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Abstract—Anomaly detection in mixed-type data is an important problem that has not been well addressed in the machine learning

field. Existing approaches focus on computational efficiency and their correlation modeling between mixed-type attributes is

heuristically driven, lacking a statistical foundation. In this paper, we propose MIxed-Type Robust dEtection (MITRE), a robust error

buffering approach for anomaly detection in mixed-type datasets. Because of its non-Gaussian design, the problem is analytically

intractable. Two novel Bayesian inference approaches are utilized to solve the intractable inferences: Integrated-nested Laplace

Approximation (INLA), and Expectation Propagation (EP) with Variational Expectation-Maximization (EM). A set of algorithmic

optimizations is implemented to improve the computational efficiency. A comprehensive suite of experiments was conducted on both

synthetic and real world data to test the effectiveness and efficiency of MITRE.

Index Terms—Anomaly detection, mixed-type data, robust estimation, expectation propagation, variational inference
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1 INTRODUCTION

ANOMALY detection is an important problem that has
received a great deal of attention in recent years. The

objective is to automatically detect abnormal patterns and
identify unusual instances, so-called anomalies. For exam-
ple, in signal processing, anomalies could be caused by
random hardware failures or sensor faults, whilst anomalies
in a credit card transaction dataset could represent fraudu-
lent transactions. Anomaly detection techniques have been
widely applied in a variety of domains, including cyber
security [1], health monitoring [2], financial systems [3], and
military surveillance [4].

Approaches to anomaly detection include distance based
[5], [6], local density based [7], [8], one-class classifier based
[9][10], and statistical model based methods [11], [12], [13].
Most of these approaches are designed for single-type data-
sets, whereas most real world datasets are composed of a
mixture of different data types, such as numerical, binary,
ordinal, nominal, and count. In the KDD panel discussion
[14] and the resulting position paper [15], dealing with
mixed-type data was identified as one of the 10 most impor-
tant challenges in data mining for the next decade. How-
ever, the direct application of single-type approaches to
mixed-type data leads to the loss of significant correlations
between attributes, and their extension to mixed-type data
is technically challenging. For example, distance based
approaches rely on well-defined measures to calculate
the proximity between data observations but there is no

uniform measure that can be used for mixed-type attributes,
while the statistical model based approaches rely on model-
ing the correlations between different attributes but there is
no uniform correlation measure available for mixed-type
attributes. The limited number of methods designed for
dealing with mixed-type data, including LOADED [16] and
RELOADED [17] all focus primarily on computational effi-
ciency and their correlation modeling between mixed-type
attributes is heuristically driven, lacking a solid statistical
foundation. There are three main challenges for mixed-type
anomaly detection: 1) Modeling mutual correlations between
mixed-type attributes: Mixed-type datasets involve more than
one confounded dimension of dependency between the
attributes so the relationships among these attributes in
multivariate types need to be captured; 2) Capturing large
variations due to anomalies: Most existing methods require a
pure training dataset in order to learn what constitutes nor-
mal behavior. However, in the presence of anomalies, rec-
ognizing normal instances is challenging for unsupervised
frameworks because these anomalies introduce large varia-
tions that can easily bias the estimation of normal patterns;
and 3) Analytically intractable posterior inference: The likeli-
hood of non-Gaussian observations yields an analytically
intractable distribution. Therefore, an approximation
method is necessary to estimate the inference for the partic-
ular observations.

In this paper, a statistical-based approach to address the
above challenges is proposed. We begin by presenting a
new variant of the generalized linear model (GLM) that can
capture the mutual correlations between mixed-type attrib-
utes. Specifically, the mixed-type attributes are mapped to
latent numerical random variables that are multivariate
Gaussian in nature. Each attribute is mapped to a corre-
sponding latent numerical variable via a specific link func-
tion, such as a logit function for binary attributes and a log
function for count attributes. By adopting this strategy,
the dependency between mixed-type attributes is captured
by the relationship between their latent variables using
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a variance-covariance matrix. Meanwhile, an “error buffer”
component based on the Student-t distribution is incorpo-
rated to capture the large variations caused by anomalies.
While fitting the data into the model, the error buffer
absorbs all errors. The detection process then revisits the
error buffer and detects those abnormal instances with
irregular magnitudes of error. Unfortunately, the applica-
tion of GLM and Student-t prior make the inference analyti-
cally intractable. We therefore propose an approach that
adapts an Integrated-Nested Laplace Approximation
(INLA) by applying optimization strategies to approximate
the Bayesian inference. An alternative framework that
incorporates Expectation-Propagation (EP) [18] and Varia-
tional Expectation-Maximization (VEM) framework is also
proposed. The main contributions of our study can be
summarized as follows:

1) Constructing a novel unsupervised framework: A new
unsupervised framework capable of performing gen-
eral purpose anomaly detection on mixed-type data
is proposed that does not require labeled training
data, which is in practice often difficult to obtain.

2) Capturing anomalies’ large variances and dependencies
among mixed-type observations: The proposed model
addresses the two main challenges of detecting
anomalies in a mixed-type model, i.e., modeling
mutual correlations between mixed-type attributes
and capturing large variations due to anomalies.

3) Designing more effective approaches for Bayesian infer-
ence approximation: Two approaches are proposed to
approximate Bayesian inference, namely Integrated
Nested Laplace Approximation and Expectation
Propagation with a Variational-EM framework.

4) Conducting extensive experiments to validate the effec-
tiveness and efficiency: Our experimental results dem-
onstrate that our proposed approaches outperformed
most of the existing approaches tested on both syn-
thetic and real benchmark datasets, with comparable
computational efficiency. The advantages and limita-
tions of the proposed approaches are also explored
via an experimental analysis.

The remainder of this paper is organized as follows.
Section 2 reviews the existing work in this area and Section 3
presents the problem formulation and the model design. In
Section 4, the framework for the anomaly detection process
is discussed, while the experiments on both simulated and
real datasets are presented in Section 5. The paper
concludes with a summary of the research and our finidings
in Section 6.

2 RELATED WORK

This section provides an overview of the status of current
research on anomaly detection, including both single-type
and mixed-type anomaly detection methods.

Single-type Anomaly Detection Methods. Early research on
anomaly detection can be categorized into five groups,
namely distance-based [5], [6], density-based [7], [8], clus-
ter-based [19], classification-based [9], [10], and statistical-
based [11], [12], [13], [20] methods.

Knorr et al. [5] presented the first distance based
approach, which detects anomalies by applying a distance

threshold. Another early distance-based method was
proposed by Ramaswamy et al. [6], who extended the dis-
tance criterion by combining it with the k-nearest neighbor
(KNN) based method. This category of methods is usually
efficient, but the accuracy is compromised when the data
distribution is skewed. Besides these distance-based
approaches, density based approaches are also popular. For
example, the local outlier factor (LOF) [7] and local correla-
tion integral (LOCI) [8] methods are based on estimating
the local densities around points of interest and their
neighbors.

Other anomaly detection approaches address the
problem by framing it as traditional data mining problems.
The clustering-based method proposed in [19] first groups
similar data and then labels those instances that are not
well clustered as anomalies. Various classification-based
approaches have also been proposed that assume that the
designation of anomalies can be learned by a classification
algorithm. This is exemplified by Das et al. [9], who present
a one-class SVM based approach, and Roth [10], whose
method is based on kernel Fisher discriminants.

Statistical-based approaches assume that the data follow
a specific distribution, and detect anomalies by identifying
instances with low probability densities. One of the main
challenges here is to reduce the well-known masking and
swamping effects. Anomalies can bias the estimation of dis-
tribution parameters, yielding biased probability densities
that cause normal objects to be misidentified as anomalies,
or vice versa. To address this issue, a number of methods
have been proposed that make different distribution
assumptions, including techniques based on the robust
Mahalanobis distance [11], direction density ratio estima-
tion [12], and the minimum covariance determinant estima-
tor [13]. Recent advances have generally focused on
applying robust statistics for outlier detection [20].

