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ABSTRACT  |  Social media has been utilized as a significant 

surrogate for spatial societal event forecasting. The accuracy 

and discernibility of a spatial event forecasting model are two 

key concerns, as they determine how accurate and how detailed 

the model’s predictions will be. Existing research focuses almost 

exclusively on the accuracy alone, seldom considering the 

accuracy and discernibility simultaneously because this would 

require a considerably more sophisticated model while suffering 

from several challenges, namely: 1) the precise formulation 

of the tradeoff between accuracy and discernibility; 2) the 

scarcity of social media data with a high spatial resolution; and 

3) the characterization of spatial correlation and heterogeneity. 

This paper proposes a novel feature learning framework that 

concurrently addresses all the above challenges by formulating 

prediction tasks for different locations with different spatial 

resolutions, allowing the heterogeneous relationships among 

the tasks to be characterized. This characterization is then 
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integrated into our new models based on multitask learning, 

with parameters optimized by our proposed algorithm based 

on the alternative direction method of multipliers (ADMM) and 

dynamic programming. Extensive experimental evaluations 

performed on several data sets from different domains 

demonstrated the effectiveness of our proposed approach.

KEYWORDS  |  Alternating direction method of multipliers; 

multiresolution; spatial event forecasting

I .   IN TRODUCTION

Social media like Twitter and Weibo have become popular 
platforms, serving as real-time “sensors” for social trends 
and incidents [1]. Millions of Twitter users around the globe 
broadcast their daily observations and sentiments on an 
enormous variety of topics, e.g., crime, sports, and politics. 
The collection of these observations and sentiments could 
provide a useful window into emerging social trends. For 
instance, expressions of discontent about gas price increases 
could be potential precursors to a more widespread protest 
about government policies in general. Moreover, people use 
social media to plan, advertise, and organize future social 
events, such as the planned protests in the “Arab Spring” 
and “Brazilian Spring” [2]. Numerous recent research works 
have widely explored and demonstrated the power of social 
media for spatial event forecasting for various topics. A 
majority of them focus on temporal events like elections [3], 
stock market movements [4], box office ticket sales [5], and 
crime ratios [6]–[8]. To achieve temporal event forecasting, 
a number of strategies have been proposed based on various 
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techniques, such as time series analysis [9], supervised predic-
tive modeling [8], [10]–[12], and causality analysis [13]–[15]. 
In addition, a few methods are able to forecast spatiotemporal 
events by further considering the information in spatial dimen-
sion, such as geographical priors [16], spatial correlation [17], 
[18], and demographic models [19], [20].

In spatial event forecasting, the accuracy and discern-
ibility of the forecasting model are the two core concerns 
that determine how accurate and detailed the predictions 
will be. There is typically a tradeoff between the two: the 
finer the granularity for discernment, the lower the accu-
racy for prediction. For example, a civil unrest event could 
be discerned at a number of different spatial granularities 
ranging from country level down through state level and 
city level to block level. Suppose we know there will be an 
event on a given day in a specific country, say Mexico, which 
has 31 states and over 2000 cities. To predict the event loca-
tion with a random predictor, we can achieve an expected 
accuracy of 1/31 at the state level but less than 1/2000 at the 
city level. The discernibility is also influenced by the capa-
bilities of the sensors and labels. For instance, we could not 
make a prediction at the street level if we only possessed 
country-level observations or train a city-level prediction 
model effectively if only have state-level labels are avail-
able. Social media are composed of such noisy data that they 
provide social sensors with different geographical discern-
ibilities. For example, geotagged tweets provide pinpoint 
geographical coordinates if their users enable this function 
on their mobile device, but this is uncommon; many users 
provide only their city information while others provide 
information on their state, country, or nothing at all, leaving 
their postings with spatial resolutions of city, state, country, 
or the planet Earth, respectively.

Existing work on spatial event forecasting in social media 
typically only zeroes in on the prediction accuracy, although 
the joint consideration of both discernibility and accuracy is 
actually a crucial issue in practice [2], [16], [21]. Until now, 
few related works have been published in this research area. 
Instead of comprehensively characterizing and utilizing the 
tradeoff between accuracy and discernibility, most research-
ers have tended to focus on the following aspects.

1) � Evaluation metrics. Ramakrishnan et al. [2] proposed 
a new metric to evaluate the location quality of the 
predicted events with different spatial granularities. 
But they presented no analysis or suggested ways to 
utilize it for modeling both accuracy and discernibil-
ity for event forecasting.

2) � Multiresolution inputs. Several studies have utilized 
multisource data with different geogranularities and 
proposed different strategies to fuse the input data, 
including discretization [16], clustering [22], and 
multilevel models [18]. However, none of these con-
sidered the effect of multiresolution on the outputs, 
and thus they only assess the accuracy but not the 
discernibility of the resulting predictions.

3) � Multiscale event detection. Alsaedi [23] proposed a 
method to jointly detect large-scale and small-scale 
events by using unsupervised clustering techniques 
to extract spatial outbreaks, but this model can only 
detect historical or ongoing events instead of fore-
casting future events.

Overall, this research area remains wide open with a 
distinct lack of research that comprehensively characterizes 
both the predictive accuracy and discernibility. The major 
challenges can be summarized as follows. 

1) � Tradeoff between accuracy and discernibility. 
Traditionally, researchers have focused on evaluating 
whether a prediction is correct rather than “how cor-
rect” it actually needs to be for practical purposes. For 
example, Fig. 1 shows three event predictions, ​A​, ​B​, and ​
C​, for a future date “August 13, 2016.” Each prediction 
location is denoted by a tuple: ([country],[state],[city]), 
which denotes the names of country, state, and city, 
respectively. Using traditional metrics, both ​B​ and ​C​ 
are identified as “incorrect” and punished equally in 
training. However, for real-world applications, it is 
more reasonable to evaluate ​B​ as a better prediction 
than ​C​ since ​B​ is correct at the state level.

2)  �Insufficient location information in social media data. 
Existing methods typically discard large amounts of 
data that contain geoinformation that is insufficient 
for the forecasting task. For example, when perform-
ing street-level event forecasting, tweets without 
street-level geocodes are discarded. However, taking 
the Mexican Twitter data as an instance, although 
only around 3% of all the data possesses spatial coor-
dinates that include street-level geoinformation, 
30%–50% do contain city-level or state-level infor-
mation. As only 3% of all the data would be used, it 
is not surprising that the model performance is then 
limited by insufficient data.

3) � Interaction and heterogeneity of geographical locations. 
Nearby locations could benefit from regional correla-
tions as they are likely to be influenced by the same 

Fig. 1. Spatial event forecasting performance. Each prediction 
location is shown by a location tuple: ([country],[state],[city]), 
which denotes the names of country, state, and city. The qualities of 
these three predictions are different because they achieve correct 
predictions at different discernibility levels.
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epidemics, natural disasters, and social events. At the 
same time, locations such as cities also have their own 
characteristics, including population, climate, and cul-
ture. Hence, it is difficult to impute basal levels of occur-
rence uniformly. Considering civil unrest as an example, 
finding 1000 tweets mentioning the keyword “protest” 
is not likely to mean much in a city with a population of 
a few million users but could be a strong indicator of an 
upcoming civil unrest event in a much smaller city with 
a population of only 10 000. In addition, it is difficult to 
dynamically adjust such thresholds effectively because 
of the data sparsity problem, especially in the latter case.

In order to simultaneously overcome all the afore-
mentioned challenges, we propose a novel framework, 
for multiresolution spatial event forecasting. Being based 
on multitask learning, this framework jointly reinforces 
both the accuracy and discernibility of event forecasting 
with each task being treated as a model for each location 
with each spatial resolution. Thus, when we minimize the 
model’s empirical loss, not only the accuracy but also the 
granularity of the prediction is evaluated and optimized. 
Moreover, by letting the models (tasks) with different 
spatial resolutions learn from each other, our framework 
provides better estimates at the finest spatial resolution 
by learning knowledge from coarser spatial resolutions. 
This capability is extremely beneficial because usually in 
social media the great majority of the data contain merely 
coarse-grained spatial information. In order to character-
ize the geographical neighborhood relationship among 
tasks, a tree-structure geographical hierarchy is also devel-
oped. The major contributions of this paper are as follows.

1) � Formulating a framework for multiresolution spatial 
event forecasting. Here, multiresolution spatial event 
forecasting is formulated as a multitask learning 
problem, where a task is the model for each location 
in each spatial resolution. The proposed framework 
jointly optimizes the accuracy and discernibility of 
forecasting, and is enhanced by utilizing the task 
relatedness across different spatial resolutions and 
neighboring locations.

2) � Proposing a multitask model with heterogeneous task 
relationships. In the proposed multitask model, three 
types of task relationships are considered, namely 
the spatial neighborhood, spatial resolution, and spa-
tial parent–child relationships. All are characterized 
by different regularization terms and constraints.

3)  �Developing an efficient algorithm for a new variant of 
overlapping group lasso problem. The optimization 
of the proposed multitask models involves overlap-
ping group lasso problems with nonsmooth equality 
and inequality constraints, which is challenging to 
solve. By introducing auxiliary variables and propos-
ing a new dynamic programming-based method, we 
develop an effective alternative direction method of 

multipliers (ADMM)-based algorithm to ensure an 
effective solution for this problem.

4) � Comprehensive experiments to validate the performance of 
the proposed techniques. We conducted extensive evalu-
ations of the proposed methods using several data sets 
and compared the results obtained with those from 
seven existing event forecasting methods. The new 
methods proposed here consistently outperformed all 
the competing methods. We also performed sensitiv-
ity analyses to investigate the impact of various param-
eters on the performance of the proposed methods.

