed lines denote implicit ones. We have the following: D. Tsarnaev (D.T.)
and T. Tsarnaev (T.T.) are connected through a “talk” relationship, which was extracted
from Twitter text (not Twitter metadata), and is thus defined as explicit. The same is true
for the “meets” link between T.T and S. Collier (S.C.), the “works” link from S.C. to
MIT , and the “drives” link from D.T. to MIT . The various links to other unknown
entities (small triangles) come from Twitter metadata (“follows”, “following”), and there-
fore are implicit.
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Fig. 5 Concept graph example. The solid lines between entities represent explicit relationships extracted
from tweet textual content. The dashed lines denote implicit relationships from tweet metadata

The reason to differentiate the above relationships comes from a simple notion: in entity
networks such as Twitter, semantic closeness in the form of social interactions is probabilis-
tically correlated to spatio-temporal proximity [7] akin to Tobler’s first law of Geography,
in which similar things tend to be near one another. Intuitively, this notion has several
implications to storytelling:

– Relationship Typing: explicit connections can be more helpful than implicit ones.
Knowing that “D.Tsarnaev spoke to T. Tsarnaev” is potentially more powerful than
simply learning that “D.Tsarnaev mentions (in the Twitter sense) T. Tsarnaev”. This
idea is explored in Section 3.3 about Concept Ranking.

– Relationship Propagation: a story can be modeled as a graph of entities and seman-
tic relationships propagating through spatially-close regions in a temporal sequence.
Consider Fig. 6a which depicts several locations related to the Boston Marathon Bomb-
ings. Most of its developments took place in an 8-day interval (Apr 15–22, 2013) and
in proximal areas: Boston - MIT Campus - Watertown. Developments in Canada or
Chechnya are an evolving part of the story, but do not necessarily play a major role.
Based on these ideas, Section 3 defines spatio-temporal propagation in order to explore
constrained regions of entity connectivity where stories can evolve from.

– Relationship Boundaries: stories do not necessarily have endpoints. Entities come and
go, relationships develop, and locations vary. In the Boston Marathon Bombings, the
entry point could be any one of thousands of persons. The end could propagate through
Canada, Russia, and other places. This idea is applied in the experiments section to
further justify the use of evolving stories.

3.2 Spatial entity discovery

In the process of telling a story, the entrypoint can be any entity such as a person or event,
as in the “bombing” scenario. Given an entrypoint, the goal is to delimit a region where the
“most amount of information” can be found, and grow that region until seemingly relevant
information becomes sparse. To find this region, several techniques could be explored, but
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Fig. 6 Boston Marathon Bombings spatio-temporal sequence. In a, each shape represents an entity observed
in a tweet. The edges denote relationships between the entities. In b, S1 through S5 represent five storylines
connecting different entities. The English verbs define their relationships and correspond to the edges of the
concept graph in (a)

not all of them fit spatio-temporal storytelling adequately. One of them would be to per-
form a simple Nearest Neighbor(NN) search on the area of study and collect the discovered
entities. NN searches, however, are “blind” to the dataspace, i.e, they find entities without
relaying information about how they disperse, and thus are not used here. Another alter-
native method is Pair Correlation Function (PCR) [25], which divides the data space into
spatial segments, allowing each segment to be weighted higher (lower) for closer (farther)
entities. Spatio-temporal storytelling, however, only needs nearby regions, thus segmenting
them does not serve a useful purpose. PCR, therefore, is not an ideal choice. Other possible
methods are the variations of partitional clustering, such as K-means, which could serve to
group related entities before linking them. While feasible, this type of clustering demands
several initialization centroids, which storytelling does not provide (in our approach, only
one entrypoint is initially given). In addition, this early in the process, performing any type
of clustering adds complexity that can be avoided by other approaches. Below, we explain
a preferable method.

Consider Fig. 7a where each point represents a person who tweeted during the Boston
Marathon Bombings near the blast sites. Circle A designates an area of 1 km around the
entrypoint (i.e., blast site) with a high concentration of person entities. If we consider 2 km,
as in circle B, the density decreases, while circle C becomes even more sparse. Intuitively,
the investigation should focus on the 1 or 2-km radii where most of the information resides.
In theory, this is the modeling of a point process (i.e., a collection of persons who sent
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tweets) in terms of a randomly chosen event E (i.e., bombing) with an estimator distance
function for a given density λ, which is given by Ripley’s K-coefficient K(r) = λ−1E.
Mathematically, K(r) can be stated as:

K(r) =
√

A
∑n

i=1
∑n

j=1 w(i, j)

πn(n − 1)
, i �= j (1)

where r is a desired radius originating at a chosen entrypoint, n is the total number of entities
in the data space, A is the entire area of study, and w(i, j) represents a weight. w(i, j) = 1
if distance(ei, ej ) < r , and 0 otherwise. In effect, K(r) performs a nearest-neighbor search
and can be viewed as a clustering coefficient for a desired type of entity (e.g., persons
sending tweets) within a limited radius. The coefficient can be evaluated at different scales,
such as r = 1 km or r = 1.5 km. Figure 7b and c show two simple calculations of the K-
coefficient for 3 persons {P1, P2, and P3} located in a (3 km × 3 km) area A. In Fig. 7b, the
chosen radius is 1 km. The calculation follows: using each entity Pi as the center of a 1 km
circle, count the number of other entities Pj within that radius, adding 1 if their distance is
less than the radius, zero otherwise. In that range, P1 “can see” 2 others (P2 and P3), since
their respective distances (dist (P1, P2) and dist (P1, P3)) are both less than r = 1. Using
P2 as the center of a 1km-radius, P2 “sees” only P1. The same is true for P3, which yields
K(1) = 0.53. In Fig. 7b, the radius is increased to 1.5 km, and the calculations are repeated,
yielding a K(1.5) = 0.65.

Comparing the two calculations indicates that the larger radius picked up more points
and resulted in more clustering, with the same density. Increasing the radius can potentially
find more empty space, which is undesirable. Ripley’s K-coefficient is an elegant method of
discovering related nearby things, but does not tell what a good radius should be or whether
lower/higher density is better or worse. Ripley’s gives us an opportunity to present a set of
heuristics that calculates a feasible K(r) in the discussion below.

3.2.1 Finding a feasible K(r)

In the previous analysis, one needs a systematic way to determine if the 1-km radius is better
than 1.5 km, or vice-versa. The region delimited by the radius that yields the highest K-
function score is where the storytelling process will initiate. Given that a real-world dataset
may contain millions of entities, a feasible region is one that includes enough data points,

Fig. 7 Spatial scaling for different radii. a Circle A depicts high entity density, becoming more sparse in
circles B and C. b and c shows the calculation of Ripley’s K function for a 1 and 1.5-km radius respectively
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but not all of them. Looking at Fig. 7a, Circle B covers most of the entities in that dataset,
which may be excessive for many applications. The problem is that Circle B has a 2-km
radius, which corresponds to most of the length of the entire study area of 9 km2. A better
approach in this case can be done according to Algorithm 1, which is explained below.

The first step is to select an initial random radius to work with. Since this ideal initial
radius is not known, the algorithm takes a “half-decrement” approach, in which the analyzed
radius is cut by half of the length of the dataset iteratively until a reasonable radius is found.
This is initiated where the algorithm specifies ri as 1/2 the length of the data set (ri in Line
1). This initial radius can be manipulated higher or lower to comply with application needs
or when better knowledge of the dataset is known apriori. Using radius ri from the story’s
entrypoint, a list of entities is obtained by performing a range query over the spatially-
indexed entities in the database L (Line 2). A simple check is then made: if the ratio of
retrieved entities (|Ents|) and total number of entities (|eA|) is equal to or greater than a
certain threshold, say 10 %, then too many entities have been retrieved (Line 3) and they are
discarded (Line 5). The algorithm halves the initial radius (Line 6) and tries again (Line 7).
Once the calculation hits a point below the threshold, the algorithm has found rLimit , i.e., a
radius that covers an adequate number of entities (Line 8).