Another approach that often used for outlier detection is
to apply robust Principle Component Analysis (PCA) [21],
[22], [23]. Particularly we suited to extracting the most sig-
nificant features from noisy datasets, these methods are
either driven by robust statistics, e.g., trimming off extreme
observations [21] or using median rather than mean val-
ues [22], or operate by directly decomposing the dataset
into a low rank matrix and a sparse matrix [23]. In the first
case, the outliers will be those data instances with any
attributes deviating from a specific threshold value, while
the outliers in the latter case are those data instances with
any greater value in the sparse matrix.

Mixed-type Anomaly Detection Methods. Real world data
usually consist of amixture of data types, with non-numerical
data presenting different features from numerical data. For
instance, categorical data has no particular order so it is not
possible to quantify differences between data points [24],
which means that detection methods that are suitable for
numerical data might not necessarily provide a good fit for
mixed-type datasets. Tran et al. [25] model heterogeneous
datasets using Restricted Boltzmann Machines, where the
dependency among data fields is captured by latent binary
variables. Although their approach can be utilized as a
classifier for discrete outputs or as a regression tool for contin-
uous outputs, it does not explicitly consider any anomalies
present in the datasets.
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In the research reported in the literature, a popular
approach is to process individual data types separately and
then integrate the results for each data type to detect anoma-
lies [16], [17], [26], [27]. Two mixed-type anomaly detection
approaches have been proposed by Otey et al., namely
LOADED [16] and RELOADED [17]. LOADED uses an aug-
mented lattice to calculate the support count of the item sets
for the categorical attributes and then computes a correla-
tion matrix for the numerical attributes. It detects anomalies
by assigning an anomaly score based on the support of the
item sets and the level of numerical attributes confirming
that correlation. In an effort to improve the performance of
LOADED, RELOADED reduces the memory usage by
replacing the covariance matrix with a set of classifiers.
These two algorithms achieve a high efficiency as targeted,
although their detection accuracy could be further
improved. Both LOADED and RELOADED are supervised
methods and thus require training datasets. Mixed-type
data can also be processed by integrating different single-
type approaches. Koufakou et al. [26], [28] propose
ODMAD for high dimensional datasets, which detects out-
liers in categorical fields and numerical fields separately. In
particular, outliers in categorical fields are detected by
counting and outliers in numerical fields are detected based
on the data’s distance from the center of the numerical
fields. Although this method is relatively straightforward, it
does not consider the relationships between categorical and
numerical fields. Moreover, it requires a good understand-
ing of the instance space in order to feed in several user-
defined thresholds to filter out outliers. Tran and Jin [27]
apply a C4:5 decision tree to symbolic attributes and a
Gaussian Mixture Model (GMM) to model numerical fields,
with And anomalies being detected by comparing the
weighted sum of the score from the decision tree and the
score from the GMM to a predetermined threshold. Similar
to ODMAD, this method requires extensive fine-tuning
work when assigning optimal weights for both scores and
selecting a reasonable threshold for filtering out outliers.

Ye et al. [29] adopted a different approach, applying a
projected outlier detection method (PODM) that jointly con-
siders discrete fields and continuous fields to detect top-k
anomalies. The fundamental principle when detecting
anomalies is that an anomalous instance’s presence in a
lower dimension projection will be abnormally lower than
the average. The idea here is thus to convert all continuous
fields into discrete values and then partition data space into
several cells. Given a set of subspaces that all instances are
projected onto, a Gini entropy and an outlying degree are
computed to measure whether a particular subspace is an
anomaly or not. Finally, the outliers are identified from low
density cells in the anomalous subspaces. The main draw-
back of this method is the need to choose a unit interval, i.e.,
an equi-width, for discretizing the numerical values. Due to
the often widely variable range of the numerical attributes
concerned, all these fields have to be preprocessed carefully.

The closest work to the new method proposed here was
suggested by Zhang and Jin [30]. They apply the notion of
the patterns observed in the majority of the data in terms
of their attributes, where the number of patterns corre-
sponds to the number of categorical data fields. Here, a
pattern is studied by applying a linear logistic regression

where the explanatory variables are numerical attributes
and the response variable is a single categorical attribute.
The advantage of a regression based model is that it
reveals the functional relationship among the attributes
[31]. However, although this approach models such rela-
tionships among the attributes, the logistic regression is
sensitive to outlier effects.

On the other hand, regression based models have been
widely studied in robust statistics research. For example,
several robust linear regression approaches for numerical
data are introduced in literature [32], [33], and Liu [34] also
proposes a robust version of logistic regression and proves
its capability to tolerate anomalies. Building on the existing
work, the model we propose in this paper adopts a robust
statistical approach to capture attribute dependencies using
an input-output relationship with a Gaussian latent vari-
able. Combining the robust design with the generalized lin-
ear models, the proposed approach is capable to handle
mixed-type data while maintaining its robustness to anoma-
lies. The new framework aims to provide a high detection
accuracy and deliver the results in an acceptable time. The
process detects anomalies from the input dataset directly,
with no training data set required.

3 MODEL DESIGN

This section begins by formalizing the problem in
Section 3.1. In Section 3.2, we discuss the modeling of
mixed-attributes in the framework of generalized linear
models and an error buffering component to handle anoma-
lous effects. The integrated Bayesian hierarchical model is
presented in Section 3.3.

3.1 Problem Formulation

Consider N instances in a dataset S ¼ fs1 � � � sNg, in which
each instance s has P response (or dependent) variables
fy1ðsÞ � � � yP ðsÞg and D explanatory (or independent) varia-
bles fx1ðsÞ � � �xDðsÞg. The separation of the response (e.g., a
house price) and explanatory (e.g., the house’s size and
number of rooms) variables is decided based on users’
domain knowledge, and all the variables could be regarded
as response (dependent) variables as a special case. The
dependent variables could consist of different data types,
combining numerical, binary, and/or categorical variables,
whilst the explanatory attributes are typically set to be
numerical. The objective is to model the data distribution
and identify those instances that contain abnormal response
variables or explanatory attributes.

Types of Anomalies. Since the attributes have been sepa-
rated into two types, the anomalies can also be introduced
as either abnormal response variables or unusual explana-
tory attributes. Thus, we define three types of anomalies
based on their originating attribute groups:

1) Type I Anomalies are caused by abnormal values in
the response variables.

2) Type II Anomalies are caused by abnormal values in
the explanatory attributes.

3) Type III Anomalies are caused by abnormal values for
both response variables and explanatory attributes.

Any object that has attributes that cause it to behave as if
it belongs to one of the above three categories is defined as
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an anomaly. An anomalous object usually deviates consid-
erably from the normal trends in the data and can hence be
detected using our statistical model.

Predictive Process. The first step utilizes numerical
response variables, which are typically assumed to follow a
Gaussian distribution model. Thus, the Gaussian predictive
process can be applied here. The following regression
formulation represents the behavior of the instances:

Y ðsÞ ¼ XðsÞbþ vðsÞ þ "ðsÞ: (1)

This formulation implies that similar instances should
have similar explanatory attributes. The regression effect b
is a P �D matrix, which represents the weights of the
explanatory attributes with regard to the response variables.
The dependency effect vðsÞ is a Gaussian process used to
capture the correlation between the response variables and
a local adjustment is provided for each response attribute.
The error effect "ðsÞ captures the difference between the
actual instance behavior and normal behavior. The instan-
ces are assumed to be independent and identically distrib-
uted (i.i.d.), which introduces the Gaussian likelihood as

pðY ðsÞjhðsÞÞ � N ðY ðsÞjhðsÞ; s2
numÞ; (2)

where hðsÞ ¼ XðsÞbþ vðsÞ þ "ðsÞ, and s2
num is set to a small

number in order to allow the random effects for v and " to
be captured.

3.2 GLM and Robust Error Buffering

The underlying concept of Generalized Linear Model is to
assume that non-numerical type data are generated from a
particular exponential family distribution. Taking the
binary response type as an example, each response variable
is assumed to follow a Bernoulli distribution, such that
pðY ðsÞjhðsÞÞ � BernoulliðgðhðsÞÞÞ, where g is a logit link
function that converts the numerical likelihood value to the
success probability of the Bernoulli distribution. In this
case, a sigmoid function is applied for the conversion, e.g.,

gðxÞ ¼ 1
1þexpð�xÞ. GLM can handle not only binary data, but

also count, categorical, multinomial, and other data types.
In this work, we consider four data different types, namely
numerical, binary, count, and categorical. The specific usage
of GLM in our model will be discussed in the next
subsection.