The rest of this paper is organized as follows. Section II 
reviews existing work. Section III introduces the prob-
lem setup. Section IV provides details of our proposed 
models and their parameter optimization algorithms. In 
Section VI, extensive experiments to evaluate the perfor-
mance of the proposed models are conducted and analyzed; 
the work is summarized and conclusions are drawn in  
Section VII.

II .   R EL ATED WOR K

The related work is presented and summarized in this section.

A. Event Detection

A considerable amount of work has been done on the 
identification of ongoing social events [24]. Generally, for 
event detection, either classification or clustering is utilized 
to extract contents of interest as “signals” of social indica-
tors, which are then examined to identify the potential 
occurrence of ongoing events by considering different types 
of signal burstiness, as described in the following.

1) � Temporal burstiness [25]–[30]. Focusing on temporal 
events like elections and stock market movements, 
this type of methods tracks the time-evolving signals 
and identifies their spikes in the temporal dimen-
sion. For example, Schubert et al. [25] proposed to 
detect the popularity of the trending topics in the 
web using a “hotness” metric and an efficient algo-
rithm for selecting the topic surrogates. To detect the 
streaming events like sports and elections, Adedoyin 
et al. [26] proposed a transaction-based method for 
temporal change pattern mining.

2) � Spatiotemporal burstiness [31]–[39]. This type of 
methods examines the patterns of signals in both 
temporal and spatial dimensions, and identifies the 
events that are typically spatiotemporal outbreaks. 
For example, Krumm and Horvitz [35] proposed 
Eyewitness, a system that identifies the anomalous 
spatiotemporal spikes based on time series analysis 
of geotagged tweet volumes. Similarly, Zhang et al. 
[36] proposed a spatial event detection system that 
ingests, processes, summarizes, and monitors Twitter 
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streams in real time. Utilizing retrospective analysis 
on tweets, Dong et al. proposed a wavelet-based clus-
tering method to extract those related to the same 
historical events but with different time durations 
and spatial sizes [34]. However, rather than forecast-
ing events in the future, these approaches typically 
uncover them only after they have occurred.

B. Event Forecasting

Social event forecasting methods can be classified into 
three categories according to the problem formulations.

1) � Causality-based methods [13]–[15], [40], [41]. This type 
of models predicts future events directly based on their 
causal relations with other relevant ongoing or his-
torical events, without sophisticated considerations on 
temporal or spatial patterns. This type of methods relies 
heavily on the data quality and causal assumptions. 
For example, Muthiah et al. [41] first utilized a list of 
phrases to retrieve the “propaganda events” in news 
articles, from which they directly extracted the future 
events planned in those propaganda. Furthermore, the 
model proposed by Hu et al. [14] is able to automati-
cally identify the conditional probabilities among dif-
ferent events in news utilizing deep models.

2) � Temporal signal-based methods [3], [4], [4]–[12]. 
Social events are usually too complex for us to find 
clear causal relations among them, and hence com-
prehensive candidate signals typically need to be 
taken into account [2]. To harness these multivariate 
(sometimes even high-dimensional) signals, super-
vised learning techniques were commonly used to 
formulate forecasting tasks into classification or 
regression problems. Here, the historical signals are 
inputs while the event occurrences at future time 
points are model responses. For example, Wang  
et al. [6] extracted latent topics from tweet messages 
and used them as inputs to forecast the crime ratio 
based on logistic regression.

3) � Spatiotemporal signal-based methods [17]–[21]. 
Beyond temporal dimension, many social events 
typically exhibit spatial properties such as disease 
outbreaks and civil unrest [2]. To forecast spatial 
events, some existing approaches are able to fur-
ther explore and exploit spatial priors and patterns. 
Similar to Zhao et al. [19], Zhang et al. [20] proposed 
a system for influenza outbreaks forecasting that 
relies on a domain-specific mechanistic model and 
demographic information with the enhancement of 
social media data mining. Zhao et al. [21] proposed 
a multitask learning framework for event forecasting 
that jointly learns multiple related spatial locations. 
Relying on a special healthcare metadata, the model 
proposed by Rekatsinas et al. [17] predicted rare 
disease outbreaks based on spatiotemporal anomaly 

detection over autoregressive indicators. However, 
existing methods typically only consider events using 
a single geographical granularity and do not jointly 
optimize the discernibility and accuracy.

C. Multitask Learning

In multitask learning (MTL), multiple related tasks are 
learned simultaneously to improve generalization perfor-
mance [1]. Many MTL approaches have been proposed [42]. 
In [43], Kim et al. proposed a regularized MTL which con-
strained the models of all tasks to be close to each other. 
This task relatedness can also be characterized by constrain-
ing multiple tasks to share a common underlying structure, 
such as a common set of features [44] or a common subspace 
[45], or by using a tree-structured model [43]. For example, 
Kim and Xing [43] proposed a multitask learning model 
which leverages a tree-structured relationship among the 
tasks. MTL approaches have been applied in many domains, 
including computer vision and biomedical informatics. 
Cheng et al. [46] proposed to impose regularization on con-
volutional neural networks to enforce the feature represen-
tations of objectives with different rotations in the images. 
Lin et al. [47] proposed an efficient model to consider the 
interaction features in multitask learning. To the best of our 
knowledge, however, we are the first to apply MTL for mul-
tiresolution spatial civil unrest forecasting.

D. Multiresolution Detection

Multiresolution detection approaches have been widely 
applied in domains such as computer vision and satellite 
remote sensing [48] for object detection. To analyze the 
response rates for website advertisements, Agarwal et al. 
[49] developed a method for estimating and predicting fine-
grained geolocations. Aiming at a retrospective analysis of 
historical events, Jiang et al. [48] designed a framework to 
extract and summarize events from different views with dif-
ferent resolutions. As of yet, however, few researchers are 
utilizing multiresolution in spatial event forecasting. In addi-
tion to the features typically extracted by a deep Boltzmann 
machine, Han et al. [50] utilized higher level features from 
weakly labeled images to enhance the object detection perfor-
mance in the images. Cheng et al. [51] developed a new type 
of higher level image feature that they dubbed “partlets” to 
better represent the images and used ​​ℓ​0​​​-norm to enforce the 
sparsity. High-level features were also used by Yao et al. [52] 
to develop automatic semantic annotation for satellite images.

Multiresolution approaches have been used for tempo-
ral event detection. For example, to address the problem 
of worm detection, Sekar et al. [53] applied temporal mul-
tiresolution using different sliding-window sizes to handle 
high-rate and low-rate attacks. Moon et al. [54] took the 
concept further by applying it to handle the challenges in 
memory efficiency when implementing the temporal mul-
tiresolution concept. In order to mine the hidden patterns 
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in the data more effectively, Doucoure et al. [55] utilized 
wavelet decomposition and artificial neural networks for 
their multiresolution analysis of wind speed time series, 
while Cooper et al. [56] proposed a multiresolutions tem-
poral clustering method that allow users to organize their 
photo collections at different time scales. Jiang et al. [57] 
performed wavelet transforms on multiscale network traffic 
time series and then utilized the principal components to 
classify the anomalousness of the network traffic.

There has been far less work on spatial-resolution event 
analytics, however, with existing works typically focusing 
on the following aspects.

1) � Evaluation metrics. Ramakrishnan et al. [2] proposed a 
new metric to evaluate the location quality of the pre-
dicted events with different spatial granularities but con-
ducted no analysis or examples of its utilization for mod-
eling accuracy and discernibility for event forecasting.

2) � Multiresolution inputs. Several studies have utilized 
multisource data with different geogranularities and 
proposed different strategies to fuse the input data, 
including discretization [16], clustering [22], and 
multilevel models [18]. However, none has consid-
ered the multiresolution in the outputs, and thus 
they focus sorely on the accuracy and ignore the dis-
cernibility in prediction.

3) � Multiscale event detection. Alsaedi et al. [23] proposed 
a method to jointly detect large-scale and small-scale 
events by using unsupervised clustering techniques to 
extract the spatial outbreaks, while Dong [34] presented 
a concrete clustering algorithm capable of discover-
ing temporal and spatial outbreaks to different scales. 
Unfortunately, at present, these models for multiscale 
event detection can only detect historical or ongoing 
events and are not able to forecast future events. To the 
best of our knowledge, we are the first to apply multiple 
geographical resolutions to civil unrest forecasting.

III .   PROBLEM SET U P

The problem setup for this paper is presented in this section.
Denote ​X = ​{ ​X​t​​ }​ t​ 

T​​ as a collection of time-indexed Twitter 
data, where ​​X​t​​ ∈ X​ represents the subcollection of tweets at  
​t​th time interval and ​T​ is the set of time intervals. According 
to the granularity of the geoinformation they contain, 
tweets can be geocoded into different spatial resolutions 
corresponding to different levels of administrative divisions, 
such as country level, state level, and city level. Before for-
mally stating the problem, we first introduce two definitions 
related to geographical hierarchy.

Definition 1 (Spatial Subregion): Given two locations ​​q​i​​​ 
and ​​s​j​​​ under ​i​th and ​j​th ​(i > j)​ spatial resolutions, respec-
tively, if the entire spatial area of location ​​q​i​​​ is included 
within location ​​s​j​​​, ​​q​i​​​ is a spatial subregion of ​​s​j​​​, denoted as ​​
q​i​​ ⊑ ​s​j​​​ or equally ​​s​j​​ ⊒ ​q​i​​  (i > j)​.