On its own, rLimit is possibly good enough, but not necessarily the best radius. For exam-
ple, it is possible that rLimit corresponds to Circle B of Fig. 7a. Ideally, however, it would
be better to find Circle A, or even a smaller circle inside of A, as they seem to concentrate
most of the entities. The goal, then, is to find the highest clustering coefficient beginning
with rLimit , which is stored as K(ri), through an iterative process, but one which does not
exceed threshold Te. Using rLimit , K(ri) is computed (Line 9). In successive steps, ri is
incremented by half the value of rLimit and its K is recomputed (Lines 11–17). As soon
as K(ri) stops growing from its previous value or the number of retrieved entities reaches
threshold Te, the process stops. K(ri) has reached an adequate coefficient for this specific
radius, which is output in Line 19. In theory, there is no guarantee the “truly best” radius
has been found, but since increments of rLimit become smaller and smaller over many itera-
tions, we hit the law of “diminishing returns” and stop the process for the sake of efficiency.
It now can be stated that the storytelling process will include all entities located within range
ri of e.
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3.3 Concept ranking

In Section 3.2, ri is calculated as the radius originating at the entrypoint from where the sto-
ryline should propagate. Within that range, many entities can be present, which requires a
ranking strategy to determine an order in which entities should be investigated. For this pur-
pose, there are alternative approaches, as in performing textual similarity based on methods
such as cosine similarity [23] or comparing the values of attributes from each entity [17].
These approaches, however, are efficient on textually-rich sources, but not adequate for
Twitter data, which are more often than not poorly described. Since this work uses a graph
of connected entities as data representation, ranking is proposed as a variation of PageRank
[1], extended as ConceptRank, and explained below.

Given a network of web pages, PageRank assigns the highest(lowest) importance to the
most(least) referenced page(s), offset by the relevance of the referring page. It is given by:

PR(pk) =
(
1 − �

N

)
+ �

∑
p∈Links(pk)

(
PR(pi)

OL(pi)

)
(2)

where PR(pk) is the PageRank of page pk , N is the total number of web pages, � is a user-
defined damping factor in [0..1], Links(pk) is the set of links to page pk , and OL(pi) is the
number of outbound links from page pi . Consider the concept graph of Fig. 8, where each
node, instead of a web page, is assumed to be a spatially-tagged entity. It can be seen that
T.TSARNAEV has the most inbound links (5), MIT has four, and S.COLLIER has only
one. The other entities have none. Under PageRank, the most important entities (i.e., entities
with the highest PageRanks) would be T.TSARNAEV , MIT , and S.COLLIER since they
are the most connected entities.

One notable aspect of PageRank is that it does not differentiate relationships. Thus, in
Fig. 8, “stop” and “drive” have the same influence in the PageRank calculation as does
“following” or any other relationships. In terms of storytelling, this represents a deficiency
because the types of interaction among entities relay strong information and should be
accounted for. For example, persons seen around the blast site may hold clues to the bomb-
ing. However, students commuting to the MIT Campus from other directions most likely
play no role in the bombing. Therefore the types of links influence the story and should be
discriminated appropriately.

Given the above discussion, we propose ConceptRank not on web pages, but rather on
entities, as follows. In a concept graph, the relevance of an entity is determined by a combi-
nation of both implicit and explicit relationships, as stated in Definition 4, but differentiated
by their respective frequencies. Mathematically, ConceptRank is defined as follows:

CR(ek) =
(
1 − �

N

)
+ �

∑
p∈Links(pi )

(
CR(ei )

ψei

+ CR(ei )

�ei

)
(3)

where CR(ek) is the ConceptRank of entity ek , N is the total number of entities in the con-
cept graph, � is the same damping factor as before, Links(pi) is the set of links to page
pi , ψei

is the number of explicit outbound relationships of entity ei , and �ei
is the number

of implicit outbound relationships of ei . For all purposes, �ei
can be viewed as a Twitter-

specific parameter obtained from metadata relationships as outlined by the Twitter features
of Section 3.1. In real datasets, explicit relationships are less prevalent while implicit rela-
tionships tend to abound, making them less useful in a ranking strategy. An illustration
follows.
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Consider the case in which law enforcement is investigating persons who were stopped
by a cop, or anybody driving to the MIT Campus. The underlined words are the semantic
constraints sought on text. The concept graph of Fig. 8 depicts a few interactions related
to N = 10 entities. We set � = 0.75, which can be viewed as the initial ConceptRank
value that every entity receives regardless of its connections. This parameter can be manip-
ulated. For each entity i, we must first determine its number of implicit (�) and explicit (ψ)

outbound relationships. S.COLLIER has one outbound relationship (
stop→ ), which is explicit

since it comes from Twitter text (not Twittermetadata), and no implicit ones. Thus itsψ = 1

and� = 0. FATHER has only one outbound relationship (
mentions→ ), which comes from Twit-

ter metadata, and so is considered implicit. Thus its ψ = 0 and � = 1. Table 1 summarizes
the data for all entities, along with their ConceptRank (calculations not shown). What the
ConceptRank values contribute is a ranked list such that the most relevant entities and their
relationships can be weaved into a storyline. The ordering goes from highest to lowest val-
ues of ConceptRank, yielding the following ranking:[] T.TSARNAEV MIT S.COLLIER

MIT students , since these entities have the highest values. The next four entities, ( FATHER ,
MOTHER , AUNT , and D.TSARNAEV ) have the same ConceptRank, in which case they can
be inserted in any order. Given a different mix of implicit and explicit relationships, the
ordering may change. In practical terms, ConceptRank favors the most well-connected enti-
ties, punishing the ones that are thinly-referenced in its spatial region. In the next section,
we explain that only the top ranked entities (according to a threshold) are considered. All
others are disregarded, preventing them from taking part in the story generation process.

4 Spatio-temporal propagation

In this section, entities that were previously extracted from the datasources are organized
such that they are not only spatially-correlated, but also time-ordered in a way that makes
sense to the human mind. The key concept here is that entities evolve along space and time,

Fig. 8 Concept graph with mixed relationships. Twitter features such as following, follower, and mentions
are considered implicit relationships. Others, such as stop and drive are deemed explicit
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Table 1 ConceptRank illustration for the network of N = 10 entities in Fig. 8 with a starting damping factor
of � = 0.75

q=stop,drive N = 10 � = 0.75

i Entity (ei ) ψ � CR(ei)

1 T.TSARNAEV 1 (
drive→ ) 1 (

mentions→ ) 0.0282

2 MIT 0 3 (
f ollower→ ) 0.0276

3 S.COLLIER 1 (
stop→ ) 0 0.0264

4 MIT Students (each) 0 1 (
mentions→ ) 0.0250

5 MOTHER, AUNT, FATHER, D.TSARNAEV (each) 0 1 (
f ollowing→ ) 0.0241

Entities are ranked from highest to lowest values of ConceptRank CR(ei )

and thus the notion of spatio-temporal propagation becomes an integral part of the sto-
rytelling process. Spatio-temporal propagation requires a strategy that prevents sequential
contradiction, which is addressed with the use of time windows in Section 4.1. Time win-
dows must be treated carefully as it raises several design questions, which are addressed in
Section 4.2.

4.1 Devising time windows

One important aspect of intelligence analysis is the sequence in which real-life develop-
ments take place. In the Boston Marathon Bombings scenario, for instance, it is clear that
the BOMBING event should precede the arrest of suspect D.TSARNAEV , and not the other
way around. Temporal propagation over Twitter data is challenging for three reasons:

1. Varying lengths: in many instances, entities are spread throughout long periods of time
(e.g., a war), while in others, the time span can be very short (e.g., a terrorism act).
Therefore, varying-length time intervals must be accounted for;

2. Bursty behavior: often, entities display disparate frequencies in arrival rates. In an
initial time period, for example, millions of tweets can be issued due to a high-visibility
event (e.g., Barack Obama’s election). But that same event may subside over time when
it is no longer considered “news”. Thus, distribution becomes important;

3. Time synchronization: many entities may be observed at the same time, in which case
ordering them is not intuitive. Therefore, ties must be somehow dealt with.