One of the major components in the proposed new algo-
rithm is the robust error buffer. A latent random variable is
included to absorb the error effect caused by measurement
error, noise, or abnormal behaviors. The purpose of this
mechanism is to separate the expected normal behavior from
the errors. Instead of a simple Gaussian distribution, a

Student-t distribution is utilized to model the error variation
". A Student-t distribution has a heavier tail than a Gaussian
distribution, and is widely used in robust statistics [15]. The
heaviness of the tail is controlled by setting the number of
degrees of freedom: when the degree of freedom approaches
infinity, the Student-t distribution becomes equivalent to a
Gaussian distribution. The probability density function of a
Student-t distribution stð0; df; sÞ is defined as

pð"Þ ¼
Gðdfþ1

2 Þ
Gðdf=2Þ

1

pdfs

� �1
2

1þ "2

dfs

� ��df
2 �

1
2

; (3)

where df represents the degrees of freedom, s is the scale
parameter, and G is the gamma function. Our model treats
the error effect "ðsÞ as a zero mean Student-t process, with a
diagonal covariance matrix and a preset degree of freedom.
There are two benefits to be gained by incorporating this
error buffer in the model. First, the parameter estimation
becomes robust and the normal behavior is modeled more
accurately. Second, the errors are absorbed by this latent
variable, making it possible to detect anomalies by checking
the values of the variables.

3.3 A Bayesian Hierarchical Model

Integrating the components introduced in the above subsec-
tions allows us to complete the design of the new algorithm.
Fig. 1 shows the graphical representation of our model.

The proposed model is based on a Bayesian hierarchical
model, which enables the parameters to be automatically
learnedwhile also reserving the option for users to assign val-
ues to the hyper-parameters based on their prior knowledge.

The first (observation) level of the hierarchical model cap-
tures the relationships between the response variables. This
level refers to the predictive process and the GLM, and
models the relationships between the latent effects and the
response variables. Here, four different types of data are
considered: numerical, binary, count, and categorical. Each
of the data types is associated with a specific type of likeli-
hood. We model these data types in the traditional GLM
manner, which assumes Gaussian, Bernoulli, and Poisson
distributions for numerical, binary, and count, respectively.
For categorical data, we follow the modeling strategy
described in [35]. The categorical response variable is
extended to K binary variables, where K is the number of
categories of the variable. Table 1 lists the GLM likelihood
and link function of each data type.

The second (latent variable) level is the latent variable level.
This level contains the latent elements that refer to the
effects of the error buffer and the correlation effect, i.e., v
and ". The main purpose of this level is to model the rela-
tionships between the latent variables and the parameters.

Fig. 1. Graphical model representation.

TABLE 1
GLM Information

Type Likelihood Link Function

Numerical Gaussian Identity
Binary Bernoulli Logit Function
Count Poisson Log Function
Categorical Nominal Logit Function
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More specifically, we can form the following equations:

vðsÞ � N ðvðsÞj0;SvÞ; (4)

"ðsÞ � Stð"ðsÞj0; s"; dfÞ; (5)

whereSv is the covariancematrix used tomodel the covariance
between the response variables, s" is a diagonal covariance
matrix that indicates the variances of the error effects, and df
denotes the degree of freedom parameter. For convenience, we
will use the symbol n to denote the latent variable set.

The third (parameter) level defines the regression coeffi-
cients and conjugate priors for the model parameters,
including the covariance matrix of v and the covariance
matrix of ", designated Sv and s", respectively.

The prior distribution of the regression coefficients b can
be represented by

bp � Nðbjmbp;SbpÞ; (6)

where bp is the regression coefficient corresponding to the
pth response variable, and mbp and Sbp are the hyper-param-

eters that define the Gaussian distribution of each bp.

To reduce the dimensionality of u, we retain only the var-
iance of v and " in each response variable and the correla-
tion between response variables:

s2
"p � IGða"p; b"pÞ; (7)

Sv � IWðF; dfvÞ; (8)

The variance s2
"p for each response variable is assigned an

inverse gamma distribution, and the covariance matrix of v
is assigned an inverse Wishart distribution. The symbols
a"p, b"p, F ,and dfv denote the hyper-parameters of these
prior distributions. The model is now well defined and the
next step is to fit the model based on the dataset. In the next
section, we introduce the entire anomaly detection frame-
work and describe the method used to approximate the
Bayesian inference for the model.

4 FRAMEWORK AND INFERENCE

This section presents the framework of the anomaly detec-
tion process, the statistical inference for the model, the
computational cost, and the optimization schemes. Two
new frameworks have been devised in this paper, one utiliz-
ing the INLA framework and the other an EP framework.

4.1 INLA Framework

First, we propose an approach adapted from the Integrated
Nested Laplace Approximation [36], which is a relatively
new technique for approximating Bayesian inference. The
Laplace approximation (LA) method approximates an arbi-
trary distribution to Gaussian by taking the mode as the
mean and the second order derivative at the mode as the
variance (or covariance matrix in multivariate distribution).
The general idea of INLA is to use the Laplace Approxima-
tion iteratively to approximate the marginal posteriors for
the latent variables. The advantage here is that the fitting
process of INLA is particularly effective in a lower dimen-
sional space for the model parameters.

4.1.1 Framework

Algorithm 1 presents the framework for MITRE-INLA,
which is composed of three major components: the Laplace
approximation, variable estimation, and anomaly detection.

Algorithm 1.MITRE-INLA

Require: The response variables Y and explanatory attributesX
Ensure: The anomalous instances
1: set u ¼ u0
2: while u 6¼ argmaxuðpðujY ÞÞ do
3: set n ¼ n0
4: while n 6¼ argmaxnðpðnjY; uÞÞ do
5: n ¼ update n

6: end while
7: n̂ ¼ n

8: L ¼ likelihoodofpðujY; n̂Þ
9: u ¼ update uðLÞ
10: end while
11: usample ¼ sample from neighborhood of u
12: set Lusamples

; n̂usample
¼ f

13: for all us in usamples do
14: n̂us ¼ argmaxnðpðnjY; usÞÞ
15: Lus ¼ likelihoodofpðujY; n̂u;sÞ
16: put n̂us into n̂usamples

17: put Lus into Lusamples

18: end for
19: weight ¼ normalizeðLusamples

Þ
20: n� ¼ n̂usamples

� weight
21: "� ¼ getErrorBufferðn�Þ
22: set AnomalySet ¼ f

23: for all "�s in "� do
24: if "�s > ErrorThreshold then
25: put s in AnomalySet
26: end if
27: end for
28: return AnomalySet

Phase 1 - Laplace Approximation. Steps 1 to 10 show how
the INLA framework is established by two Laplace approxi-
mations in a nested structure. The outer loop performs a
maximum a posteriori (MAP) to u. Since we can represent
the posterior distribution of u in the form:

pðujY Þ / pðn; Y; uÞ
pðnjY; uÞ (9)

and our objective is to maximize pðujY Þ, we can treat the
posterior density function pðujY Þ as an objective function
and this then becomes an optimization problem. The next
step is to assign values for each input to this objective func-
tion pðujY Þ. Thus, the inner loop (steps 4-6) runs for the Lap-
lace approximation to pðnjY; uÞ. Applying a Taylor
expansion to pðnjY; uÞ, we can achieve an analytical formula-
tion that restructures this density function into the qua-
dratic form:

pðnjY; uÞ ¼ � 1

2
nTQnþ nT b: (10)

Then, for each iteration at step 5, the latent variable set n can

be updated by n ¼ Q�1b. After a few iterations, n will con-
verge to a local optimum. This updating method, known as
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Iterative Reweighted Least-Squares (IRLS) [37], usually con-
verges within 5 iterations. Steps 7-9 calculate the value of
the objective function pðujY Þ at the local optimum n̂, and
update u according to this value. The iterations are contin-
ued until u converges.