Definition 2 (Location Tuple): As shown in Fig. 2, the 
location of a tweet or an event is denoted by a location tuple 
​s = (​s​1​​ , ​s​2​​ , …, ​s​N​​)​, which is an array that configures each 
location ​​s​n​​​ in each spatial resolution ​n​ by a parent–child 
hierarchy such that ​​s​n​​ ⊑ ​s​n−1​​ (n = 2, …, N)​; ​​s​n−1​​​ is the parent 
of ​​s​n​​​ while ​​s​n​​​ is the child of ​​s​n−1​​​.

A tweet subcollection ​​X​t​​​ can be spatially distributed in ​
N​ different ways based on the ​N​ different spatial resolu-
tions such that ​​{ ​X​t,​s​n​​​​ }​ ​s​n​​​ 

​S​n​​​ ⊆ ​X​t​​​, where ​​S​n​​​ is the location set 
under the ​n​th spatial resolution, ​n = 1, …, N​. ​​X​t,​s​n​​​​ ∈ ​ℕ​​ K×1​​ 
is a feature vector for the tweets in location ​​s​n​​ ∈ ​S​n​​​ at time 
​t​, where the elements could be, for instance, the keyword 
counts and the number of retweets. ​K​ is the number of fea-
tures. Also, define ​S = ​∪ n​ N​ ​S​n​​​​ as the set of all the locations 
in different spatial resolutions. In addition, for each loca-
tion ​​s​n​​​ with spatial resolution ​n​ at time ​τ​, we denote the 
actual occurrence (“yes” = 1 or “no” = 0) of a future event 
as a binary variable ​​Y​τ,​s​n​​​​ ∈ { 0, 1}​, where ​​Y​τ,​s​n​​​​ = 0​ means no 
event occurs; otherwise ​​Y​τ,​s​n​​​​ = 1​. According to the defini-
tion of the location tuple, we also have ​​Y​τ,s​​ = (​Y​τ,​s​1​​​​, …, ​Y​τ,​s​N​​​​)​.  
The problem addressed in this paper can thus be formulated 
as follows.

Problem Formulation: Given the tweet data ​​X​t​​​ in ​N​ dif-
ferent spatial resolutions, the goal is to predict the occur-
rence of a future event for location ​s = (​s​1​​ , …, ​s​N​​)​ within 
time interval ​τ​, where ​​s​n​​  (n = 1, …, N)​ is the location name 
for the ​n​th spatial resolution. In addition, ​τ = t + p​, where  
​p > 0​ is the lead time. Formally, this problem is formulated 
as learning the mapping from tweets data to future event 
predictions ​f : ​X​t,s​​ → { ​Y​τ,​s​1​​​​, …, ​Y​τ,​s​N​​​​ }​ for locations ​s​ at ​N​  
spatial resolutions.

Definition 3 (Multiresolution Event Forecasting Error): 
The multiresolution event forecasting error ​ℒ(W)​ is defined 
as the summation of errors in all the spatial resolutions 
against the labels of actual event occurrence

​ℒ(W)  = ​ 1 ___ 
|S|

 ​ ​∑ n​ N​ ​∑ ​s​n​​​ 
​S​n​​​ ℒ​​ (​W​​s​n​​​​)​

where ​W = { ​{ ​W​​s​n​​​​ ​}​ ​s​n​​​ 
​S​n​​​ }​ n​ 

N
​​ is the parameter of the forecasting 

model and ​​W​​s​n​​​​ ∈ ​ℝ​​ 1×K​​. ​ℒ(​W​​s​n​​​​)​ is the sum of the empirical 
errors of the prediction ​f(​X​t,​s​n​​​​ ⋅ ​W​​s​n​​​​)​ against the labels ​​Y​τ,​s​n​​​​​ 
for all the time intervals ​T​. ​ℒ(​W​​s​n​​​​)​ can be a logistic loss [58] 
where ​f(x)  = 1 / (1 + ​e​​ −x​)​.

Fig. 2. The location tuples based on geographical hierarchy.
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Due to the different characteristics of the various loca-
tions and spatial resolutions involved, it is unfeasible to 
build a single model to characterize them all simultaneously. 
To address this issue, a simple approach is to learn corre-
sponding models for different locations and different spatial 
resolutions. However, this creates several challenges.

1) � Data scarcity. Geographically small locations typi-
cally lack sufficient data to train models adequately. 
Moreover, due to the scarcity of tweet data with high 
spatial resolution, prediction tasks that involve high 
resolution are also more challenging.

2) � Spatial neighborhood. Forecasting tasks have regional 
relatedness such that nearby locations could be influ-
enced by interrelated events. 

3) � Multiresolution event forecasting paradox. 
Contradictory predictions at different spatial reso-
lutions can also happen. For example, a model that 
predicts there will be an event in “Los Angeles” could 
also predict that there will be no event in “California.”

To address these three challenges, in the next section, 
we propose a novel multitask learning model that we have 
named MREF based on mixed-structured task relatedness 
and a nonsmooth constraint.

I V.   MU LTIR ESOLU TION SPATI A L 
E V EN T FOR EC A STING

In this section, we describe a new multitask learning 
framework for multiresolution spatial event forecasting. 
In Section IV-A, the multiple types of task relatedness are 
characterized mathematically. Section IV-B then proposes 
two novel models, MREF-I and MREF-II, based on different 
assumptions for the task relatedness.

A. Heterogeneous Relatedness of Tasks

The forecasting models for all the locations are 
built simultaneously by characterizing the structural 

relationships and utilizing appropriate shared information 
across tasks. Fig. 3 illustrates the proposed multitask learn-
ing framework that characterizes all three major aspects of 
relatedness among all the locations (tasks) for the problem 
of multiresolution spatial event forecasting: 1) spatial neigh-
borhood relationships; 2) spatial resolution relationships; 
and 3) parent–child relationships.

1) Spatial Neighborhood Relationships: Events that occur 
at neighboring locations at around the same time could well 
involve similar topics, so the tweets from different locations 
may share a number of common keywords that are related 
to the events. To take this into account, the geographical 
hierarchy among locations is leveraged, which is shown as a 
tree in the top right of Fig. 3; the location (task) nodes in a 
subtree are within a spatial neighborhood.

As shown in Fig. 3, a geographical hierarchy is a tree whose 
nodes consist of all the possible spatial locations and the links 
are the parent–child relationships among them. In this geo-
graphical hierarchy tree, denote ​ = ​{ ​​i​​ }​i​​​ as the set of subtrees 
that are defined as ​​​i​​ = {​s​n​​} ∪ {​sʹ​n+​1​​ ​​​| ​sʹ​n+​1​​  ​​​⊑ ​s​n​​ , n < N}​, which 
means a subtree contains a location ​​s​n​​​ and all of its children. 
Denote ​​P​​s​n​​,k​​​ as the spatial neighborhood relationship model 
parameter for location ​​s​n​​​ and feature ​k​. Define ​​P​​​i​​,k​​​ as the set 
of model parameters for the subtree ​​​i​​​ for feature ​k​ such that

	​​ P​​​i​​,k​​ = ​∪ ​s​n​​∈​​i​​​​ ​P​​s​n​​,k​​​ .​� (1)

To incorporate the spatial neighborhood relationship, the 
model needs to enforce a similar feature selection pattern 
across the prediction tasks for locations in the subtree ​​​i​​​.

2) Spatial Resolution Relationships: Tasks for locations 
with the same spatial resolution have a closer spatial scale, 
so tweets from these locations may share a closer scale of 
keyword counts and retweet counts. To encompass this 
notion, we denote ​​Q​​s​n​​,k​​​ as the spatial resolution relationship 
model parameter for location ​​s​n​​​ and feature ​k​. ​​Q​ ⋅,k​ (n)​​ repre-
sents the model parameters for feature ​k​ for all the locations 
at ​n​ spatial resolution such that

	​​ Q​ ⋅,k​ (n)​ = ​∪ ​s​n​​∈​S​n​​​​ ​Q​​s​n​​,k​​​​� (2)

where ​​S​n​​​ is the set of all the locations at the ​n​th spatial reso-
lution. When considering spatial resolution relationships, 
the model needs to enforce a similar feature selection pat-
tern across the prediction tasks for locations with the same 
spatial resolution.

3) Parent–Child Relationships: The situation of an event 
occurrence in a location indicates and constrains the possible 
situations for its child locations, and vice versa. When we learn 
a model for a specific location with a specific spatial resolu-
tion, we also “borrow” information from the other locations 
with different spatial resolutions, so learning multiple related 
tasks simultaneously increases the sample size for each loca-
tion. The parent–child relationship among locations within 
different spatial resolutions can be characterized as follows.Fig. 3. A schematic view of the proposed model.
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Lemma 1: If there is no event in a location, then there is no 
event in all of its subregions. Formally, without loss of gen-
erality, assume ​i > j​, then ​∀ ​q​i​​ ⊑ ​s​j​​ ∧ ​Y​τ,​s​j​​​​ = 0 : ​Y​τ,​q​i​​​​ = 0​, which 
is equal to ​∃ ​s​j​​ ⊒ ​q​i​​ ∧ ​Y​τ,​q​i​​​​ = 1 : ​Y​τ,​s​j​​​​ = 1​.

Theorem 1: According to the definition of ​Y​ such that ​​Y​τ,s​​ ∈ 
{ 0, 1}​, the sufficient and necessary condition of Lemma 1 is ​​
Y​τ,​s​j​​​​ ≥ max ({ ​Y​τ,​q​i​​​​ | ​q​i​​ ⊑ ​s​j​​ , i > j})​.

Proof: Sufficiency. Given ​​Y​τ,​s​j​​​​ ≥ max ({ ​Y​τ,​q​i​​​​ | ​q​i​​ ⊑ ​s​j​​ , i > j})​ 
and ​​Y​τ,​s​j​​​​ ∈ { 0, 1}​, if ​​Y​τ,​s​j​​​​ = 0​, it is clear that ​max (​Y​τ,​q​i​​​​) = 0​,  
which is equal to ​​Y​τ,​q​i​​​​ = 0​ for any ​​q​i​​ ⊑ ​s​j​​​. The sufficiency 
is proved.