One way to get around the above problems is to utilize a time matrix, which provides an
intuitive way of aggregating spatial entities in flexible time intervals. In a time matrix, each
column is a time unit and each row is a fraction of the time unit. Each cell of the matrix holds
the entities observed at specific times. Figure 9a shows an example where each column
represents one day of the week (i.e., the time unit), and each row represents the time of the
day. A time matrix permits entities to be observed as a sequence of interactions and can be
made as short or as long as the situation dictates. One can then perform data analysis on the
entire matrix or on a subset of rows and columns, which we denote as a time window. In the
scope of this study, a time window is defined with a simple rule:

Definition 7 Given a time matrix of interest (T M) composed of n time units (T U ), a time
window (TW) is composed of one or more T Ui where 0 < i ≤ n. In other words, a time
window corresponds to a pre-defined time interval or a subset of it.
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Fig. 9 Visualization of a Time Matrix. a Temporal propagation of entities in 4 time windows TW1-TW4.
Each entity is designated by a box and allocated to a time unit T Ui according to the entity’s timestamp. b The
crossed entities indicate that they have been pruned. Time units T U3 and T U4 are merged as a new single
time unit T U3

For example, consider the Boston Marathon Bombings, where some of the developments
took place over 7 days starting on April 15, 2013. We can establish its time matrix as TM =
one week, each time unit TUi = one day, and each column as the hours/minutes of the day,
with n = 7. Figure 9 shows the corresponding time matrix, where TU1 = 15Apr, TU2 =
16Apr, etc... For more granular applications, the time matrix can be adjusted to one day
and each time unit can be the minutes/seconds of the day. The point is that the user must
determine the time units that make sense for the task at hand. Having established the time
units, we must now define the length of each time window. A simple approach is to make
each time window the same as a time unit. In Fig. 9a, for instance, each time window TW
corresponds to one time unit (e.g., TW1 = APR15 or TW2 = APR18). Alternatively, a time
window can be a combination of several time units, as is shown in Fig. 9b where TW3 =
APR19 −22.

The time window parameters above are decided on a per-application basis. Once estab-
lished, each time window can be populated with the entities found according to the method
in Section 3.2. This is easily accomplished by allocating each entity to the appropriate TW i

based on the entity’s timestamp. On Twitter data, the timestamp is ideally extracted from
text. Since that is not always available, the tweet’s metadata timestamp can be used as a
good-faith approximation. One additional caveat must be made: only entities that meet a
minimum value of ConceptRank are inserted (ConceptRank is explained in Section 3.3). A
visual example follows.

Figure 9a depicts a partial time interval of four discrete days (Apr 15,18,19,22) related
to the Boston Marathon Bombings. Some textual description is included for illustration
purposes. It is assumed no data is available for the missing days (Apr 16,17,21). Here, we
set TM = 4 days and set each each TUi = 1 day on an hourly basis. Knowing that the
Boston Explosion , which is set as the storyline’s entrypoint, occurred on April 15 at 2:49 PM,

we place that entity in TU1. It is followed by the Boylston St. Lockdown at 4:15 PM, and so
forth. The same is done for the rest of the days until all entities in the data space have
been addressed for that time matrix. This organizational model is not only attractive for its
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simplicity, but it also serves as a look-up data structure where sequences of developments
can be easily found. In Section 4.3, time windows are revisited and put to use after the
computation of entity connectivity.

4.2 Time windows considerations

The model explained above provides an efficient view of time-ordered entities and events,
which facilitates reasoning. However, it raises design questions for which decisions must be
made and are explained below:

– Time span: entities may cover more than one time window. It is possible, for instance,
that the Street Closure of April 18 last several days. In this case, allocation to a
time window is done according to the entity’s earliest observation time. That entity,
therefore, is placed in TW2 since its earliest occurrence is indeed April 18.

– Concurrency: entities may have the same timestamp, in which case there is no clear
way to order them. In such scenarios, the following differentiation can be made: prefer-
ence is given to the entities that contain either a semantic constraint (see Definition 3)
or the most specific location. If the tie still cannot be broken, arbitrary ordering is taken
as the last option. For example, if the user seeks semantic constraint “explosion”, then
entities with such a mention are placed in its time window before another entity that
has the same timestamp, but with no such mention. Similarly, an entity located at Boyl-
ston St. precedes any simultaneous entity located in Boston, since the former location
is more specific than the latter.

– Frequency: rare entities can be pruned since they provide little connectivity strength
(connectivity, an important feature of this approach, is explained in Section 3.3). For
example, assume that the Airport Open in TW2, the Game Cancellation in TW3, and
the School Closing in TW4 appear very few times. In this case, they are removed
from the analysis, which is indicated by the red crosses in Fig. 9b. Pruning removes
non-interesting entities, thus saving processing cycles.

– Merging: two time windows TWj and TWk can be merged when they are deemed too
sparse. For example, in Fig. 9b, Apr 19 and Apr 22 had some entities pruned, leav-
ing them relatively unpopulated as compared to the other TW i . To save computing
resources, they are combined into a single window, namely “Apr19–22”, denoted by
the shaded area. The time sequence of the remaining entities are still preserved.

– Size: in theory, a time window TW can hold any number of entities and can be com-
posed of any number of time units, only limited by the length n of the time matrix.
In addition, they do not have to have uniform lengths. However, long time windows,
whether uniform or not, may generate excessively long storylines, which in turn tends
to become less intelligible. The experiments of this study reveal that short time win-
dows of one or two time units are not only more computationally efficient, but also
allow more coherent storylines than longer time windows.

4.3 Spatio-Temporal storyline generation

This discussion puts together the ideas in Sections 3.2, 3.3, and 4.1 to generate storylines.
Algorithm 2 takes as input the user’s desired entrypoint, and an appropriately pre-defined
Time Matrix. The essential steps are as follows: obtain the radius of study and identify
the entities in that radius (Lines 1 and 2); compute the ConceptRank of the found entities
and allocate the most important ones to an appropriate time window according to their
timestamps (Lines 3 and 4); using each time window, build the storylines with temporal
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ordering (Line 6); for each pair of entities, select a relationship to insert in between them
(the most frequent relatioship is often appropriate) (Line 8); if the storyline is too short or
incomplete, a new entrypoint is established as the next highest ranking entity above the top-
k ones (Line 10). The process iterates (Lines 9 to 11), otherwise, the storyline is output
(Line 13).

Algorithm 2

The above process may generate long storylines, which may become less intelligible.
However, the point at which this iterative process should stop depends on one’s own under-
standing of fact completeness. Entity extraction operates on O(log N ) where N is the
number of entities. Distance computation must be done two at a time, which takes O(N2),
which is one of the most costly steps, but may be optimized by avoiding computing far
away entities. Insertion of new entities into the graph requires a check to see if the entity
already exists, which is done in constant time. Range searches may perform from O(log
N ) to O(N ) depending on the number of location overlaps. Computation of the Concep-
tRank affects only the inserted entities and the ones they link to either directly or indirectly.
Figure 10 shows the propagation of a storyline across four different regions in four iterations
[ti , ti+3] of Algorithm 2. The entrypoints are represented by squares and the other entities
by circles. At each iteration, the top 2 entities are linked followed by a new entrypoint,

Fig. 10 Hypothetical generation of a storyline through four iterations of the algorithm (ti through ti+3). Each
circle corresponds to one iteration. Squares represent entrypoints and dots represent entities. Each iteration
begins at an entrypoint and connects two other entities, before a new entrypoint is considered
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from where a new iteration begins. In this simple example, the four iterations generate one
storyline composed of 12 entities (4 entrypoints + 8 other entities) and their relationships.