Phase 2 - Variable Estimation. After obtaining the mode of

pðujY Þ, say û, samples can be collected from the neighbors of

û in the space of u and used to estimate the optimum values
of u and n. This is similar to the importance sampling [38]
approach often used for numerical analysis, the difference
being that samples are only collected from the mode region
in the space. Steps 11-19 demonstrate this process.

Phase 3 - Anomaly Detection. Finally, steps 20-28 show the
process used to detect anomalies. Having identified the
optimum n, say n�, we are able to use the optimized latent
variable set to perform anomaly detection. We begin by
extracting the fitted error buffer "� from n�, and examining
its contents. Step 24 indicates how the anomalies are
detected in terms of a pre-determined threshold. This
threshold is typically set to 3 times the standard deviation,
i.e., the absolute Z-score equals 3, just as in labeling anoma-
lies for a Gaussian distribution.

4.1.2 Computational Cost and Optimization

The computational cost is usually a concern for statistical
modeling techniques; if the method is to be applied as an
online method, the efficiency becomes especially important.
Here, the strategy is to approximate complex computations,
accepting a slight drop in accuracy to gain a significant
increase in efficiency. These optimizations have been suc-
cessfully tested experimentally, as described in the Experi-
mental Results section.

Latent Computational Optimization. In Algorithm 1, step 5
is a major bottleneck in the framework shown. The high
dimensionality of the latent variable set makes the computa-
tion of the matrix inversion very slow. To optimize this step,
the update is approximated by separating n into ";v;b and
then updating these three variables iteratively, as in the
Gibbs sampling method. Algorithm 2 demonstrates the idea
behind the approximation process. Steps 1-9 show how the
original process breaks down into three smaller processes.
Steps 2, 5, and 8 update the latent variables in the same
sense as the original one. A Taylor expansion is performed
on each of the three latent variables separately and inserted
into the Gaussian quadratic form in equation (10) and

updated by IRLS, i.e., iteratively performing b ¼ Q�1
b bb; " ¼

Q�1
" b"; and v ¼ Q�1

v bv. In each call on update n, two of the
variables are fixed and the third updated, substantially
reducing the computational cost as a result. The complexity

of the original INLA update is OððP ð2N þDÞÞ3Þ, which
refers to the size of the latent variable set in the matrix
inversion, while the complexity of the optimized update is

reduced to OðN3Þ.
Approximate Parameter Estimation. Another bottleneck in

Algorithm 1 is that when the dimension of the parameter
space is huge, sampling and evaluating the weight from the

û neighborhood is computationally intensive. We therefore
approximate the optimum estimation by reducing the size
of the samples in step 11. Although the estimated parame-
ters will not exactly match the optimum, the latent variable

set still follows approximately the same trend if the esti-
mated parameters are close to the optimum, and our experi-

ence indicates that the approximated û is usually
sufficiently close to the optimum solution of u. Since the
anomaly detection framework is only interested in the latent
variables, having a minor bias in the parameter estimation
will not actually affect the detection results.

Algorithm 2. update n

Require: The original latent variable ";v;b
Ensure: The updated latent variable "new;vnew;bnew

1: while b 6¼ argmaxbðpðbjY; u; ";vÞÞ do
2: b ¼ update bð";vÞ
3: end while
4: while " 6¼ argmax"ðpð"jY; u;b;vÞÞ do
5: " ¼ update "ðb;vÞ
6: end while
7: while v 6¼ argmaxvðpðvjY; u; "; bÞÞ do
8: v ¼ update vð"; bÞ
9: end while
10: return "new ¼ ";vnew ¼ v;bnew ¼ b

4.2 EP Framework

Although the INLA method can provide a good approxima-
tion of the inference, the grid integration scheme in the
neighborhood of u (Line 11 of Algorithm 1) introduces a sig-
nificant growth in the computational cost when the dimen-
sion of u becomes large [39]. As an alternative solution, we
therefore developed an approximate Bayesian inference
approach for the MITRE model using Expectation Propaga-
tion with the Variational-EM framework. EP has been
shown to give results that outperform Laplace’s method on
accuracy in terms of predictive distributions and marginal
likelihood estimations [18].

4.2.1 Framework

Under this framework, we can apply EP for the inference of
the latent variables. Based on mean-field theory, the infer-
ence is embedded into an Expectation-Maximization loop to
estimate the optimal model parameters u. Algorithm 3
presents the framework of MITRE-EP.

Phase 1 - Approximate Inference. Steps 1 to 10 show the
approximate inference using EP-EM, which will be intro-
duced in the next subsection. The inner loop performs
Expectation Propagation to estimate the latent variables,
and the outer loop performs Expectation Maximization
(EM) algorithm to estimate the parameter set u. The details
of this process are discussed in the next section.

Phase 2 - Anomaly Detection. This phase applies the same
procedures as in the INLA framework. We extract the fitted
error buffer "� from the estimated n�, and examine its
contents to detect any anomalies. Steps 15-17 indicate how
the anomalies are detected in terms of a pre-determined
threshold. This threshold is typically set to 3 times the
standard deviation, i.e., the Z-score equals 3, just as when
labeling the anomalies for a Gaussian distribution.

4.2.2 Approximate Inference

The E-step of the EM algorithm estimates the expectation of
the posterior distribution pðujY Þ. Applying Bayes’ theorem,
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the posterior is shown to be proportional to the joint
distribution.

pðujY Þ / pðY juÞpðuÞ: (11)

Thus, the expectation of the complete-data log posterior for
a general u value is given by

Qðu; uoldÞ ¼ En½ln pðn; Y juÞjuold� þ ln pðuÞ þ Const;

where uold denotes the parameter values in the current
iteration, and Const presents the constant that does not
depend on u. In the M-step, the updated parameter esti-
mation unew is determined by maximizing the expectation
Q, such that

unew ¼ argmax
u

Qðu; uoldÞ: (12)

The first objective is to estimate the expectation

En½ln pðn; Y juÞjuold�. As mentioned above, the mixed-type
GLM and the student-t prior introduce a complicated joint
distribution, rendering the inference intractable. Therefore,
Expectation Propagation is applied here to approximate the
inference.

Algorithm 3.MITRE-EP

Require: The response variables Y and explanatory attributesX
Ensure: The anomalous instances
1: set u ¼ u0
2: while u 6¼ argmaxuðpðujY ÞÞ do
3: set n ¼ n0
4: while n 6¼ argmaxnðpðnjY; uÞÞ do
5: n ¼ update n

6: end while
7: n̂ ¼ n

8: L ¼ likelihoodofpðujY; n̂Þ
9: u ¼ update uðLÞ
10: end while
11: set n� ¼ modeðpðnjY; uÞÞ
12: "� ¼ getErrorBufferðn�Þ
13: set AnomalySet ¼ f

14: for all "�s in "� do
15: if "�s > ErrorThreshold then
16: put s in AnomalySet
17: end if
18: end for
19: return AnomalySet

When initiating the inner EP process, we begin by
expanding pðn; Y juÞ:

pðn; Y juÞ ¼ pðY jn; uÞpðnjuÞ: (13)

According to the model structure shown in Fig 1, the likeli-
hood component can be written in a product form:

pðY jn; uÞ ¼
YN
n¼1

YP
p¼1

pðynpjbp;vnp; "npÞ (14)

and pðnjuÞ ¼
YN
n¼1

pðvnjuÞ
YP
p¼1

pð"npjuÞ: (15)

Thus, the joint distribution becomes

pðn; Y juÞ

¼
YN
n¼1

pðvnjuÞ
YP
p¼1

pð"npjuÞpðyjbp;vnp; "npÞ:

By utilizing EP, the complicated distribution pðn; Y juÞ can
be approximated to a Gaussian distribution. The approxi-
mated Gaussian is denoted by qðnÞ:

qðnÞ ¼ 1

Z
q0ðnÞ

YN
n¼1

YP
p¼1

qnpðnÞ

¼ N ðnjh; CÞ;
(16)

where q0ðnÞ ¼
QN

n¼1 pðvjuÞ is the prior, and each qnðnÞ
approximates the product of the likelihood and the student-
t prior according to the nth entity, i.e.,

qnpðnÞ ¼ N ðnjmnp;RnpÞ 	 pð"npjuÞpðyjbp;vnp; "npÞ:

Since GLM is integrated to the model, this yields
pðynjb;vn; "nÞ, with different forms for different data types.
Specifically, each instance n may consist of P response vari-
ables in variant types. To denote this, we use the subscript p
to denote the index of the response variables of an instance.
For example, for numerical data, the likelihood is assumed
to follow a Gaussian distribution

pðynpjbp;vnp; "npÞ ¼ N ðynpjxnbp þ vnp þ "np; �Þ: (17)

To make the equations terse, we use hnpn to denote
xnbp þ vnp þ "np, where hnp is a ð2þDÞ � P vector. The EP

algorithm iterates over all elements with regard to the sub-
scripts n and p, and updates the approximated distribution
using the deletion/inclusion scheme described in [18], i.e.,
deletion, moment matching, and updating. The following
process is performed untilm and R converge:

1) Deletion: remove qnp from the full proposal distribu-
tion q

qnn;pðnÞ ¼ N ðnjhnn;p; Cnn;pÞ; (18)

where

hnn;p ¼ hþ Cnn;pR�1
np ðh�mnpÞ (19)

Cnn;p ¼ ðC�1 �R�1
np Þ

�1: (20)

2) Moment Matching: find the new approximated
proposal distribution qðnewÞ � N ðhðnewÞ; CðnewÞÞ by
matching the moment of

qpropðnÞ ¼ qnn;pðnÞpð"npjuÞpðyjbp;vnp; "npÞ:

The mean and variance of qnn;p can be found using
Iterated Re-weighted Least Squares. By expanding
the Taylor series to the combined distribution at the
point n0,
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qpropðnÞ ¼ qpropðn0Þ þ rnqpropðn0Þðn� n0Þ

þ 1

2
rrnqpropðn0Þðn� n0Þ:

(21)

Rearrange the series into squared form

qpropðnÞ ¼ � 1

2
nTQnþ bnþ const

such that a local optimum can be found at Q�1b. By
matching the coefficient of the above equations,

bðn0Þ ¼ rrnqpropðn0Þn0 �rnqpropðn0Þ
Qðn0Þ ¼ rrnqpropðn0Þ:

IRLS finds the mode of qprop iteratively by setting

nðiþ1Þ ¼ Q�1ðnðiÞÞbðnðiÞÞ (22)

in each iteration, given a starting point nð0Þ.
Since different likelihood functions are assumed

for different data types, this step is handled in vari-
ous ways according to the corresponding data type.
The gradient and Hessian of the numerical likeli-
hood are as follows:

rnqpropðnÞ ¼
�hnp

�
ðhTnpn� YnpÞ

� Cnn;p�1ðn� hnn;pÞ

� ðdf þ 1Þ"np
dfs" þ "2np

h"np

rrnqpropðnÞ ¼
�1

�
hnph

T
np � Cnn;p�1

�
ðdf þ 1Þðs"df � "2npÞ

ðs"df þ "2npÞ
2

h"nph
T
"np:

:

The equations for the other data types can be derived
in a similar way.

3) Update: update each approximated distribution by

qnpðnÞ ¼
qðnewÞ

qnn;p
: (23)

From equation (23) and the definition above we have

R�1
np ¼ CðnewÞ�1 � Cnn;p�1

mnp ¼ RnpðCðnewÞ�1
hðnewÞ � Cnn;p�1

hnn;pÞ:
(24)

After the expectation for the latent variable n has been
approximated, the first part of the expectation can be formu-
lated using the following expression:

En½ln pðn; Y juÞjuold�

¼
XN
n¼1

lnNðv̂nj0;SvÞ þ
XN
n¼1

XP
p¼1

lnST ð"̂npj0; s"pÞ;

where n̂ is the expected value of n.

The expectation of the log distribution function u is

Qðu; uoldÞ
¼ En½ln pðn; Y juÞjuold� þ ln pðuÞ

¼
XN
n¼1

XP
p¼1

ln pðynpjbp; v̂np; "̂npÞ þ
XP
p¼1

lnNðbpjmbp;SbpÞ

þ
XN
n¼1

lnNðv̂nj0;SvÞ þ
XN
n¼1

XP
p¼1

lnST ð"̂npj0; s"pÞ

þ ln IW ðSvjF; dfvÞ þ
XP
p¼1

ln IGðs"p ja"p ; b"pÞ:

(25)

To make the statement clearer, Qðu; uoldÞ is separated into
b, v ,and " components.

QðbÞðu; uoldÞ

¼
XP
p¼1

XN
n¼1

ln pðYnpjXnbp þ v̂np þ "̂npÞ þ
XP
p¼1

ln pðbpÞ

QðvÞðu; uoldÞ

¼
XN
n¼1

� ln 2p� 1

2
ln jSvj �

1

2
v̂T
nSvv̂n

� �

þ dfv
2

jFj � dfv ln 2� lnG2
dfv
2

� �

� dfv þ 3

2
ln jSvj �

1

2
trðFS�1

v Þ

Qð"Þðu; uoldÞ

¼
XN
n¼1

XP
p¼1

lnG
df þ 1

2

� �
� lnG

df

2

� �
� 1

2
lnpdf

�

� 1

2
ln s2

"p
þ df þ 1

2
ln 1þ

"̂2np
2s2

"p

 !!

þ
XP
p¼1

a ln b� lnGðaÞ � ðaþ 1Þ ln s2
"p
� b

s2
"p

 !
:

The M-Step maximizes the objective by finding the root of

Qðu; uoldÞ. Because this is also an intractable problem, IRLS
is applied once again here to seek an approximated solu-
tion. Iteratively updating the value by inputing the gradient
and Hessian from equation (22), the root of u can be
approximated.

For s2
"p the gradient and Hessian are:

@

@s2
"p

Qð"Þðu; uoldÞ

¼ � N

2s2
"p

þ df þ 1

2

� �XN
n¼1

�"̂2np
4s2

"p � 2"̂2np

 !

þ �ðaþ 1Þ
s2
"p

þ 2b

ðs2
"pÞ

2

 ! (26)
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@2

@2s2
"p

Qð"Þðu; uoldÞ

¼ 2N

4ðs2
"pÞ

2
þ df þ 1

2

� �XN
n¼1

4s2
"p"̂

2
np � ð"̂2npÞ

2

ð4s2
"p � 2"̂2npÞ

2

 !

þ aþ 1

ðs2
"pÞ

2
� 4b

ðs2
"pÞ

3
:

(27)

Since b corresponds to different likelihood functions for dif-
ferent data types, the maximization for each type can be cal-
culated separately. Here we show only the equations for
numerical data, for other data types, the b can be approxi-
mated using Laplace approximation (see supplemental
material, which can be found on the Computer Society Digi-
tal Library at http://doi.ieeecomputersociety.org/10.1109/
TKDE.2016.2583429). For the bp corresponding to the

numerical data type, the root can be found by setting the
first-order derivation to zero. Thus, bp can be updated by

bðnewÞ
p

¼ 1

�

XN
n¼1

XT
nXn þ S

�1
bp

 !�1

� 1

�

XN
n¼1

XT
n ðYnp � v̂np � "̂npÞ þ S

�1
bp
mbp

 !
:

(28)

4.2.3 Computational Optimizations

In order to further boost the efficiency of the framework,
several optimization schemes are proposed in this section.
Here, the strategy is to approximate these complex compu-
tations, accepting a slight drop in accuracy in order to gain
a significant increase in efficiency. These optimizations
have also been successfully tested experimentally, as
described in the Experimental Results section.

Correlation Parameter Reduction. Since the complexity of
the process is proportional to the dimensionality of the
parameters, one way to reduce the complexity is to reduce
the number of parameters. For this optimization, we applied
a Mutual Information [40] method to calculate the scores of
the dependencies between each pair of the response attrib-
utes. By applying a user-defined parameterK, it is only nec-
essary to consider the top K attribute correlations to be
fitted. This approximation reduces the correlation parameter

from P
2

� �
toK. When P is a large number, this approximation

significantly reduces the computational cost.
Sub-Sampling Fitting. When the data size is large, we can

further reduce the complexity by sampling only a small por-
tion of the data and then detect the anomalies using the
model built by the samples. When the size of these sampled
instances and the number of sample batches are sufficient,
the accuracy is maintained. This optimization also appies to
the INLA based framework.