Necessity. If ​​Y​τ,​s​j​​​​ = 1​, then ​​Y​τ,​s​j​​​​ ≥ max   ({ ​Y​ τ,​q​i​​​ 
(i) ​ | ​q​i​​ ⊑ ​s​j​​ })​  

is satisfied based on the definition of ​Y​. On the other hand, 
when ​​Y​τ,​s​j​​​​ = 0​, according to Lemma 1, we know ​max (​Y​τ,​q​i​​​​) = 0​.  
Thus, the necessity is proved.

Lemma 1 and Theorem 1 specify how to utilize the event 
occurrence information in the parent location to regulate the 
event occurrence identification in the child location. This is 
a necessary condition of the parent–child relationship. In 
fact, the event occurrence information in the child location 
can also constrain the event occurrence pattern in the parent 
location, which is discussed in the following lemma.

Lemma 2: There is no event in a location, if there is no 
event in any of its subregions. Formally, without loss of gen-
erality, assume ​i > j​, then ​∀ ​q​i​​ ⊑ ​s​j​​ ∧ ​Y​τ,​q​i​​​​ = 0 : ​Y​τ,​s​j​​​​ = 0​. Thus, 
we have ​​Y​τ,​s​j​​​​ ≤ max ({ ​Y​τ,​q​i​​​​ | ​q​i​​ ⊑ ​s​j​​ , i > j})​

Combining Theorem 1 and Lemma 2, we get the sufficient 
and necessary condition of the parent–child relationship.

Corollary 1: There is no event in a location if, and only 
if, there is no event in any of its subregions. On the other 
hand, there is at least one event in a location if, an only if, 
there is event in at least one location among its subregions. 
Formally, ​​Y​τ,​s​j​​​​ = max ({ ​Y​τ,​q​i​​​​ | ​q​i​​ ⊑ ​s​j​​, i > j})​.

B. Models

The above consideration of the heterogeneous relatedness 
of forecasting tasks leads to a new multitask feature learning 
framework developed based on a general paradigm of multi-
task learning, namely minimizing the penalized empirical loss

	​​ min​ 
W

​ ​​​   ℒ(W)  + Ω(W)  s.t.  W ∈ ​​� (3)​

where ​ℒ(W)​ is the forecasting error on the training set, as 
defined in Definition 3, and ​Ω(W)​ is the regularization term 
that encodes structured task relatedness for both spatial neigh-
borhood relationships and spatial resolution relationships. To 
achieve this, we decompose the model parameter ​W​ into two 
components: a tree-structured component ​P​ for spatial neigh-
borhood relationships and a grouping-structured component ​
Q​ for spatial resolution relationships such that ​W = P + Q​. To 
take into account the parent–child relationship, the feasible 
set is constrained to a convex set . When only the necessary 
condition of the parent–child relationship is considered as the 

constraint, Theorem 1 is leveraged to instantiate the parent–
child relation. The resulting model is called the multiresolu-
tion spatial event forecasting model I (MREF-I) 

​​min​ 
W

​ ​  ℒ(W)  + ​γ​ P​​ ​∑ k,​​i​​​ 
K, ​ ‖ ​P​​​i​​,k​​ ​‖​F​​​ + ​γ​ Q​​ ​∑ k,n​ K,N​ ‖ ​Q​ ⋅,k​ (n)​ ​‖​F​​​

  s.t.      W  =  P + Q,
	 f(​X​t,​s​n​​​​ ⋅ ​W​​s​n​​​​) ≥ max ( { f(​X​t,​sʹ​n+​1​​  ​​​​​ ⋅ ​W​​sʹ​n+​1​​  ​​​​​)| ​sʹ​n+​1​​  ​​​ ⊑ ​s​n​​})​​� (4)​

where the Frobenius norm ​‖⋅​‖​F​​​ is utilized in ​​∑ k​ K​ ​∑ ​​i​​​ 
 ​ ‖ ​P​​​i​​,k​​ ​‖​ F​ 2 ​​​​ 

to enforce a similar feature selection among tasks with the 
spatial neighborhood. ​​∑ k​​ ​∑ i​ 

n​ ‖ ​Q​ ⋅,k​ (i)​ ​‖​ F​ 2 ​​​​ enforces similar fea-
ture selection among tasks in the same spatial resolution. 
The inequality constraint is introduced from Theorem 1 
by considering the mapping ​f : ​X​t,​s​n​​​​ → ​Y​τ,​s​n​​​​​. ​​γ​ P​​​ and ​​γ​ Q​​​ are 

regularization parameters such that ​​γ​ P​​ = γ / ​∑ ​​i​​​ 
 ​   ​√ 

___
 | ​​i​​ | ​​​ and  

​​γ​ Q​​ = γ / ​∑ n​ N​ ​√ 
____

 | ​S​n​​ | ​​​, where ​γ​ is the regularization parameter 
that balances the tradeoff between the loss function ​L(W)​ 
and the regularization terms.

We leverage the sufficient and necessary condition of the 
parent–child relationship, then the constraint is instantiated 
based on Corollary 1. The modified model is called the mul-
tiresolution spatial event forecasting model II (MREF-II) 

​​min​ 
W

​ ​​​​  ​ ​​  ℒ(W)  + ​γ​ P​​ ​∑ k,​​i​​​ 
K, ​ ‖ ​P​​​i​​,k​​ ​‖​F​​​ + ​γ​ Q​​ ​∑ k,n​ K,N​ ‖ ​Q​ ⋅,k​ (n)​ ​‖​F​​​

s.t.      W = P + Q,
	   f(​X​t,​s​n​​​​ ⋅ ​W​​s​n​​​​) = max ( { f(​X​t,​sʹ​n+​1​​  ​​​​​⋅ ​W​​sʹ​n+​1​​  ​​​​​)| ​sʹ​n+​1​​  ​​​⊑ ​s​n​​}).​​� (5)​

The parameter optimizations of both MREF-I and 
MREF-II are challenging due to the existence of nonlinear 
and nonsmooth terms in the constraint. In the following, we 
propose novel algorithms to handle these challenges.

V.  OP TIMI Z ATION

This section describes the optimization algorithms for the 
proposed MREF-I and MREF-II. In Section V-A, a param-
eter optimization algorithm for MREF-I is proposed to 
handle the nonsmooth inequality constraint. Section V-B 
elaborates on the new algorithm for MREF-II, in which a 
new dynamic programming-based algorithm is proposed to 
address the nonsmooth equality constraint.

A. Parameter Optimization of MREF-I

1) Objective Function of MREF-I: The objective function 
in (4) encompasses the joint consideration of the heteroge-
neous task relationships. However, to solve this objective 
function two challenges must first be overcome: 1) nons-
mooth inequality constraint; and 2) overlapping among the 
coupled subtrees, discussed and addressed as follows.

1) � Nonsmooth inequality constraint: The nonsmooth 
function ​max (⋅)​ in the inequality constraint in (4) 
makes the objective function difficult to solve. To 
address this challenge, we replace this term with an 
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alternative constraint that applies a sufficiency con-
dition to the original constraint

	​ f(​X​​s​n​​,t​​ ⋅ ​W​​s​n​​​​) ≥ f(​X​​sʹ​n+​1​​  ​​​,t​​ ⋅ ​W​​sʹ​n+​1​​  ​​​​​),  ​ sʹ​n+​1​​  ​​​ ⊑ ​s​n​​ .​� (6)

This is equal to the following equation due to the 
strictly monotonic increase of the function ​f(⋅)​:

	​ X​​s​n​​,t​​ ⋅ ​W​​s​n​​​​ ≥ ​X​​sʹ​n+​1​​  ​​​,t​​ ⋅ ​W​​sʹ​n+​1​​  ​​​​​,  ​ sʹ​n+​1​​  ​​​ ⊑ ​s​n​​� (7)

which is both linear and smooth and thus ensures the 
accurate solution of the original objective function.

2) � Overlapping among the coupled subtrees: As Fig. 3 
demonstrates, a node in the geographical hierar-
chy tree can belong to two different subtrees. For 
example, state-level nodes belong to a subtree whose 
root is a country-level node, but they can also be the 
root of another subtree whose leaves are city-level 
nodes. This issue prevents an easy solution because 
a model parameter could be regularized by different 
Frobenius norm terms. To solve this, we propose the 
use of an efficient optimization solution based on the 
introduction of two auxiliary variables ​U​ and ​V​. ​U​ is 
the model parameter set for the set of subtrees ​​​ ​​​ 
with roots in odd-number (i.e., ​n = 1, 3, 5, …​) spatial 
resolutions, while ​V​ represents the set of subtrees ​​​ℰ​​​ 
with roots in even-number (i.e., ​n = 2, 4, 6, …​) levels. 
Thus, neither ​U​ nor ​V​ contains overlapping subtrees. 
We also know that ​​​ ​​ ∪ ​​ℰ​​ = ​ and ​​ ∩ ​​ℰ​​ = ∅​.