4.4 Complexity analysis

As mentioned previously, spatio-temporal storytelling involves the execution of many
tasks before results can be displayed. Below, the major tasks are listed in terms of time
performance and some options are considered:

– Ripley’s K function: One of the uses of Ripley’s coefficient (Eq. 1 in Section 3.2)
is to find regions where entities concentrate in high numbers. Therefore, this func-
tion is very sensitive to the size of the study area. This process entails calculating the
distance between every pair of entities located within a given radius, which runs in
O(n2) provided that no prior distance information (other than latitude and longitude)
is known. This may change in situations where points are within negligible distance of
one another. In this case, which can be done as an optimization step, the total number
of distance calculations can be reduced significantly. In many applications, Ripley’s K
function is performed several times for different values of radii. The true running time,
thus, becomes t × O(n2) in the worst case, where t is the number of radius values to
be investigated and new data points have been introduced. Looking at Eq. 1, it can also
be seen that Ripley’s function can be weight-based. In this study, that weight is simply
1 if the entities fall within the radius of study, and 0 otherwise. Under this condition,
the weight is simply a look-up, which operates in constant time O(1). Another possi-
ble approach would be to vary the weight with different segments, such that entities in
the same (different) segment would receive a higher (lower) weight. This would have
the effect of increasing spatial accuracy, but comes with a performance cost. The run-
ning time would increase to O(n2) + O(s × n2), the first factor to compare all entities
within the radius, and the second to compare entities within each segment s (combin-
ing the operations is possible provided that segment sizes are known ahead of time).
Applying an index at the segment level (so that entities within the same segment would
not need comparison) would bring the complexity back down to O(n2). A spatial index
such as an R-Tree often incurs in O(n) for the initial build, where n is the number of
entities assuming a clean dataset without overlaps. Its benefit, however, comes in terms
of searches, which can be done in O(log n

m
), where m is the branching factor, and can

well speed up distance computations.
– Finding a feasible K(r): This refers to Algorithm 1 in Section 3.2.1, which determines

an ideal radius of investigation. The first step is to create a list of entities from the results
of a range query. This range query is delimited by a given radius, and constrained by
a user-defined threshold representing the maximun number of entities that should be
included. It runs on O(n), where n is the number of entities. This process can get more
costly if the threshold is set too high. In such cases, the list may need to be recreated
with a longer radius if not enough entities are located. Conversely, if the threshold is set
to low, fewer entities will be analyzed, but may not generate enough storylines. Again,
the process may need to be repeated. In an iterative process where t is the number
of iterations, the running time would increase to O(t × n), where n is the number of
found entities. This process also requires computing Ripley’s K function, which was
explained in the item above.

– ConceptRanking: Before linking entities into storylines, a ConceptRank (Eq. 3 in
Section 3.3) is computed for each entity in the graph. ConceptRank requires for every
entity in the graph: the number of incoming links (in), the number of outgoing links
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(out), and the types of each link (typ). Given a graph of n entities, determining all Con-
ceptRank requires O(in) + O(out) + O(typ). But since these items are simply properties
of each entity, they can be combined on a single per-entity step, and thus run at O(n).
This a worst-case greedy scenario. In fact, this process can be highly optimized under
certain conditions: disconnected entities (there can be many of them) may not need
processing depending on the application; when not all relationship types are relevant,
only the nodes with the relevant ones can be considered; the application may be able
to discard certain entities types (e.g., hashtags) from the analysis. Adding more nodes
incrementally tends to cause little change to this process.

– Establishing time windows: This task is described in Section 4.2, and generally speak-
ing, can be considered lightweight given similar optimizations as described in the
ConceptRank discussion above. In a worst-case scenario, every entity must be tagged
with a timestamp, which runs in O(n) for n entities. Determining entity frequencies
requires pairwise comparison at O(n(n − 1)). Frequencies, however, can be determined
from previous steps, and may be disregarded. Time window creation is simply a set-
up step with constant time. Merging sparse windows requires two look-ups: the first to
find which windows are poorly populated; and the second to determine which windows
are adjacent (only adjacent ones are eligible for a merge). Both of these steps can be
performed concurrently at O(w) + O(adj2), where w is the number of time windows
and adj is the number of sparse windows that have a sparse neighbor as well. Note
that even under quadratic complexity, this step is often efficient due to the fairly small
number of time windows that most applications require as compared to the number of
entities that go into them.

– Storyline Generation: This is the final step of the process, which encompasses all
items discussed above, and is detailed in Section 4.3. Putting all steps together, the most
appropriate way to describe the entire complexity is O(n2). Indeed, spatio-temporal sto-
rytelling is mostly based on pairwise comparisons. While there are many optimizations
that can be done, some of which are mentioned above, it is surprisingly challenging to
achieve lower running time, even in the O(n) range. The best workaround is to operate
with less, more relevant data filters in the preprocessing stages so to combine efficiency
and accuracy early on. Alternatively, one may want to consider distributed processing
on platforms such as Mapreduce [18], which has been used in the experiments, but is
not discussed in the scope of this document.

5 Empirical evaluation and technical discussion

Spatio-temporal storytelling can be gainfully applied to everyday analytical tasks. To follow
through with that statement, the experiments are divided in three parts. Section 5.2 compares
the approach in this paper to three existing methods of event summarization. Section 5.3
presents association analysis as the chosen task to verify how far in advance the generated
storylines find an event before its first published occurrence in the news. And Section 5.4
adds similar experiments as the first, but with other datasets for greater topic variety. To
begin, the general experiment setup is given below.

5.1 Experiment setup

To demonstrate various insights that can be garnered from spatio-temporal storytelling, the
experiments are decomposed into three parts as listed in Table 2. The tasks are related to
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Table 2 Methodology and data specification of the experiments

different events ranging from the Boston Marathon Bombings of April 15, 2013 to social
issues in Latin America (employment, salary, illnesses, elections) to drug abuse in the
United States. The first task demonstrates how storytelling can be used as a means of event
summarization. The second task, event association, investigates if storytelling is able to cap-
ture the relatedness among events without knowing that an event will actually take place.
The third task concerns the identification of events and their associated locations. For each
part, the table shows a general flow of the steps taken to perform that task. And because
each task involves different data, pertinent details are provided in the corresponding sections
below.

Data specification The TREC-KBA and Microblog data (we designate both as “TREC-
KBA” going forward) are two extensive collections of different documents that include
microblogs, blogs, and news articles (among others) spanning the years of 2011 to 2013,
as of this writing [31]. For these experiments, the data sources encompass the period
between March 25 to Apr 30, 2013. This period was selected as it immediately covers the
Boston Bombings of April 15, 2013, which is the case study in question (the data, how-
ever, is mostly composed of general topics, not just Boston Bombings content). The nature
of the data reflects items of interest to many different communities, certainly to include
intelligence analysts.

A subset of the TREC-KBA articles have been annotated by the TREC contributors:
some of their entities are tagged with a type (e.g., location, time, person, organization, misc,
etc.). Items in each document are also given a timestamp that is helpful in temporal analysis
(each document can have several items, with each item being an article). Location names
are sometimes available, though they are not geocoded, which must be done separately. One
of the purposes of TREC-KBA is to strengthen entity knowledge by gathering extra features
about those entities from available news sources and web files (among others document
types). In this sense, TREC-KBA operates at the entity level, but not at the storyline level.
For this study, we have utilized the TREC-KBA files to compose storylines using their
entities and relationships. We have also used a subset of those annotated files for verifying
time-ordered events, and entity types.

For added variety, the experiments also use three other datasets: EMBERS [11], an exten-
sive repository of tweets mostly from Latin America, and related to social factors such as
employment, salary, and election issues; GDELT [13], a world-wide database of events of
various natures from where topics of financial aid, cooperation, mass violence, and terror-
ism investigation were selected; and DAWN [4], a collection of medical reports that detail
hospitalization events of people who suffered drug reactions. It is important to note the fol-
lowing: all of these three datasets (EMBERS, GDELT, and DAWN) contain fields that can
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be used for validation of the experiments presented later. For example, whenever a record
describes a certain development, there is also a specific field that denotes the event to which
that development relates. In addition, there is also a separate field that lists the location(s)
of that event. These locations sometimes are textual names, a point of interest (POI), a zip
code, or a latitude and longitude. As will be seen in the experiments, summaries are gener-
ated by different methods with the above datasets. To evaluate whether the summaries are
valid, we use the provided event and location fields to verify if the summaries reflect them,
which is one of the metrics. For our purposes, therefore, the dataset itself provides their own
ground truth.