5 EXPERIMENTS

Comprehensive experiments on MITRE were conducted to
evaluate the following performance elements: detection accu-
racy, time efficiency, and impact of parameters. The results of
the experimental analyses are presented in this section and

organized as follows: Section 5.1 introduces the benchmark
approaches. Section 5.2 discusses the detection accuracy, time
efficiency, and the impact of parameters with synthetic data
sets, and Section 5.3 provides an in-depth evaluation of
MITRE’s effectiveness when applied to real-life data sets. The
results of these analyses are discussed in Section 5.4. All sets
of the experiment were conducted on a Windows 7 machine
with a 2.4 GHz Intel Dual Core CPU and 8GB of RAM.

5.1 Benchmark Approaches

Eight benchmark approaches were evaluated, namely
LOADED [16], RELOADED [17], KNN-CT, LOF-CECT,
OCS-PCT, OCS-RBF, FB-LOF [41], and ODMAD [26].
LOADED, RELOADED, and ODMAD are mixed-type
anomaly detection methods; OCS-RBF (One-class SVM with
RBF kernel) and FB-LOF (Feature baggingwith an LOF base)
are general numerical type anomaly detection methods. For
OCS-RBF and FB-LOF, we preprocessed the dataset by con-
verting categorical fields into their binary representation,
and performing min-max normalization on all fields. The
remaining three methods are all integrated single-type
anomaly detection methods made up of combinations of six
single-type anomaly detection methods, including three
numerical anomaly detection methods (KNN, LOF [7] and
OCS (One-class SVM) [9]) and three categorical anomaly
detection methods (CT, CECT and PCT, all from [42]). Das
and Schneider [42] have shown that these methods outper-
formed other categorical methods, leading to their selection
as the benchmark methods for the categorical attributes in
the current study. The integrated methods performed the
detection procedures separately, and combined the scores
into the same measure via a normalization process. For both
LOADED and RELOADED, popular settings of the model
parameters (correlation threshold = [0.1, 0.2, 0.3, 0.5, 0.8, 1];
frequency threshold = [0, 10, 20]; t = [1, 2, 3, 5]) were utilized,
and the best results for each dataset reported here based on
the true anomaly labels. For the other three approaches, the
parameters were selected based on 10-fold cross validations.
For ODMAD, we set theminsup value to be the reciprocal of
the number of categories of each categorical field.

5.2 Synthetic Study

For the synthetic data study, we examined the detection
accuracy of the proposed frameworks, compared the time
costs against the benchmark methods, and analyzed the
impact of the parameter settings.

5.2.1 Data Sets

The synthetic data were generated based on the following
model:

ZðsÞ ¼ XðsÞbþ vðsÞ: (29)

We first generated N �D explanatory attributes X from a
Gaussian distribution, with a set of b : D� P and the
covariance between the attributes, to obtain a set of
Z ¼ ½Z1; . . . ; ZP �. For each Zi, we converted the Zi to differ-
ent types, such that

Y ðsÞ ¼ gtypeðZðsÞÞ; (30)
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where g is the link function for the specific types, such as
binary or categorical. The anomalies were injected by ran-
domly shifting the values of Y ðsÞ by a specific amount, for
example, by swapping the classes of the categorical observa-
tions. In the following experiments, we generated a variety
synthetic datasets according to the objective of each test.
Each dataset was generated to contain 8-10 percent anoma-
lous instances.

5.2.2 Detection Accuracy

In this set of experiments, we tested the model inference
performance on four sets of synthetic data based on differ-
ent combinations of data types, namely SynNB, SynNC,
SynBC, and SynNBC. The symbols N, B, and C refer to
numerical, binary, and categorical data types, respectively.
The detection accuracy was examined among the synthetic
datasets as shown in Table 2. MITRE-EP and MITRE-INLA
significantly outperformed the other benchmark methods
because there was a strong input-output relation in these
simulated datasets. Although a synthetic study is not
always convincing due to the presumptions involved in
generating the data, these results clearly demonstrate that
when the input-output relationships are strong and the pre-
knowledge is available to the dataset, MITRE is capable of
delivering markedly better results than any of the bench-
mark methods tested.

5.2.3 Time Cost

This set of experiments compared the time costs incurred by
MITRE and the benchmark methods. We conducted these
experiments on synthetic datasets in which the normal
instances were generated based on a GLM that models
mixed-type attributes, and the anomalous instances were
generated by random shifting. Table 3 shows the time cost

comparison among the various methods for datasets with
different instance sizes. Experiments that ran over 2 hours
are considered as failure. Overall, although our approach
suffered from a higher time cost than the benchmark meth-
ods, it delivered much higher detection accuracy in a com-
parable time as discussed in Section 5.2.2 and the later
experimental results for real-life data. Table 4 shows the
time consumption with increasing size of P . Most of the
benchmark methods failed to handle the higher dimension
data. For example, ODMAD’s computational cost grew
exponentially with the number of categorical fields due to
its exhaustive searching scheme. MITRE-INLA also suffered
from a high dimension of P size, due to the u estimation
process (Section 4.1.1 Phase 2). MITRE-EP demonstrated
its ability to accomplish a run with a P size of 100 within
1 hour.

5.2.4 Impact of Parameters

Two major user input parameters in our new framework
design are the threshold for determining anomalies, and the
degree of freedom of the Student-t prior. The choice of these
two parameters does affect the performance. We conducted
this set of experiments using the synthetic datasets
described previously, namely SynNB, SynNC, SynBC,
SynNBC, for various sizes of instances. Threshold of Anoma-
lies: This set of experiments analyzed the impact of the
threshold used to determine anomalies. We used SynNB,
SynNC, SynBC, SynNBC as described previously, with N
equals to 100, 300, 500, and 1,000. For each type-size combi-
nation, 10 variant realizations were generated. The thresh-
old was tested over the range from 1 to 7 at 0.5 increments.
Fig. 2 compares the effect of the different thresholds for the
average precision, recall, and F-measure. Fig. 2a shows that
all the datasets follow the same pattern, with precision
increasing significantly from 1 to 3.5, and then becoming
moderate after 3.5. When the threshold equaled to 5, all of

TABLE 2
Detection Rate Comparison Among Synthetic Datasets (Precision, Recall)

Dataset MITRE-EP MITRE-INLA KNN-CT LOF-CECT OCS-PCT RELOADED LOADED OCS-RBF FB-LOF ODMAD

SynNB 1.00, 0.69 1.00, 0.89 0.11, 0.11 0.25, 0.50 0.29, 0.56 0.29, 0.56 0.28, 0.56 0.72, 0.72 0.06, 0.06 0.08, 0.61
SynNC 0.89, 0.82 1.00, 0.89 0.06, 0.06 0.40, 0.33 0.28, 0.56 0.29, 0.56 0.27, 0.56 0.72, 0.72 0.33, 0.33 0.06, 0.50
SynBC 0.89, 0.67 0.71, 0.67 0.06, 0.06 0.33, 0.17 0.20, 0.39 0.20, 0.39 0.03, 0.06 0.33, 0.33 0.11, 0.11 0.08, 0.50
SynNBC 0.92, 0.73 0.80, 0.77 0.04, 0.04 0.75, 0.33 0.33, 0.63 0.32, 0.59 0.21, 0.41 0.59, 0.59 0.04, 0.04 0.12, 0.58

TABLE 3
Time Cost Comparison in Terms of Size of N (Seconds)

Size

Method

300 500 1 K 10 K 100 K 1 M 2 M

MITRE-EP 2.74 4.39 8.72 97.58 113.43 1662.17 >7,200

MITRE-INLA 1.99 8.38 32.65 133.54 >7,200 >7,200 >7,200

KNN-CT 0.01 0.02 0.07 5.80 313.28 >7,200 >7,200

LOF-CECT 0.01 0.03 0.11 29.31 N/A N/A N/A

OCS-PCT 0.02 0.03 0.12 12.11 N/A N/A N/A

RELOADED 0.01 0.14 0.19 0.44 4.48 87.90 258.77

LOADED 0.07 0.10 0.22 2.54 23.59 249.13 484.02

OCS-RBF 0.02 0.03 0.07 8.38 606.84 >7,200 >7,200

FB-LOF 0.05 0.13 0.29 14.66 708.66 >7,200 >7,200

ODMAD 0.01 0.01 0.03 0.24 3.39 46.80 169.50

Experiments that exceeded the available memory resources are denoted by N/A.
Experiments that ran over 2 hours are considered as failure.