Therefore, the objective function becomes

​​min​ 
W

​ ​   ℒ(W) ​+ ​​γ​ 0​​​​∑ k​ K​ ​​​​∑ ​​i​​​ 
​​​​​ ​​​∥ ​U​​​i​​,k​​ ​∥​F​​​+​​γ​ 1​​​​​∑ k​ K​ ​​​​∑ ​​T​​​ 

​​ℰ​​​ ​​​ ∥​V​​​i​​,k​​​∥​F​​​

	          ​+ ​γ​ 2​​ ​∑ k​ K​ ​∑ n​ N​ ∥ ​Q​ ⋅,k​ (n)​ ​∥​F​​​​​
	​ s.t.  W = P + Q,  P = U,  P = V,​
	  ​   g(X, W) + β = 0, β = ​β​ +​​,   ​β​+​​  ≥  0​� (8)

where ​g(X ⋅ W)  = ​{ g(​X​​s​n​​,t​​ , ​W​​s​n​​​​)}​ ​s​n​​,t​ 
​S ′ ​,T ​​ is a matrix com-

posed of the set of elements ​g(​X​​s​n​​,t​​ , ​W​​s​n​​​​)​ =​​ ​ X​​sʹ​n+​1​​  ​​​,t​​ ⋅ ​
W​​sʹ​n+​1​​  ​​​​​​−​​ X​​s​n​​,t​​ ⋅ ​W​​s​n​​​​​ and ​​S ′ ​ = ​∪ n=1​ 

N−1​ ​S​n​​​​. Two auxiliary 

matrix variables ​β​ and ​​β​ +​​​ are added, which have 
the same size of ​g(X, W)​. ​​γ​ 0​​​, ​​γ​ 1​​​, and ​​γ​ 2​​​ are regu-
larization parameters such that ​​γ​ 0​​ = γ   /​∑ ​​i​​​ 

​​​​
​ ​​​√ 

___
 | i | ​​, 

​​γ​ 1​​ = γ  /​∑ ​​i​​​ 
​​ℰ​​

​ ​​ ​√ 
___

 | i | ​​, and ​​γ​ 2​​ = γ  /​∑ n​ 
N

​ ​√ 
____

 | ​S​n​​ | ​​​  here ​​ is the 
regularization parameter that balances the tradeoff 
between the loss function ​ℒ(W)​ and the regulariza-
tion terms.

2) Optimization Algorithm of MREF-I: The objective 
function in (8) is convex because the loss function, ine-
quality constraints, and regularization terms are convex, 
while the equality constraints are affine. To solve the con-
vex and nonsmooth objective function with constraints, 
the alternating direction method of multipliers (ADMM) 
has begun to be widely utilized as an efficient algorithm. 
ADMM first breaks the original large problem into smaller 
subproblems that can be solved easily and fast, and then 

iteratively solves the subproblems in turn until conver-
gence is achieved. Here we propose an ADMM-based 
framework that solves (8) by first obtaining its augmented 
Lagrangian format as follows:

​​​min​ 
Θ

​ ​​​​  ℒ(W) + ​γ​ 0​​ ​∑ 
​​k,i​​

​ ​​K,  ​​​ ​​∥ ​U​​​i​​,k​​ ​∥​F​​ + ​γ​ 1​​ + ​γ​ 1​​ ​∑ k,i
​ K,  ℰ​  ∥​V​​​i​​,k​​​∥​F​​​​

                  ​+ ​γ​ 2​​ ​∑ 
k
​​ ​∑ n​ N​ ∥​Q​ ⋅,k​ (n)​​∥​F​​​​ + 〈​α​ 1​​ , W − P − Q〉​

        ​   +  ​ ρ __ 2 ​ ∥W − P − Q​∥​ F​ 2 ​ + 〈 ​α​ 2​​ ,  P − U〉 + ​ 
ρ
 __ 2 ​ ∥P − U​∥​ F​ 2 ​​

            ​+ 〈 ​α​ 3​​ , P − V〉 + ​ 
ρ
 __ 2 ​ ∥P − V ​∥​ F​ 2 ​ + 〈 ​α​ 4​​ , g(X, W) + β〉​

	            ​+ ​ ρ __ 2 ​ ∥ g(X, W) + β ​∥​ F​ 2 ​ + 〈 ​α​ 5​​ , β − ​β​ +​​ 〉 +  ​ ρ __ 2 ​ ∥ β − ​β​ +​​ ​∥​ F​ 2 ​​ 
� (9)

where ​Θ  =  { W, P, U, V, α, β, ​β​ +​​ }​ are the parameters to be opti-
mized. ​α  = ​ {​α​ i​​ }​ i=1​ 

5 ​​  is the set of Lagrangian mulipliers that are 
the dual variables of ADMM and ​ρ​ is the step size of the dual 
step. The parameters ​Θ  =  { W, P, U, V, α, β, ​β​ +​​ }​ are alternately 
solved by the proposed algorithm, referred to as mixed-struc-
tured multitask learning, as shown in Algorithm  1. It alter-
nately optimizes each of the parameters in ​Θ​ until an accept-
able residual is achieved. Lines 4 and 5 show the alternating 
optimization of each of the parameters. The calculation of the 
primal and dual residuals are illustrated in line 6. Lines 7–13 
describe the updating of the penalty parameter ​ρ​, which follows 
the updating strategy proposed by Boyd et al. [59]. The detailed 
optimization steps are described in more detail below.

1) Update ​W​, fix others: The optimization of the parameter ​
W​ is a generalized linear regression with square loss functions

​W ← ​​​argmin​ 
W

​ ​   ℒ(W)  + 〈​α ​ 2​​ ,  g (X, W)  + β 〉​ ​+ ​ ρ __ 2 ​ ∥g(X, W)  + β ​∥​ F​ 2 ​​​ 	
	 + 〈​

α
​   
1
​​
 , W − P − Q〉 + 

​ ρ __ 
2

 ​
 ∥W − P − Q ​∥​ 

F
​ 2 ​ .​� (10)

In order to solve this problem, a second-order Taylor 
expansion is performed, where we approximate the Hessian 
using a multiple of the identity with an upper bound of ​(1 / 4) I​.

2) Update ​P​, fix others: The optimization of ​P​ can be for-
mulated as the following least squares problem:

​P  ← ​ argmin​ 
P
​ ​   〈​α ​ 1​​, W ​− ​P ​− ​Q〉 + 〈​α​  2​​ , P​ − ​U〉 + ​ 

ρ
 __ 2 ​ ‖P​ − ​U ​‖​ F​ 2 ​

    + ​ ρ __ 2 ​ ‖W − P − Q ​‖​ F​ 2 ​ + 〈 ​α​ 3​​ , P − V〉 + ​ ρ __ 2 ​ ‖P − V ​‖​ F​ 2 ​​� (11)

where the solution is ​​(​1 ⁄3​)​ (W + U + V − Q) + ​(​1 ⁄(3ρ)​)​ 
(​α ​1​​ − ​α ​2​​ − ​α ​3​​)​.

3) Update ​ U, V, Q​, fix others: The optimizations of ​U​, ​V​, 
and ​Q​ are all problems of least squares loss functions with 
​​ℓ​2,1​​​-norms

​U ← ​​​argmin​ 
U

​ ​ ​ γ​ 0​​​​∑ k,​​i​​​ 
K,

​ ​​ ‖ ​U​​​i​​,k​​ ​‖​F​​ ​+ ​〈 ​α​ 2​​ , P​ − ​U〉​ + ​​ 
ρ
 __ 2 ​ ‖P​ − ​U ​‖​ F​ 2 ​​

​V ← ​​​argmin​ 
V
​ ​ ​ γ​ 0​​​​∑ k,​​i​​​ 

K, ℰ
​ ‖ ​V​​​i​​,k​​ ​‖​F​​​​ + ​〈 ​α​ 2​​ , P​ − ​V〉​ + ​​ 

ρ
 __ 2 ​ ‖P​ − ​V ​‖​ F​ 2 ​​

​Q ← ​​​argmin​ 
Q

​ ​ ​ γ​ 2​​ ​∑ k​​ ​∑ n​ 
N

​ ‖ ​Q​ ⋅,k​ (n)​ ​‖​F​​​​ + 〈 ​α​ 1​​ , W − P − Q〉​

	​ + ​ ρ __ 2 ​ ‖W − P − Q ​‖​ F​ 2 ​​� (12)
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where all three problems can be efficiently solved by using 
proximal operators [60].

4) Update ​β​, fix others: The optimization of ​β​ can be for-
mulated as the following least squares problem:

​β  ←​​​argmin​ 
β
​ ​  〈 ​α​ 4​​ , g(X, W)  + β〉 + ​ 

ρ
 __ 2 ​ ‖g(X, W)  + β ​‖​ F​ 2 ​​​ ​ 

	 + 〈 ​α​ 5​​ , β − ​β​ +​​ 〉 + ​ 
ρ
 __ 2 ​ ‖β − ​β​ +​​ ​‖​ F​ 2 ​​� (13)

where the solution is ​β  = ​ (​1 ⁄2​)​ (​β​ +​​ − g(X, W)) − ​(​1 ⁄(2ρ)​)​   
(​α​ 4​​ + ​α​ 5​​)​.

5) Update ​​β​ +​​​, fix others: The optimization of ​​β​ +​​​ can be 
formulated as a least squares problem with linear inequality 
constraint

	​​ β​ +​​  ← ​ argmin​ 
​β​ +​​≥0

​ ​   〈​α​ 5​​ , β − ​β​ +​​〉 + ​ 
ρ
 __ 2 ​ ‖β − ​β​ +​​ ​‖​ F​ 2 ​ .​� (14)

To eliminate the inequality constraint, first let ​​c​​ 2​  = ​
β​ +​​ ,  c ∈ ℝ​, yielding the following equivalent problem:

​​β​ +​​ ← ​argmin​ 
​c​​ 2​

​ ​  〈​α​ 5​​, β − ​c​​ 2​〉 + ​ 
ρ
 __ 2 ​ ‖β − ​c​​ 2​ ​‖​ F​ 2 ​ .​

It can be easily seen that ​​β​ +​​​ has two solutions: ​​β​ +​​  = ​
c​​ 2​  =  β + ​α​ 5​​ / ρ​ and ​​β​ +​​  = ​ c​​ 2​  =  0​. Therefore, the solution 
is ​​β​ +​​  =  max (β + ​α​ 5​​ / ρ, 0)​.