Comparative methods For event summarization, the objective was to find out how well
the proposed approach of Spatio-temporal Storytelling (STS) performed as a summariza-
tion tool. The choice of event summarization, as opposed to other potential methods such
as pattern mining or clustering, was due to two reasons. First, event summarization does
not depend on high frequencies of the same patterns to occur. It performs just as well on
disparate (and many times rare) entities, which is a characteristic of the datasets applied in
the tasks. Second, the spatial aspect of the proposed approaches requires the computation
of distances, and events provide spatial differences that can be reasoned about. Currently,
there is an extensive body of works related to text summarization [21] from where many
options are available. Note that the objective was not to compare existing summarization
approaches. Rather, it was to evaluate if spatio-temporal storytelling could be utilized as a
summarization tool when the analyst was performing entity analysis.

Three methods were selected that allowed for an adequate mix of textual analysis,
time reasoning, and synonymy that overlaps with this paper’s proposed methods. The first
approach, SUMMALLTEXT (denoted as summ-text) uses a variation of TF × IDF to com-
pare storylines. It takes storylines as inputs (4.5 million generated from 2 million entities),
the set of words in all storylines, and the desired number of records. The second approach,
SUMMTIMEINT (summ-time), uses a similar technique, but segments the storylines in dif-
ferent time windows and does processing based on each time window. Its inputs are all the
storylines (again, 4.5 million), a minimum activity threshold (to filter out segments with
less than 10,000 storylines), and the desired time segment (1 hour). They are described by
Chakrabarti in [2] using tweets as storylines. Both output the top n storylines of maximum
score to represent summaries. The third approach, described by Medvet [20] and denoted as
EDCS-summ, identifies highly-frequent words in storylines, builds a set of synonyms from
them, and outputs the storylines for sets that are also highly frequent. They also accept the
storylines as input, and apply time segmentation for which 1 hour is set.

For event association, an evaluation was performed on the same dataset as above to verify
whether the proposed algorithms could point to an event before that event was published in
the newswire. Event association is portrayed as one more potential use of spatio-temporal
storytelling.

For event and location identification, the purpose was to evaluate how well each of the
approaches could single out an event from each record and find the location(s) associated
to that event.

Performance measures For the first task, the question to be answered is the following:
how well can STS perform if it is utilized as a summarization approach? For example,
assume that a given summarization tool generates 10 summaries. In addition, also assume
that STS generates 8 out of those same 10 summaries using the same input data. The match
between them is thus 80 %, and the difference is 20 %. Note that these percentages do not
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relay any information on which approach is the most robust. However, they do allow the
analyst to be aware of the differences, and decide on his/her own which method to use.
If the STS summaries perform to the analyst’s satisfaction, it would allow the analyst to
use STS as a summarization tool instead of having to acquire an extra technology just for
summarization. To be considered a match, two summaries must share a minimum number
of entities as well as a location. The experiments evaluate matches under 10, 30, and 60
entities. Thus, Match = |matching summaries of size x|

|all summaries of size x| is the performance measure. Note that
summaries must have the same size in terms of entities, and that matches have been relaxed:
a “protest” is considered the same as a “demonstration” or a “rally”. This is done according
to Wordnet [35]. Similarly, locations are also coalesced as long as one place geographically
encloses the other (e.g. “Boston” and “Faneuil Hall MarketPlace”), which can be deter-
mined with geocoding tools [6, 30]. The reader should be aware that this definition makes
sense for spatio-temporal storytelling. However, for other domains of application, related-
ness might make more sense with different criteria, such as cosine similarity, among others.
For simplicity of discussion, these experiments are limited to one location at a time.

For event association, the same storylines as above were used. Those storylines were
then compared to a subset of the TREC-KBA Corpora, which had not been used previously
(dated later than the previous files, and referred here as the “unseen files”). The performance
measure, lead time, is simply the time difference between when a storyline was generated
(i.e., the latest timestamp of any document used in the generation of that storyline) and
the earliest occurrence of the events in those storylines in the TREC-KBA unseen files. For
example, assume that storyline A was generated with data up to April 20, having such
entities as a “protest”, a “demonstration”, “injury” or similar items in Boston. If on April
22, someone was reported injured in a protest in Boston (event B) as shown in one of the
unseen files, than storyline A has been linked to event B with a 2-day lead time. Please
note that storyline A does not predict event B. It only provides signals of things that could
happen, which could be helpful to an analyst.

For event and location identification, the task is simple: if the data record details a
“protest in Mexico City” and the output of the approach also makes any mention of “Mexico
City” (or a nearby location) and a “protest” (or a similar concept such as “demonstration”,
as determined by Wordnet [35]), then a match has been made. The percentage of successful
matches is then the evaluation criterion.

5.2 Comparison of event summarization approaches on the Boston Marathon
Bombings (2013)

In this subsection, the three event summarization approaches mentioned in the experiment
setup (Section 5.1) are used to evaluate the proposed method, spatio-temporal storytelling.
One line of research complementary to this work, but which often does not include spatial
storytelling, is event detection, which is left for future work, and indicated to the reader for
further consideration [16, 33].

Table 3 lists a set of 5 locations, labeled E1 through E5, that were used as storytelling
entrypoints. 2 million entities were obtained from a subset of the TREC-KBA Corpora
and, using each of the four methods, 4.5 million summaries were generated (in the case
of STS, a summary is equal to a storyline, while for the other approaches, it is several
tweets). The dataset had no bounds on geographic coverage (could include any location in
the world), but was guaranteed to have instances of the locations in the table. The compar-
ative methods were: STS, which is the proposed work; Summ-Text [2], a cosine similarity
variant of summaries; Summ-Time [2], a cosine variation with time-based segments; and
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Table 3 Match comparison between Spatio-Temporal Storytelling (STS) and summarization of three
different methods: Baseline Summ-Text, Baseline Summ-Time, and EDCS-Summ

Summ-Text Summ-Time EDCS-Summ

Event 10 30 60 10 30 60 10 30 60

E1-Boston 0.78 0.59 0.42 0.77 0.51 0.42 0.64 0.35 0.57

E2-Cambridge 0.61 0.34 0.45 0.53 0.36 0.29 0.65 0.71 0.28

E3-Quincy 0.52 0.38 0.57 0.69 0.40 0.60 0.83 0.34 0.39

E4-Newton 0.76 0.54 0.70 0.37 0.80 0.40 0.62 0.79 0.76

E5-Somerville 0.57 0.49 0.48 0.60 0.67 0.61 0.80 0.66 0.58

Summaries are aggregated by minimum number of matches of 10, 30, and 60 entities for a given location.
The values in the table indicate the percentage of the summaries in the three approaches that are also included
in STS. Highest values for each row and group are shown in bold

EDCS-Summ [20], which uses segmentation applied to synonym sets. The output summaries
from each of the three methods were then compared against the output of STS. In the table,
the higher the percentage, the better STS reflects the summarization method.

The way to interpret the table, exemplified for row 1, is as follows. From the initial 4.5
million summaries that were generated, all of the ones with maximum size of 200 entities
were gathered. The summaries from STS were then compared to the summaries of the other
three approaches. The question then becomes: what percentage of the summaries in STS
matches summaries in the other three approaches by at least 10, 30, 60 entities, as well as
by one or more locations? In other words, this task evaluated whether STS would be strong
enough to serve as a summarization method in case the storytelling analyst did not have a
fully-dedicated summarization tool to use.