TABLE 4
Time Cost Comparison in Terms of Size of P (Seconds)

Size

Method
10 25 50 100 200 300

MITRE-EP 8.77 19.06 153.30 1020.43 9344.83 >7,200

MITRE-INLA 42.05 319.37 >7,200 >7,200 >7,200 >7,200

KNN-CT 0.14 158.24 >7,200 >7,200 >7,200 >7,200

LOF-CECT 6.69 596.32 >7,200 >7,200 >7,200 >7,200

OCS-PCT 0.24 >7,200 >7,200 >7,200 >7,200 >7,200

RELOADED 0.24 0.46 1.02 2.26 5.44 7.86

LOADED 1.16 60.83 >7,200 >7,200 >7,200 >7,200

OCS-RBF 0.01 0.01 0.01 0.01 0.02 0.02

FB-LOF 0.30 0.37 0.51 0.87 1.63 2.11

ODMAD 0.018 >7,200 >7,200 >7,200 >7,200 >7,200

Experiments that ran over 2 hours are considered as failure.
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the datasets reached their maximum precision. Fig. 2b
shows that for all data types, the recall generally declined
gradually. In Fig. 2c, the F-measure demonstrates a more
obvious pattern. Here, for all data types, the peaks fall
between the thresholds of 3 to 4, which confirms our
hypothesis regarding the setting of the threshold. Degree of
Freedom: This set of experiments analyzed the impact of
degree of freedom df in the proposed model. We used the
same synthetic data sets as in the previous set of experi-
ments. When testing the impact of degree of freedom, the
error threshold was fixed at 3. Fig. 3 shows that setting a
lower df generally delivers higher precision, because the
absorbed error highlights the difference between abnormal
instances and normal instances. A slight increase in the F-
measure from df ¼ 1 to df ¼ 3 has a visible effect; the infer-
ence was not able to converge to the global optimum in a
limited number of iterations with the df set at less than 3.

5.3 Real-Life Data Study

5.3.1 Data Sets

We validated our approach using 14 real datasets, all of
which can be found in the UCI machine learning repository
[43]. Table 5 shows detailed information on these datasets.
In the table, the types are denoted by N, B, and C for numer-
ical, binary, and categorical, respectively. The response
fields shown in Table 5 we used as Y and the remaining
attributes as X in our experiment; the number refers to the
nth column of the raw dataset.

5.3.2 Anomaly Labels

Because the above datasets do not provide true anomaly
labels, we preprocessed the data to obtain true anomaly
labels in two different ways:

1. Rare Classes. For the first group of datasets (Abalone,
Yeast, WineQuality, Heart, and Autompg), we identified
several rare categorical classes in the datasets. By following
the same strategy as those used by existing anomaly detec-
tion studies [44], [45], these rare class instances were
defined as true anomalies.

2. Random Shifting. For the remainig datasets, we
regarded all the data objects as normal objects and followed
the standard contamination procedure described in [11] and
[13] to generate anomalies. We randomly selected 10 per-
cent instances, and shifted the values on random fields. For
the numerical attributes, we shifted the numerical values by
2.5 standard deviations and for the binary and categorical
attributes, we switched the binary values to alternative val-
ues. The data for each dataset were preprocessed with

Fig. 2. Impact of error threshold.

Fig. 3. Impact of degree of freedom.

TABLE 5
Information in Real Datasets

Dataset Instances Attrs Type Response

Abalone 4,177 9 C, N 1, 9
Yeast 1,324 9 C, N 1, 6
WineQuality 4,898 12 C, N 1, 12
Heart 163 11 C, B 3, 6
Autompg 398 8 C, N 1, 8

Wine 178 13 C, N 1, 2
ILPD 583 10 B, N 1, 2
Blood 748 5 B, N 4, 5
Concrete 103 10 B, N 8, 9, 10
Parkinsons 197 23 B, N 2, 18
Pima 768 8 B, N 3, 9
KEGG 53,414 23 B, N 5, 7, 12, 13
MagicGamma 19,020 11 B, N 1, 2, 11
Census 299,285 42 C, N 6, 19, 25, 42
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20 different artificial anomaly combinations and the average
of the 20 results were calculated for each test.

5.3.3 Detection Accuracy

The main purpose of these experiments on real datasets was
to validate our proposed anomaly detection method. Table 6
compares the metrics for precision, recall, F-measure, and
Area Under Curve (AUC) for a number of different
approaches. The results show that MITRE outperformed the
benchmark approaches in terms of average precision and
recall, which means that in most cases, the instances identi-
fied as anomalies by MITRE were true positives. MITRE
also achieved the highest average AUC, signifying that our
anomalous score measure always delivered the highest
detection rate. Although several other benchmark
approaches also achieved a high AUC, they also suffered
from a high false positive rate or high false negative rate.
For example, ODMAD achieved an AUC of over 0.9 on the
Yeast, WineQuality, and Auto-mpg datasets, with nearly per-
fect recalls, but its performance in precisions did not exceed
0.12 because the estimated threshold set for anomalous
scores was too low, so many normal instances were mistak-
enly labeled as anomalies. RELOADED, LOADED, and
ODMAD required several parameters to be input as a set of
hard thresholds, which significantly affected the perfor-
mance of these methods. These approaches have the capac-
ity to perform well after some parameter tuning process if
the ground truth is known, but they will likely fail on many

practical scenarios when the scale and the basis are
unknown. In contrast, the proposed new method, MITRE,
utilized the absolute value of the Z-score as the anomalous
score with a statistical cutoff threshold under the Gaussian
assumption, which is widely applied in many real world
cases. Regardless of the scale of the different data attributes,
this score represents the statistical significance and indicates
to what extent it deviates from the normal behavior in the
normalized basis.

The results also demonstrate the effectiveness of MITRE
on large real-world datasets such as Census. The sub-
sampling fitting scheme (discussed in Section 4.2.3) effec-
tively reduced the computational cost, while at the same
time maintaining a good detection rate. In contrast, due to
computation storage and time limitations, the benchmark
methods LOF-CECT and OCS-PCT failed to process any of
the datasets containing large number of instances (KEGG,
MagicGamma, and Census) as they exceeded the available
memory resources; KNN-CT, OCS-RBF, and FB-LOF also
had problems with these large datasets as their running
times were over 2 hours.

The impact of the outlier significance in the random shift
data sets is shown in Table 7. We compared the AUC of ran-
dom shifting significance levels ranging from one standard
deviation to 3 times the standard deviation. Generally,
shifted values of 1.5 the times standard deviation or less
were difficult to be detect, although in some cases, our
methods still performed well even when the anomalies

TABLE 6
Detection Rate Comparison Among Real Datasets (Precision, Recall, F-measure, and AUC)

Dataset MITRE-EP MITRE-INLA KNN-CT LOF-CECT OCS-PCT

Abalone 0.78, 0.29, 0.42, 0.94 0.25, 0.62, 0.36, 0.98 0.16, 0.33, 0.22, 0.69 0.02, 0.04, 0.03, 0.49 0.20, 0.42, 0.27, 0.67
Yeast 1.00, 0.47, 0.64, 1.00 0.55, 0.67, 0.60, 0.59 0.29, 0.57, 0.38, 0.28 0.05, 0.10, 0.07, 0.15 0.21, 0.44, 0.28, 0.62
WineQuality 0.50, 0.29, 0.36, 0.93 0.33, 0.65, 0.44, 0.95 0.03, 0.06, 0.04, 0.03 0.02, 0.04, 0.03, 0.03 0.04, 0.07, 0.05, 0.09
Heart 1.00, 0.57, 0.72, 0.99 0.95, 0.75, 0.84, 0.98 0.46, 0.76, 0.57, 0.50 0.45, 0.75, 0.56, 0.50 0.24, 0.43, 0.31, 0.50
Autompg 0.47, 1.00, 0.64, 1.00 0.47, 1.00, 0.64, 0.99 0.00, 0.00, 0.00, 0.00 0.00, 0.00, 0.00, 0.00 0.47, 1.00, 0.64, 0.99