6) Update  ​​α​ i​​ (i = 1, …, 5)​: The updating of the dual vari-
ables ​​α​ i​​​ is as follows:

	​​
​α​ 1​​ ←

​ 
​α​ 1​​ + ρ ⋅ (W − P − Q)

​   ​α​ 2​​ ←​  ​α​ 2​​ + ρ ⋅ (P − U) ,  ​ α​ 3​​ ← ​α​ 3​​ + ρ ⋅ (P − V)​    
​α​ 4​​ ←

​ 
​α​ 4​​ + ρ ⋅ (F + β) ,  ​ α​ 5​​ ← ​α​ 5​​ + ρ ⋅ (β − ​β​ +​​).  

​​

7) Calculate residuals: The primal and dual residuals of 
the ​(k + 1)​th iteration are calculated based on the following 
theorem, where the parameters with superscript ​k​ (e.g., ​​P​​ k​​) 
correspond to their values in the ​k​th iteration.

Algorithm 1 Optimization of MREF-I

Input: ​X​, ​Y​, ​γ​
Output: solution ​W​

�1:	Initialize ​ρ = 1​, ​W, U, V, P, Q, ​α​ i​​ , β, ​β​​ +​= 0,  
i = 1, ⋯, 5​.
2:	Choose ​​ε​ p​​ > 0, ​ε​ d​​ > 0​.
3:	repeat
�4:	Update ​W, U, V, P, Q​ by Equations (10), 
(11), and (12).
�5:	Update ​​{ ​α​ i​​ }​ i=1​ 

5 ​  , β, ​β​​ +​​ by Equations (13) 
and (15).
�6:	Update primal and dual residuals ​p​ 
and ​d​ based on Theorem 2.
7:	if ​p > 10d​ then
8:	​ ρ ← 2ρ​	 # Update penalty parameter
9:	else if ​10p < d​ then
10:	​ ρ ← ρ / 2​ 	# Update penalty parameter
11:	 else

12:	​ ρ ← ρ​	 # Update penalty parameter
13:	 end if
�14:	 until ​p < ​ε​​ p​​ and ​d < ​ε​​ d​​	 # Convergence 
criterion

Theorem 2: The primal residual and the dual residual of the 
algorithm are as follows.

•	� The primal residual: ​p = ‖ ​W​​ k+1​ − ​P​​ k+1​ − ​Q​​ k+1​ ​‖​F​​ +  
‖​P​​ k+1​ − ​U​​ k+1​​‖​F​​ + ‖​P​​ k+1​ − ​V​​ k+1​​‖​F​​ + ‖g(X, ​W​​ k+1​)  
+ ​β​​ k+1​ ​‖​F​​ + ‖ ​β​​ k+1​ − ​β​ +​ k+1​ ​‖​F​​​.

•	� The dual residual: ​d  =  ρ ⋅ (‖(​P​​ k+1​ − ​P​​ k​) +  
(​Q​​ k+1​ −  ​Q​​ k​) +  ∂ g(X, ​W​​ k+1​)(​β​​ k​ −  ​β​​ k+1​) ​‖ ​F​​ +  ‖ 
(​U​​ k+1​ − ​U​​ k​) + (​V​​ k+1​ − ​V​​ k​) + (​Q​​ k+1​ − ​Q​​ k​) ​‖​F​​ + ‖ ​
β​ +​ k+1​ − ​β​ +​ k ​ ​‖​F​​)​.

Proof: The primal residual is easily deduced from the pri-
mal feasibility according to (22) directly. The deduction of 
the dual residual is elaborated in the following. The dual 
feasibility of the objective function is

	​​

0 ∈    

​ 

∂ ℒ(​W​​ *​) + ​α​ 1​ 
*​ + ​α​ 4​ *​ ∂ g(X, ​W​​ *​)

​   

0 ∈
​ 

∂ ​γ​ 0​​ ​∑ v,k​​ ‖ ​U​ G(v),k​ * ​ ​ ‖​ F​ 2 ​​ + ​α​ 2​ *​

​   0 ∈​  ∂ ​γ​ 1​​ ​∑ v,k​​ ‖ ​V​ G(v),k​ * ​ ​ ‖​ F​ 2 ​​ + ​α​ 3​ *​​   

0 ∈

​ 

∂ ​γ​ 2​​ ​∑ v,k​​ ‖(​ ​Q​ ⋅,k​ (i) ​)​​ *​ ​‖​ F​ 2 ​ + ​α​ 4​ *​

​   

 

​ 

− ​α​ 1​ 
*​ + ​α​ 2​ *​ + ​α​ 3​ *​ = 0;  ​ α​ 4​ *​ + ​α​ 5​ *​ = 0

​​� (16)

where the variables with superscript * denote the optimal 
solutions. According to (10), we know that

​​
0 ∈

​ 
∂ ℒ(​W​​ k+1​) + ρ(​W​​ k+1​ − ​P​​ k​ − ​Q​​ k​) + ​α​ 4​ k​ ⋅ ∂ g(X, ​W​​ k+1​)

​     ​​  + ​α​ 1​ 
k​ + ρ( ∂ g(​W​​ k+1​) ⋅ g(X, ​W​​ k+1​) + ​β​​ k​ ∂ g(X, ​W​​ k+1​)).​    

​

​ 

​

  ​​�

According to (15), the above equation becomes

​​​ 0 ∈ ∂ ℒ(​W​​ k+1​) + ​α​ 1​ 
k+1​ + ​α​ 4​ k+1​ ∂ g(X, ​W​​ k+1​) + ρ(​P​​ k+1​​−​​P​​ k​) 

​     ​​ + ρ(​Q​​ k+1​ − ​Q​​ k​) + ρ(​β​​ k​ − ​β​​ k+1​) ⋅ ∂ g(X, ​W​​ k+1​)​     

      =​ ∂ ℒ(​W​​ k+1​) + ​α​ 1​ 
k+1​ + ​α​ 4​ k+1​ ∂ g(X, ​W​​ k+1​) + ​d​W​​ ​​� (18)

where the dual residual according to ​W​ is ​​d​W​​ = ρ (​P​​ k+1​ −  
​P​​ k​) + ρ(​Q​​ k+1​ − ​Q​​ k​) + ρ(​β​​ k​ − ​β​​ k+1​) ⋅ ∂ g(X, ​W​​ k+1​).​

Similarly, the dual residuals with respect to other param-
eters are ​​d​P​​ = ρ(​U​​ k+1​ − ​U​​ k​) + ρ(​V​​ k+1​ − ​V​​ k​) +  ρ(​Q​​ k+1​ − ​Q​​ k​)​ 
and ​​d​β​​ = ρ(​β​ +​ k+1​ − ​β​ +​ k ​)​.

B. Parameter Optimization of MREF-II

1) Objective Function of MREF-II: The objective function in 
(5) formulates the heterogeneous task relationships into regu-
larization terms and equality constraints based on Corollary 1. 
Ideally, this constraint should be satisfied as follows:

	​ f(​​X ̃ ​​t,​s​n​​​​ ​​W ̃ ​​​s​n​​​​) = max ( { f(​​X ̃ ​​t,​sʹ​n+​1​​ ​​​​​ ​​W ̃ ​​​ś ​n+​1​​ ​​​​​)| ​sʹ​n+​1​​ ​​​ ⊑ ​s​n​​ })​� (19)

where ​​​X ̃ ​​t,​s​n​​​​​ and ​​​X ̃ ​​t,​sʹ​n+​1​​  ​​​​​​ are the input values in ideal situa-

(15)

(17)
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tion, of which the corresponding parameters are ​​​W ̃ ​​​s​n​​​​​ and 
​​​W ̃ ​​​s​n+​1​​ ′​​​​​​. However, the actual data set contains noise, and 
this type of strict equality constraint will be very sensitive 
to the existence of noise in the input data. We thus assume 
the relationship between the ideal and actual value is ​​
X​t,​s​n​​​​ ⋅ ​W​​s​n​​​​ = ​​X ̃ ​​t,​s​n​​​​ ⋅ ​​ W ̃ ​​​s​n​​​​ + ​R​t,​s​n​​​​​ and ​​X​t,​sʹ​n+​1​​ ​​​​​⋅ ​W​t,​ś ​n+​1​​ ​​​​​ = ​​X ̃ ​​t,​sʹ​n+​1​​ ​​​​​⋅  
​​W ̃ ​​t,​ś ​n+​1​​ ​​​​​+ ​R​t,​sʹ​n+​1​​ ​​​​​​, where ​​R​t,​s​n​​​​​ and ​​R​t,​sʹ​n+​1​​ ​​​​​​ are the noise terms. 
Because ​f(⋅)​ is a strictly monotonic increase, it is easy to see 
that (19) is equivalent to the following equation:

	​​​ X ̃ ​​t,​s​n​​​​ ⋅ ​​W ̃ ​​​s​n​​​​ = max ({ ​​X ̃ ​​t,​sʹ​n+​1​​  ​​​​​ ⋅ ​​W ̃ ​​​sʹ​n+​1​​  ​​​​​ | ​ś ​n+​1​​  ​​​ ⊑ ​s​n​​ }).​� (20)

Considering (20) and the problem of overlapping coupled 
subtrees introduced in Section V-A1, (5) can be transformed 
to the following equation, in order to be solved by ADMM:

​​      min​ 
W

​ ​   (W) ​+​​γ​ 0​​​​∑ k​ 
K
​ ​​​​∑ ​​i​​​ 

​​​​
​ ​​​‖ ​U​​​i​​,k​​ ​‖​F​​​+​​γ​ 1​​​​​∑ k​ 

K
​ ​​​​∑ ​​i​​​ 

​​ℰ​​
​ ​​​‖ ​V​​​i​​,k​​ ​‖​F​​ 

                         + ​γ​ 2​​ ​∑ k​ 
K
​ ​∑ n​ 

N
​ ‖ ​Q​ ⋅,k​ (n)​ ​‖​F​​​​ + ​γ​ 3​​ ‖R ​‖​ F​ 2 ​ 

                     s.t.  W = P + Q,  P = U,  P = V, 

 ​     X​t,​sʹ​n+​1​​  ​​​​​ ⋅ ​W​t,​sʹ​n+​1​​  ​​​​​ = ​Z​t,​sʹ​n+​1​​  ​​​​​ + ​R​t,​sʹ​n+​1​​  ​​​​​ 

              ​          Z​t,​s​n​​​​ = max ({ ​D​t,​sʹ​n+​1​​  ​​​​​ | ​sʹ​n+​1​​  ​​​ ⊑ ​s​n​​ }) ,  Z = D​� (21)

where ​Z ∈ ​ℝ​​ T × S​​, of which ​​Z​t,​s​n​​​​ = ​​X  ̃​​t,​s​n​​​​ ⋅ ​​W  ̃​​​s​n​​​​ , (t ∈ T, ​s​n​​  ∈  S)​ 
and thus ​​Z​t,​s​́n+​1​​  ​​​​​ = ​​X ̃ ​​t,​sʹ​n+​1​​  ​​​​​ ⋅ ​​W ̃ ​​​sʹ​n+​1​​  ​​​​​​. Similarly, we denote ​D ∈ ​
ℝ​​ T×S​​ and ​R ∈ ​ℝ​​ T×S​​, where ​​D​t,​s​n​​​​​ and ​​R​t,​s​n​​​​​ are their elements 
corresponding to time ​t​ and location ​​s​n​​​ . ​​γ​ 3​​ = 1 /​(T ⋅ ​∑ n=2​ N  ​ |​ ​
S​n​​ |)​​. The corresponding augmented Lagrangian format is as 
follows:

​​min​ 
Θʹ

​ ​  ℒ(W)  + ​γ​ 0​​ ​∑ k,​​i​​​ 
K,​​​​

​ ‖ ​U​​​i​​,k​​ ​‖​F​​​ + ​γ​ 1​​ ​∑ k,​​i​​​ 
K,​​ℰ​​

​ ‖ ​V​​​i​​,k​​ ​‖​F​​​

             + ​γ​ 2​​ ​∑ k​​ ​∑ n​ 
N

​ ‖ ​Q​ ⋅,k​ (n)​ ​‖​F​​​​ + ​γ​ 3​​ ‖R ​‖​ F​ 2 ​

                   + ​ 
ρ
 __ 2 ​ ‖W − P − Q + ​Γ​1​​ ​‖​ F​ 2 ​

                  + ​ 
ρ
 __ 2 ​ ‖P − U + ​Γ​2​​ ​‖​ F​ 2 ​ + ​ 

ρ
 __ 2 ​ ‖P − V + ​Γ​3​​ ​‖​ F​ 2 ​

                   + ​ 
ρ
 __ 2 ​ ‖Z − D + ​Γ​6​​ ​‖​ F​ 2 ​

                   + ​∑ t,​s​n​​​ 
T,S

​ ​ 
ρ
 __ 2 ​​ ‖ ​Z​t,​s​n​​​​ − ​X​t,​s​n​​​​ ⋅ ​W​t,​s​n​​​​ + ​R​t,​s​n​​​​ + ​[​Γ​4​​]​t,​s​n​​​​ ​‖​ F​ 2 ​

                   + ​∑ t,​s​n​​​ 
T,S

​ ​ 
ρ
 __ 2 ​​ ‖ ​Z​t,​s​n​​​​ − max ({ ​D​t,​sʹ​n+​1​​  ​​​​​ | ​s​n+​1​​  ​​​ ⊑ ​s​n​​ })   

                  + ​Γ​5​​ ​‖​ F​ 2 ​​� (22)

where ​​Θ ′ ​ = { W, P, U, V, Q, Z, R, D, Γ}​ are the parameters to 
be optimized. ​Γ = ​{ ​Γ​i​​ }​ i=1​ 

6 ​​  is the set of Lagrangian multipli-
ers that are the dual variables of ADMM and ​ρ​ is the step 
size of the dual step.

2) Optimization Algorithm of MREF-II: The parameters 
of ​​Θ ′ ​​ are alternately solved by the proposed algorithm, 
known as nonsmooth constrained multitask learning. It 
alternately optimizes each of the parameters in ​​Θ ′ ​​ until 
the residuals of the variables are smaller than a predefined 

value. The detailed optimization steps are described in 
detail in the following. Note that the updates of ​P​, ​Q​, ​U​, 
and ​V​ are the same as those in Algorithm 1 and thus here 
we only focus on the remaining parameters, namely ​W​, ​Z​,  
​R​, and ​D​.

1) Update ​W​: The optimization of parameter ​W​ is a gen-
eralized linear regression with least squares loss functions

​​​​
              W ←

​ 

​argmin​ 
W

​ ​   ℒ(W)  + ​ 
ρ
 __ 2 ​ ‖W − P − Q + ​Γ​1​​ ​‖​ F​ 2 ​

​    ​​  + ​∑ t,​s​n​​​ 
T,S​ ​ 

ρ
 __ 2 ​​ ‖ ​Z​t,​s​n​​​​ − ​X​t,​s​n​​​​ ⋅ ​W​t,​s​n​​​​ + ​R​t,​s​n​​​​  

                         + ​[ ​Γ​4​​ ]​t,​s​n​​​​ ​‖​ F​ 2 ​ .​      

​

​ 

​

  ​​

Similar to (10), a second-order Taylor expansion is per-
formed, where we approximate the Hessian using a multi-
ple of the identity with an upper bound of ​(1 / 4) I​.

2) Update ​Z​ and ​R​

​​

Z ←

​ 

​argmin​ 
Z
​ ​   ​ 

ρ
 __ 2 ​ ‖Z − D + ​Γ​6​​ ​‖​ F​ 2 ​

​   ​​  + ​∑ t,​s​n​​​ 
T,S​ ​ 

ρ
 __ 2 ​​ ‖ ​Z​t,​s​n​​​​ − ​X​t,​s​n​​​​ ⋅ ​W​t,​s​n​​​​ + ​R​t,​s​n​​​​ + ​[ ​Γ​4​​ ]​t,​s​n​​​​ ​‖​ F​ 2 ​​    

​

​ 

+ ​∑ t,​s​n​​​ 
T,S​ ​ 

ρ
 __ 2 ​​ ‖ ​Z​t,​s​n​​​​ − max ({ ​D​t,​sʹ​n+​1​​  ​​​​​ | ​sʹ​n+​1​​  ​​​ ⊑ ​s​n​​ })  + ​Γ​5​​ ​‖​ F​ 2 ​

​     

​

​ 

​

  ​​�

where the analytical solution is

​​Z​t,​s​n​​​​ = ​

⎧
 

⎪

 ⎨ 
⎪

 

⎩
​

​[ D − ​Γ​6​​ − R − ​Γ​4​​ ]​t,​s​n​​​​ + ​X​t,​s​n​​​​ ​W​t,​s​n​​​​ ,   n = N
​    ​[ D − ​Γ​6​​ − R − ​Γ​4​​ − ​Γ​5​​ ]​t,​s​n​​​​ + ​X​t,​s​n​​​​ ​W​t,​s​n​​​​​   

   + max ({ ​D​t,​sʹ​n+​1​​  ​​​​​ | ​sʹ​n+​1​​  ​​​ ⊑ ​s​n​​ })   n = ≤ N − 1.
​​​

​R​ can be easily updated as follows:

​​
R ←

​ 
​argmin​ 

R
​ ​ ​ ∑ t,​s​n​​​ 

T,S
​ ​ 
ρ
 __ 2 ​​ ‖ ​Z​t,​s​n​​​​ − ​X​t,​s​n​​​​ ⋅ ​W​t,​s​n​​​​ + ​R​t,​s​n​​​​

​    
​
​ 

      + ​[ ​Γ​4​​ ]​t,​s​n​​​​ ​‖​ F​ 2 ​ + ​γ​ 3​​ ‖R ​‖​ F​ 2 ​
 ​​�

where the analytical solution is ​​R​t,​s​n​​​​ = ​(​ρ ⁄ρ​ + ​γ  ​ 3​​)​ (​X​t,​s​n​​​​ ​
W​t,​s​n​​​​ − ​Z​t,​s​n​​​​ − ​[ ​Γ​4​​ ]​t,​s​n​​​​)​.