For example, if one output of Summ-Text were “Make-shift memorial honors Boston
Marathon victims”, and if STS output “Memorial dedicated to Boston Marathon victims”,
then these two summaries would be considered a match on three entities and one location:
“memorial”, “honors and dedicated”, and “marathon victims”, in addition to the location
(Boston). As mentioned earlier, matches such as honors and dedicated are relaxed byWord-
Net. The table then lists other locations related to the Boston bombings that may be useful
to an analyst.

Discussion At first glance, one can notice the fairly high variation of values across all
approaches. This is especially true for summaries with 60-entity matches under EDCS-
Summ, where matches go from 28 % to 76 %. High variation is also observed with Summ-
Time in the range of 29 % to 61 %, but slightly less with Summ-Text. This high variation
is not unexpected. In general, matching 60 entities at a time is very challenging, given
the extremely unstructured characteristic of TREC-KBA data. Under 30 entities, there are
generally more instances of matches than 60, though this could mean a lower level of read-
ing coherence (the stories tend to look “stranger”). The strength of STS is shown in E4
(Newton), which displays very high match percentages of all sizes for all three approaches
(76 %, 80 %, 76 %). STS performed well when the summaries themselves were not very
lengthy (we show for 200 entities), matching on 10 and 30 entities. But not nearly as well
on longer summaries, especially when trying to match 60 entities. One would expect that
the longer the summaries, the more matches would occur, since a higher number of entities
would be included. This is often quite misleading: it is true that longer storylines have the
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potential for more matches, but may include entities that are rare, having the opposite effect
of preventing matches.

The Summ-Time approach clusters events based on time intervals, disregarding the
clusters where events are not highly frequent. It explains its low matching on E2 (Cam-
bridge) regardless of the number of entities in the storylines (Cambridge was significantly
less frequent than other nearby locations). E1 (Boston) and E4 (Newton), on the other
hand, were the most common occurrence of places with described events, which boosted
their matchings. In addition, matching levels varied considerably for different reasons:
STS can correctly capture people and organizations as highly-connected entities accord-
ing to their ConceptRank measure. It was also helped by the fact that many locations
mentioned in TREC-KBA were already inside Boston, such as street names, and its neigh-
borhoods (Beacon Hill, Dorchester, West Roxbury). They aided in the location matches.
But, at times, the other approaches generate summaries with unrelated locations, such as
the mention of a “Cleveland” marathon. This makes STS miss the match. In addition,
Summ-Text and EDCS-Summ generally suffered under storylines of 30 entities because
many of the events were not always accompanied by specific locations names (these
two approaches do not account for spatial operations, and thus locations names must
match).

It must be noted that the fourth technique, EDCS-Summ, is interesting for its use of a
dictionary approach to identify events. While STS also used one (WordNet), the other two
approaches did not. Thus, both EDCS-Summ and STS could merge “attack” with “assault”
or “aggression”, among other terms. This feature explains why STS appeared to come closer
to EDCS-Summ than to the other two approaches. It was observed, however, that Summ-Text
did display good stability, that is, the low-to-high range of matching was in general less than
the other approaches, which may benefit applications that require predictability.

STS is a spatial technique in which places are regarded as geocodes (i.e., latitude and
longitude coordinates), not plain keywords. In essence, this has the effect of capturing a
wider variation of events across many areas, regardless of how they are described in the
dataset. These results are encouraging for three reasons: they reinforce the importance of the
spatial aspect which the other methods do not target; they indicate that the other methods
could use the output of our approach (storylines) as the input to theirs in order to incorporate
the spatial contribution; they confirm our initial claim that storylines can be a valuable tool
in many different activities, summarization being a case in point.

The main goal of summarization is to capture essential ideas from the underlying text
while disregarding unrelated points, what one would call noise. To this end, another claim
can be made. Spatio-temporal storytelling is able to effectively capture two facets of the
underlying data: the important locations and relevant events in the input data. Take, for
example, Table 4 which lists a set of 20 short summaries (S1–S20), five for each of the
comparative methods. STS shows five storylines (S1–S5) which captures four locations
related to the topic of discussion (the Boston Marathon Bombings). These locations are
Boston, Vassar Street, Copley Square, and Trinity Place. The other approaches not only
find less locations, but some of them are unrelated, such as Manhattan. The reason STS is
able to find a more coherent set of locations has to do with Ripley’s K function. It helps
localize the investigated entities in short radii, which prevents far-away entities (such as
the ones in Manhattan) from showing up. In addition, STS is also able to identify relevant
events, such as “raid”, “explosion”, “destruction”, and “competition”. This is because of
ConceptRank which promotes these highly-connected entities into the storylines. The other
approaches are also able to identify some of the same events, but many times do so with less
success.
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5.3 Event association in the Boston Marathon Bombings (2013)

Storylines can be useful in many different applications. This section takes a lightweight
view of association analysis and discusses how storylines are able to identify real-world
developments before they are published in the news. The goal of this task is to generate
storylines, identify which real-world stories they relate to, and determine how far in advance
the storyline can be linked to the real event.

The dataset is the same as previously explained. The targeted events are related to the
Boston Marathon Bombings of April 15, 2013, which provoked a myriad of events in the
Boston area. At this stage, the strategy is the following: generate storylines using a subset
of TREC-KBA data and validate the events identified in those storylines using a different
subset of TREC-KBA data that has a later date. In other words, if a storyline is generated
using TREC-KBA files up to April 18, than validation is done on TREC-KBA files dated
April 19 or later. If a storyline points to a certain event that was published at a later date
than the storyline’s generation date, it indicates that a valid association was found. A valid
association means that they match on at least two entities (for storylines of max 10 entities)
plus one location (longer stories are possible, but not practical to display). This verification
process has been done by searching the contents in the storylines (entities and locations) in
the TREC-KBA files.

Table 5 shows a sample of 10 such events that are used for discussion. Each TREC-KBA
event has an associated reported by source, an event location, and published date. For each
event, the table shows a short generated storyline, which was generated by the proposed
algorithms from source TREC-KBA files. The generated date of the generated storyline is
the timestamp of the most recent file used as input data. In the generated storyline, entities
are bolded in uppercase, relationships are in lowercase. The lead time is the time difference
to the published date. The starting location is Boston from where we consider a radius of 50
km that includes nearby neighborhoods as shown in Fig. 11.

Discussion Item 1 has a generated storyline of four entities (FBI, SUSPECT,MARATHON,
BACKPACK). These four entities are the ones of highest ConceptRank, and thus selected
for the storyline. The relationships (investigate, walk, carrying) are the most frequent ones
between the adjoining entities. Note that storylines do not reflect stylized English language.
Because they are linked based on spatial connectivity and time order, grammar rules cannot
be easily enforced, though they often come out in an intelligible format. The generated
storyline closely resembles the associated TREC-KBA event: semantically, they have similar
entities, such as “FBI” and “authorities” or “investigate” and “question”, indicating that an
individual (the “Saudi national”) has been deemed a person of interest. Both the storyline
and the TREC-KBA event relay a similar message. All source files that helped generate
this storyline were dated April 15, 2013. The FBI investigation, however, was published
by cbsnews.com on April 16, 2013,1 indicating that the storyline could be associated to the
TREC-KBA 1 day in advance.

While the storyline of item 1 relates to Cambridge, item 2 takes place in Boston, which
has different latitude and longitude. Thus, they are considered different locations. At first
glance, the generated storyline bears little relatedness to the TREC-KBA event. They are
strongly connected, however, in two manners: the semantic closeness from the “conflicting”

1In the real world, it is possible another news source may have published this event even earlier. However,
only the sources contained in the input files are considered here.
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Fig. 11 Spatial propagation of developments due to the Boston Marathon Bombings. Starting from the city
of Boston, related events listed in Table 5 are observed in nearby areas. The map shows 6 of approximately
1,200 affected locations. Locations are approximate

relationships, as well as by location. All source files that helped generate this storyline
were verified to have a location inside Boston. The lead time is one day, showing that the
algorithm was able to reconcile the event prior to when it was reported by the media. This
example underscores the importance of location, which would otherwise make this linking
difficult to justify.