Wine 0.22, 0.66, 0.33, 0.67 0.33, 0.30, 0.31, 0.63 0.09, 0.17, 0.12, 0.50 0.09, 0.17, 0.12, 0.50 0.09, 0.18, 0.12, 0.51
ILPD 0.22, 0.70, 0.33, 0.78 0.84, 0.18, 0.30, 0.77 0.26, 0.49, 0.34, 0.60 0.12, 0.23, 0.16, 0.57 0.25, 0.49, 0.33, 0.59
Blood 0.70, 0.35, 0.47, 0.74 0.56, 0.15, 0.24, 0.82 0.23, 0.44, 0.30, 0.37 0.08, 0.15, 0.10, 0.35 0.24, 0.48, 0.32, 0.57
Concrete 0.57, 0.84, 0.68, 0.95 0.79, 0.59, 0.68, 0.92 0.07, 0.13, 0.09, 0.51 0.07, 0.14, 0.09, 0.50 0.09, 0.40, 0.15, 0.52
Parkinsons 0.60, 0.74, 0.67, 0.94 0.78, 0.46, 0.58, 0.91 0.21, 0.42, 0.28, 0.37 0.23, 0.44, 0.30, 0.38 0.21, 0.41, 0.28, 0.50
Pima 0.79, 0.55, 0.65, 0.78 0.83, 0.27, 0.40, 0.82 0.25, 0.48, 0.33, 0.44 0.06, 0.11, 0.08, 0.40 0.25, 0.49, 0.33, 0.66
KEGG 0.87, 0.65, 0.77, 0.75 0.59, 0.41, 0.48, 0.53 0.24, 0.46, 0.31, 0.37 N/A N/A
MagicGamma 0.67, 0.66, 0.66, 0.83 0.60, 0.55, 0.57, 0.82 0.14, 0.28, 0.19, 0.45 N/A N/A
Census 0.60, 0.71, 0.65, 0.81 0.51, 0.58, 0.54, 0.71 N/A N/A N/A

Dataset RELOADED LOADED OCS-RBF FB-LOF ODMAD

Abalone 0.00, 0.00, 0.00, 0.29 0.00, 0.00, 0.00, 0.50 0.25, 0.25, 0.25, 0.99 0.04, 0.04, 0.04, 0.74 0.01, 0.62, 0.02, 0.58
Yeast 0.00, 0.00, 0.00, 0.35 0.66, 0.66, 0.66, 0.58 0.63, 0.63, 0.63, 0.96 0.21, 0.21, 0.21, 0.50 0.05, 0.88, 0.09, 0.91
WineQuality 0.00, 0.00, 0.00, 0.43 0.12, 0.12, 0.12, 0.51 0.11, 0.11, 0.11, 0.81 0.19, 0.19, 0.19, 0.75 0.12, 1.00, 0.21, 0.91
Heart 0.51, 0.51, 0.51, 0.89 1.00, 0.16, 0.28, 0.72 0.65, 0.65, 0.65, 0.89 0.35, 0.35, 0.35, 0.57 0.99, 0.99, 0.99, 0.99
Autompg 0.29, 0.29, 0.29, 0.70 0.33, 0.57, 0.42, 0.74 0.57, 0.57, 0.57, 0.98 0.10, 0.10, 0.10, 0.85 0.04, 1.00, 0.08, 0.99

Wine 0.17, 0.36, 0.23, 0.59 0.12, 0.12, 0.12, 0.50 0.24, 0.24, 0.24, 0.77 0.16, 0.16, 0.16, 0.60 0.10, 0.70, 0.17, 0.56
ILPD 0.00, 0.00, 0.00, 0.50 0.09, 0.09, 0.09, 0.50 0.23, 0.23, 0.23, 0.68 0.09, 0.09, 0.09, 0.50 0.14, 0.71, 0.23, 0.45
Blood 0.03, 0.01, 0.02, 0.51 0.09, 0.09, 0.09, 0.50 0.39, 0.39, 0.39, 0.79 0.14, 0.14, 0.14, 0.58 0.19, 0.52, 0.28, 0.64
Concrete 0.13, 0.26, 0.17, 0.58 0.08, 0.08, 0.08, 0.50 0.32, 0.32, 0.32, 0.72 0.17, 0.17, 0.17, 0.59 0.08, 0.43, 0.13, 0.49
Parkinsons 0.29, 0.21, 0.24, 0.59 0.07, 0.07, 0.07, 0.50 0.14, 0.14, 0.14, 0.72 0.21, 0.21, 0.21, 0.60 0.18, 0.53, 0.27, 0.65
Pima 0.10, 0.28, 0.15, 0.59 0.05, 0.05, 0.05, 0.50 0.52, 0.52, 0.52, 0.78 0.07, 0.07, 0.07, 0.52 0.31, 0.28, 0.29, 0.51
KEGG 0.78, 0.26, 0.39, 0.61 0.10, 0.10, 0.10, 0.50 0.51, 0.51, 0.51, 0.95 N/A 0.98, 0.26, 0.41, 0.63
MagicGamma 0.28, 0.02, 0.04, 0.56 0.10, 0.10, 0.10, 0.50 0.29, 0.29, 0.29, 0.81 N/A 0.12, 0.46, 0.19, 0.55
Census 0.27, 0.30, 0.28, 0.64 0.10, 0.10, 0.10, 0.50 N/A N/A 0.33, 0.29, 0.31, 0.61

Experiments that the methods failed to process are denoted by N/A.
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were not significantly shifted. Based on our observations of
datasets consisting of mixed-type data, and the shifting
level only made a difference for numerical attributes, the
binary and categorical anomalies were both detected accu-
rately and the anomalous scores of these instances pre-
sented the correct ranking.

5.4 Result Analysis

The above experimental results demonstrate that MITRE-EP
is an effective and efficient method for detecting anomalies
in mixed-type data sets. It has a significantly better detec-
tion quality than the other benchmark approaches tested,
achieving around 10-30 percent improvement over KNN-
CT, LOF-CECT, OCS-PCT, OCS-RBF, and ODMAD and 20-
40 percent over LOADED, RELOADED, and FB-LOF. The
experimental results verified three main observations.

1) Efficient Approximation Process: The proposed approx-
imate inference schemes provide faster and more
accurate detection results. Compared with the INLA
based method, MITRE-EP has better computational
efficiency and higher detection accuracy on more of
the real-life data sets.

2) Effectiveness on Large Mixed-type Datasets: When proc-
essing more sophisticated data sets, such as Census,
KEGG, and MagicGamma, LOF-CECT and OCS-PCT
failed to complete the process due to the significant
growth of their memory usage. KNN-CT, OCS-RBF,
and FB-LOF failed on the Census dataset due to their
high time complexity. Our proposed methods were
able to finish the process in a comparable time with-
out any capacity problems.

3) Input-Output Relationship: When the datasets present
strong input-output relationships for the explanatory
attributes to the response variables, the MITRE
methods deliver a much better performance on
detection accuracy than the benchmark methods.
Note that in making these comparisons, we followed
the relationships suggested by the dataset providers
for most of the real-life datasets.

6 CONCLUSIONS

This paper proposes a novel unsupervised framework for
general purpose anomaly detection on mixed-type data.

The new method integrates multivariate predictive process
models with approximate Bayesian inference using Expec-
tation Propagation and variational Expectation-Maximiza-
tion. The predictive model consists of generalized linear
models and robust error buffering latent variables. The
approximation process and the optimization schemes pro-
vide more accurate and faster inference for the proposed
predictive process model. Experimental results on synthetic
and real datasets conclusively demonstrated that our pro-
posed anomaly detection framework achieved much better
performance on detection accuracy.
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