The remaining items from 3 to 10 are also highly-dependent on location. Note that none
of those generated storylines (with the exception of number 5) have a location entity explic-
itly stated. However, their generating files do contain at least one metadata location that
matches the location of the TREC-KBA event, and a timestamp that closely pre-dates the
event’s published date. This is particularly interesting in the case of item 10, whose TREC-
KBA event is shown at Boston Medical Center, but whose generated storyline does not
reflect that location, mentioning only that is a hospital. In fact, that storyline’s generating
files have a latitude/longitude that closely matches that of the Boston Medical Center. Also
worth mentioning is the fact that there are a few entities very popular across the gener-
ating files, and as a consequence, appear commonly in the storylines. Three of them are
MARATHON, BLAST, and FBI, which are commonly observed in Boston itself, and Mas-
sachusetts for their large areas. The prominence of these entities as part of the storylines is
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significant for a simple reason: it indicates that the spatio-temporal methodology is able to
find storylines about events related to the Marathon Bombings in Boston using location as
a decisive factor. Even though Boston is the most prominent area, the algorithm also identi-
fies other important locations where events occurred with similar entities, such as the ones
in Bowdoin St (item 3), Dorchester (item 4), and Dedham St. (item 8).

5.4 Event and location analysis on other datasets

In the previous subsections, experiments utilized a single dataset (Boston Marathon Bomb-
ings) for consistency. In this subsection, other datasets are used to evaluate the algorithms’
performance under higher data variety.

Just as previously done, this stage first uses the same approaches as before to generate
summaries. But instead of showing the summaries, these experiments detail the success per-
centage of each approach in generating summaries that contain the event(s) and location(s)
from the input data. For example, if 10,000 input records mentioned “cooperation” as an
event between “Turkey” and “Afghanistan”, and the output summary also contained those
three items (relaxed by Wordnet synonyms as before), then that output summary would
be considered a successful match for all 10,000 records. The percentage of records that
matched over all records is thus the measure in question (every record is matchable, i.e.,
every record has an event and at least one location).

Figure 12 displays four plots from the EMBERS dataset, which represents tweets about
various topics from several countries of Latin America. Given an increasing number of
records, the goal was to verify if STS could perform summarization at a level comparable
to the other approaches, which were specifically designed to generate summaries. If so, the
analyst might have been able to accomplish the summarization task with just STS, saving
the extra time and money expenditure in acquiring other tools. Figure 12A was generated
with up to 1,000,000 tweets at the high range. The plot indicates the following: starting
with 250,000 tweets, STS storylines generated 97 % successful matches with the events and

Fig. 12 Comparison of four summarization approaches on the EMBERS dataset.A events related to employ-
ment issues. B Events with sources related to infectious illnesses. C Events related to salary and finance.
D Events related to elections. The plots depict the percentage of summaries correctly generated by each
approach for the different event types. The four plots represent four distinct datasets



Geoinformatica (2016) 20:285–326 317

locations of the input data (meaning the storylines contained the event name and location
names of the input tweets). On that same datapoint (250,000) the other approaches had a
slightly lower success rate (96 % and 88 % for Summ-Text and EDCS-Summ respectively)
and quite lower for Summ-Text (68 %). Looking further into the plot, there exists a high
variation of results. Different methods performed better at different points. Summ-Text, for
instance, started low, but ended higher, with its best performance in the range of 400,000 to
500,000 input records. STS started high (97 %) and ended high (96 %), but showed several
lows in between 300,000 and 400,000. Based on events related to employment issues, there
is no clear winner: all four approaches were comparable in terms of summarization poten-
tial. It reinforces the idea that STS, even though it was not designed for summarization,
is able to reach very similar results provided by the other tools, and at times better. In the
case of events related to infectious illnesses (Fig. 12B), and salary problems (Fig. 12C), the
distinction among the methods is somewhat better defined. In B, and using up to 500,000
records, Summ-Text demonstrated generally higher match percentage than the others, with
STS lower, but still better than EDCS-Summ and Summ-Time. STS fared better with the
national elections events (Fig. 12D), outperforming the other approaches for most of the
data. Further below, some of the reasons for the high variation in results will be given.

Figure 13 represents experiments done on the GDELT dataset. In contrast to tweets,
which are highly unstructured and very noisy, GDELT records are generally clean, with a
combination of textual description as well as other structured fields such as time, location,
and entities (among others). This set of experiments differs from the previous on the data
sources (semi-structured instead of unstructured), the nature of the data (events that are not
necessarily violent, such as cooperation, investigation, and aid), and match relaxation (a
match was considered successful if any location was identified, not all of them, along with
the event). With a few exceptions, all plots show higher match performance for STS than
the other approaches. Under “financial cooperation” and “investigate” the higher difference
in favor or STS is more accentuated. Under “provide aid” and “mass violence”, STS has

Fig. 13 Comparison of four summarization approaches on the GDELT dataset. Each plot represents a cat-
egory of events related to A aid transactions between organizations and countries. B Financial cooperation
among different nations. C Mass violence events across the Middle East and Africa. D Investigation related
to acts of terrorism. The plots show the percentage of summaries that correctly identified the event and its
location. The four plots represent four distinct datasets
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generally better performance with a few dips below Summ-Text and EDCS-Summ. To
explain why the above performance levels fluctuate (at times, significantly), the following
factors can be stated. First, the nature of the data, whether it is financial, social, or polit-
ical, appears to have very little influence on the number of matches that any of the four
approaches make. Other disparate types, such as sports or real estate, would have experi-
enced just as similar results. Factors that appear to be more relevant, and expectedly so, are
the cleanliness of the data (which negatively affects identification of events and locations
for all approaches), and the size of the text. Small textual sources (twitter-size) works best
for Summ-Time, Summ-Text, EDCS-Summ, while longer text (news articles, reports) can
benefit STS. The most impacting factor is that of location: while STS always looks
for names of locations, and can disambiguate them by latitude and longitude, the other
approaches do not natively include that capability. Thus, in many instances, the other
approaches fail to include the location in their summaries, which causes many matches to
be missed (this was also observed with timestamps, though we did not consider time as a
matching criterion here). It is important to notice that events are simply textual concepts,
such as “riot”. While STS and EDCS-Summ are embedded with concept expansion (so to
equate “riot” with “fight” or “battle” via Wordnet), the other approaches do not have that
capability. We, however, added that feature to them. Otherwise, their ability to find events of
similar natures that are described differently would have lowered in the magnitude of 40 %,
making the comparison to STS doubtful. STS also performs more robustly than the other
methods when events are described with many locations (e.g., a celebration that takes place
in many different cities at the same time). STS will commonly list all locations as part of the
storyline, while the other approaches may list none or one at best. The underlying reason
is that when the input records mention location names with high frequency, they impact
TFxIDF (used by some of the other approaches), which tends to lower the importance of a
concept that is repeated over and over.

The plots of Fig. 14 are presented under a very different dataset (DAWN) coming from
U.S. hospitals. Whenever a patient checks into an emergency room because of drug reac-
tion(s), a report is filed describing the drug name(s), comments of the situation, description
of the reactions, and demographics about the patient. This dataset is interesting because
of the high number of very uncommon terms related to drugs (“CIPROFLOXACIN”,
“PHENYLEPHRINE”, “VORICONAZOLE”, “DICHLOROBENZENE”, etc.). The event
in this case is the use of the drug listed on the report, and the location of the event is the
location of the hospital, both of which are given by the dataset for validation purposes.

Fig. 14 Comparison of four summarization approaches on the DAWN dataset. Each plot represents an emer-
gency room event (hospitalization) that occurred as a consequence of the use ofA addictive drugs. B common
household medications. The plots show the percentage of summaries that correctly identified the name of the
drug that caused the hospitalization. The two plots represent two distinct datasets



Geoinformatica (2016) 20:285–326 319

In this sense, events here are medical, and not political or social, as was for the previ-
ous experiments. The uncommonality of drug names highly favors TFxIDF approaches,
which places higher importance on infrequent terms. However, it makes Wordnet query
expansion unusable, since these drug terms do not generate synonyms, and impacts STS
unfavorably. In addition, the locations in this dataset are represented simply as zip codes
(due to the patient’s privacy, no addresses or better geolocation are provided). The effects
can be seen in Fig. 14A, where percentage matches are in general much lower than
in the previous plots for all four approaches. The matches are never above 60 % for
addictive drugs (uncommon sophisticated names), but higher for household medications
(Fig. 14B) which tend to be more frequent (e.g., “ASPIRIN”,“ALCOHOL”, “IBUPRO-
FEN”). Notice, however, that STS’s performance is still strong under addictive drugs, and
often comparable to the other methods under household medications. What saves STS in
this case are the zip codes (which are often ignored by the other summarization meth-
ods), while drug names on their own are a negative factor for STS. The other approaches
behave in an opposite manner, benefiting from the drug names, but suffering from
zip codes.

Lessons learned In general, spatio-temporal storytelling is sensitive to many different
factors that can affect results both positively and negatively:

– Scope targeting: targeted events which are very prominent in one area (e.g., Boston)
are better candidates for spatio-temporal storytelling than events that span wide regions
evenly. This gives us the first lesson: storytelling benefits when the scope is targeted.
In other words, the examined topic should be specific enough to a region in order to
maximize preciseness.

– Match relaxation: when entities are matched in a loose manner (e.g., “riot = fight”),
such as with a dictionary or ontology, there is a significant increase in one’s ability
to find related events. Making the match more strict prevents understandability. The
second lesson is that relaxing the matches tends to find very coherent storylines, which
can also be helped by increasing the number of investigated locations.

– Region granularity: these experiments consider a radius of 50 km from downtown
Boston. It should be apparent that a shorter or longer radius can have different connota-
tions: for country-wide applications, it could mean data explosion. For geographically-
constrained applications, it could mean missing important data that resides far away. For
example, elections across the country would make sense when viewed in large areas,
whereas a terrorism act makes more sense when treated locally. Therefore, the third les-
son is that the length of the radii may require careful consideration for spatio-temporal
storytelling to be practical.

– Data variation: data volumes and variation are important factors that bring up the
fourth lesson: low data volumes and poor variation creates storylines that lack meaning
and appear disconnected from real events.

5.5 Tasks and execution times

The purpose of this subsection is to provide a quick snapshot of the elapsed times that
were observed during the execution of the experiments. Table 6 lists the eight major tasks
that encompass spatio-temporal storytelling. The tasks were run in two different ways:
geocoding, distance calculation between entities, and time stamping were conducted under
Mapreduce[18] in a cluster of 5 machines (Intel Atom 1.66GHz 4 GB RAM); the other



320 Geoinformatica (2016) 20:285–326

tasks were conducted in a standalone machine (Intel Xeon 3.33GHz 24 GB RAM). A few
important notes:

– The values in the table represent elapsed times in minutes to process the given number
of entities. Thus, for entity extraction, it took 151 minutes to process 500 K entities,
while 1,000 K entities took 310 minutes.

– Tasks were conducted independent of one another. In other words, processing 1,000 K
entities did not use previous results from processing 500 K. Clearly, these two steps
could have been made cumulative for greater efficiency. However, it was the intent of
this study to measure tasks in a greedy manner, and allow for a better understanding of
what optimizations could be done.

– Data parsing in general (tasks T1, T2, T3, T4, and T5) is computationally intensive.
This is particularly true in the case of relationship extractions that come from noisy text
(e.g., determining if two people “talk”). For example, it took 280 minutes to extract 500
K entities, and 2,265 minutes (about 38 hours) for 2,000 K entities. This progression can
be linear at times, but very frequently deteriorates to much worse levels. Relationships
that come in an API, on the other hand, such as a Twitter user that “follows” another
one, are not as significant a cost factor.

– While the parsing tasks (T1–T5) can be computationally costly, the algorithmic parts
(T6–T8) are less so. This is because the algorithmic steps already benefit from the
earlier pre-processing. Ripley’s K function, for example, relies on the computation of
distances of T4 in order to find a good radius of investigation. ConceptRank, on the
other hand, requires counting every type of relationship (inbound and outbound) for
every entity. This is by large the heaviest algorithmic task, and should be done in a
distributed platform for high data volumes in excess of what Table 6 displays.

– Each of the 8 tasks of Table 6 have subtasks which are not listed, but included as
part of the timings. When an entity is extracted, for example, it is saved both in
a database (for spatial indexing and distance calculations) and in a graph (to query
for storylines between entrypoints and end nodes). In this process, it is also checked
to avoid duplicates and meaningless formats (such as numbers), and examined for

Table 6 Elapsed time observed to generate storylines from raw data

Task 500 K† 1,000 K 1,500 K 2,000 K

T1 - entity extraction 151 ‡ 310 743 1,875

T2 - relationship extraction 280 643 1,143 2,265

T3 - geocoding 90 252 400 772

T4 - distance calculation between entities 34 51 89 412

T5 - time stamping 12 44 70 90

T6 - optimal radius calculation 48 71 190 502

T7 - conceptRank 41 99 274 611

T8 - storyline generation 656 1,470 2,909 6,527

The values in the table represent time in minutes required to process the given task from 500,000 to 2 million
entities
†Number of entities
‡Time in minutes
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non-English characters. Another problem is retweets, which cause duplication of
entities and relationships, and are discarded in these experiments.

– Storyline generation (T8) is simply the time addition of the previous tasks (T1-T7). It
can be seen that most of the time is spent on pre-processing, and less on running the
algorithms.

– It should be obvious that the numbers of Table 6 are only representative of this
paper’s data and experiments. Results will vary significantly with more data, different
hardware, and the introduction of optimization steps.

5.6 Experiment summary

The experiments in Section 5.2 demonstrated the potentially-high applicability of spatio-
temporal storytelling, exemplified in an event summarization case study. STS yielded
high summarization matching as compared to existing methods (up to 80 %) on mostly-
unstructured documents (i.e, TREC-KBA Corpora). Rather than relying on textual content,
STS introspects entities that are spatio-temporally tagged so to identify the ones with high
levels of connectivity. Those entities are targeted for storyline generation regardless of how
they are described in the underlying data source. In addition, ConceptRank helped differen-
tiate the important relationships from the less relevant ones. This is an essential contribution
to intelligence analysis, which often faces large data volumes, but have little ability to
automatically segregate important connections among millions of possibilities.

Spatio-temporal storytelling’s ability to capture the underlying links among entities is
complemented by its flexible method of temporal propagation. Analysis with time windows
promotes coherent storylines, which has the potential to uncover developments before they
materialize. This was shown in the experiments of Section 5.3, where a set of ten events
related to the Boston Marathon Bombings of 2013 was identified. STS proved highly suc-
cessful in associating events up to two days in advance of their publication in the news under
a highly-noisy dataset.

Experiments on three extra datasets were presented in Section 5.4 to show that STS is
capable of handling records of highly infrequent vocabulary (drug names) and poor geospa-
tial resolutions (zip codes). It also pointed to the fact that the nature of data (political, social,
medical) had little impact on the results, attesting to STS’s generality, and its ability to
performing other seemingly disparate tasks for which it was not designed.

6 Conclusion

In studying socio-political interactions from spatio-temporal propagation, this study has
been able to generate dynamic real-world storylines that are of great significance to the
intelligence community. Because spatial distribution is treated as an integral factor of the
described algorithms, dense regions where storylines developed were identified. Further,
this approach established time-coherent entity connections that otherwise might have been
more challenging from purely textual approaches that do not consider the myriad locations
as the ones affected by the Boston Marathon Bombings as well as financial, social, politi-
cal, and medical events in Latin America, Middle East, and the United States. Ranking was
devised based on different relationship types, and proved effective on ill-formed datasets.
The experiments demonstrated a high potential for applicability in tasks such as summa-
rization and association of current events, indicating the versatility of STS for intelligence
analysis.
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