3) Update ​D​: To update ​​D​t,​s​n​​​​​, when ​n  =  1​ we need to 
solve the following optimization problems:

	​​ D​ t,​s​1​​​ 
* ​   = ​ argmin​ 

​D​t,​s​1​​​​
​ ​   ​ 

ρ
 __ 2 ​ ‖ ​Z​t,​s​1​​​​ − ​D​t,​s​1​​​​ + ​[ ​Γ​6​​ ]​t,​s​1​​​​ ​‖​ F​ 2 ​​� (26)

where the analytical solution can be easily obtained  
​​D​t,​s​1​​​​  = ​ Z​t,​s​1​​​​ + ​[ ​Γ​6​​ ]​t,​s​1​​​​​

When ​n > 1​, we need to solve the following optimiza-
tion problems:

​​

​D​ t,r(n)​ 
* ​  =

​ 

​argmin​ 
​D​t,r(n)​​

​ ​   ​ 
ρ
 __ 2 ​ ​  ∑ 
​sʹ​n+​1​​  ​​​∈r(n)

​​‖​Z​t,​sʹ​n+​1​​  ​​​​​ − ​D​t,​sʹ​n+​1​​  ​​​​​ + ​[​Γ​6​​]​t,​sʹ​n+​1​​  ​​​​​​‖​ F​ 2 ​​

​     
​
​  + ​∑ t,​s​n​​​ 

T,S​ ​ 
ρ
 __ 2 ​​ ‖​Z​t,​s​n​​​​ − max (​D​t,r(n)​​) + ​[​Γ​5​​]​t,​s​n​​​​​‖​ F​ 2 ​

​    

​

​ 

​

  ​​�

where ​r(n)   =  { ​sʹ​n+​1​​  ​​​ | ​sʹ​n+​1​​  ​​​ ⊑ ​s​n​​ }​ denotes all the subregions 
of the location ​​s​n​​​, and ​​D​t,r(n)​​ ∈ ​ℝ​​ 1×|r(n)|​​ is a vector such that ​​
D​t,r(n)​​ = { ​D​t,​sʹ​n+​1​​  ​​​​​ | ​sʹ​n+​1​​  ​​​ ⊑ ​s​n​​ }​, where ​|r(n) |​ is the number of 
all the subregions of ​​s​n​​​.

(23)

(24)

(25)

(27)
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It can be seen that ​​D​t,r(n)​​​ has no simple closed-form solu-
tion due to its existence inside the “max” function. It is also 
difficult to solve efficiently using traditional solutions such 
as subgradient methods due to the difficulty in selecting an 
appropriate step size to ensure convergence. Even though 
convergence can be achieved, the process is very slow 
near the optimal point. Therefore, here we propose a new 
dynamic programming-based algorithm to solve this prob-
lem that finds the optimal solution efficiently. The method 
is as follows.

Denote ​​D​ t,r(n)​ 
max ​  = max (​D​t,r(n)​​)​. For each element ​​D​t,​sʹ​n+​1​​  ​​​​​ ∈  

​D​ t,r(n)​ 
* ​​ , there are only two possible situations: 1) less than 

the max value  ​​D​t,​sʹ​n+​1​​  ​​​​​  < ​D​ t,r(n)​ 
max ​​ ; and 2) equal to the max 

value ​​D​t,​sʹ​n+​1​​  ​​​​​ = ​D​ t,r(n)​ 
max ​​ . Therefore, solving ​​D​t,​sʹ​n+​1​​  ​​​​​​ is equal to 

the following two sequential subroutines: Subroutine 1) find 
the solution for each situation; and Subroutine 2) identify 
which situation each element ​​D​t,​sʹ​n+​1​​  ​​​​​​ belongs to.

Subroutine 1: According to (27), if ​​D​t,​sʹ​n+​1​​  ​​​​​​ belongs to the 
first situation, namely ​​D​t,​sʹ​n+​1​​  ​​​​​ < ​D​ t,r(n)​ 

max ​​ , it is easy to see its 
closed-form solution ​​D​t,​sʹ​n+​1​​  ​​​​​ = ​Z​t,​sʹ​n+​1​​  ​​​​​ + ​[ ​Γ​6​​ ]​t,​sʹ​n+​1​​  ​​​​​​. After sub-
stituting ​​D​t,​sʹ​n+​1​​  ​​​​​​ with this solution, the objective function in 
(27) is equivalent to the following:

	​​
h(M, ​D​ t,r(n)​ 

max ​ ) =
​ 

|M | (​Z​t,​s​n​​​​ − ​D​ t,r(n)​ 
max ​  + ​[ ​Γ​5​​ ​]​t,​s​n​​​​)​​ 2​

​    
​
​ 

+ ​∑ k∈M​​ ​(​D​ t,r(n)​ 
max ​  − ​ζ​ t,k​​)​​ 2​​

 ​​�  (28)

where ​​ζ​ t,k​​ = ​Z​t,​[r(n)]​k​​​​ + ​[ ​Γ​6​​ ]​t,​[r(n)]​k​​​​​ and we also define ​​ζ​ t​​  = ​
Z​t,r(n)​​ + ​[ ​Γ​6​​ ]​t,r(n)​​​. ​M​ consists of the elements among ​r(n)​ that 
belong to the second situation and thus the complementary 
set ​​M ̅ ​ = r(n)  − M​ represents the first situation. Therefore, 
solving the second situation is equivalent to finding the opti-
mal ​​D​ t,r(n)​ 

max ​​  that minimizes ​h(M, ​D​ t,r(n)​ 
max ​ )​. By applying the least 

squares method to (28), the closed-from solution of ​​D​ t,r(n)​ 
 max ​​ 

that minimizes ​h(M, ​D​ t,r(n)​ 
max ​ )​ becomes the following:

	​​ D​ t,r(n)​ 
max ​  = ​ ∑ 

i∈M
​​(​ζ​ t,i​​ + ​Z​t,​s​n​​​​ + ​[ ​Γ​5​​ ]​t,​s​n​​​​) / ( | M |  + 1)​​� (29)

Subroutine 2: Solving Subroutine 2 is equivalent to 
searching for the best subset ​M​ that minimizes the objec-
tive function ​h(M, ​D​ t,r(n)​ 

max ​ )​ defined in (28). Note that we have ​​
D​ t,r(n)​ 

max ​  > ​D​t,​[r(n)]​j​​​​ = ​ζ​ t,j​​​, where ​j ∈ ​M ̅ ​​. Hence, it is easy to see 
from (28) that in order to minimize ​h(M, ​D​ t,r(n)​ 

max ​ )​, the ele-
ments in ​M​ should be those with the largest ​​ζ​ t,j​​​’s.

So now the remaining problem is to determine how 
many elements in ​r(n)​ with the largest ​​ζ​ t,j​​​ should be selected, 
namely determining ​|M|​. Since ​M​ only contains the largest ​​
ζ​ t,j​​​’s, ​h(M, ​D​ t,r(n)​ 

max ​ )​ increases monotonously with ​|M|​. This 
means we need to search for the smallest ​|M|​ that satisfies 
the condition of the second situation. Thus, the best size ​|M|​ 
that minimizes the objective function ​h(M, ​D​ t,r(n)​ 

max ​ )​ is equal to 
the optimal solution of the following objective:

	​​ arg  min​ 
k
​ ​  k� (30) 

s.t.   ​∑ i=1​ 
k  ​ (​​ζ ̃ ​​t,i​​ + ​Z​t,​s​n​​​​ + ​[ ​Γ​5​​ ]​t,​s​n​​​​) / (k + 1)​  > ​​ ζ ̃ ​​k−1​​​

where ​​​ζ ̃ ​​t​​  ∈ ​ ℝ​​ 1×|​ζ​ t​​|​​ is defined as an ordered list which is just ​​
ζ​ t​​​ being sorted in decreasing order. The objective function in 
(30) can thus be efficiently solved by a simple linear search.

4) Update ​​Γ​i​​ (i = 1, …, 6)​: The updating of the dual vari-
ables ​​Γ​i​​ , (i = 1, …, 6)​ are as follows:

​​

​Γ​1​​             ←

​ 

​Γ​1​​ + (W − P − Q) ,  ​ Γ​6​​ ← ​Γ​6​​ + (Z − D) ,

​    
​Γ​2​​            ←

​ 
​Γ​2​​ + (P − U) ,  ​ Γ​3​​ ← ​ Γ​3​​ + (P − V) ,

​    ​[ ​Γ​4​​ ]​t,​s​n​​​​     ←​  ​[ ​Γ​4​​ ]​t,​s​n​​​​ + (​Z​t,​s​n​​​​ − ​X​t,​s​n​​​​ ⋅ ​W​t,​s​n​​​​ + ​R​t,​s​n​​​​),​    
​[ ​Γ​5​​ ]​t,​s​n​​​​   ←

​ 
​[ ​Γ​5​​ ]​t,​s​n​​​​ + (​Z​t,​s​n​​​​ − max ({ ​D​t,​sʹ​n+​1​​ ​​​​​ | ​sʹ​n+​1​​  ​​​ ⊑ ​s​n​​ }) ) .

​     

​

​ 

​

  ​​

C. Algorithm Analysis
1) Time Complexity Analysis: For the optimization of 

the model MREF-I, the time complexities for updating ​W​,  
​P​, and ​Q​ are ​O( | S |  ⋅ |T |  ⋅ K)​, ​O( | S |  ⋅ K)​, and ​O(K ⋅ |S | )​, 
respectively. The time complexity for updating ​U​ is ​| ​​​​ | ⋅ K​ 
and for ​V​ is ​| ​​ℰ​​ | ⋅ K​. Combining these we get the summa-
tion ​O( ⋅ (2 | S |  − 1 − | ​S​N​​ |)  ⋅ K)​. The time complexity for 
updating ​β​ and ​​β​ +​​​ are both ​O( | S |  ⋅ |T | )​. In all, the total time 
complexity is ​O(L ⋅ |S |  ⋅ |T |  ⋅ K)​, where ​L​ is the number of 
iterations of the ADMM iterations.

For the optimization of the model MREF-II, the time 
complexities for updating ​W​, ​P​, and ​Q​ are ​O( | S |  ⋅ |T |  ⋅ K)​,  
​O( | S |  ⋅ K)​, and ​O(γK ⋅ |S | )​, respectively. The time com-
plexity for updating both ​U​ and ​V​ is ​O(γ ⋅ (2 | S |  − 1 − | ​
S​N​​ |)  ⋅ K)​. The time complexity for updating ​R​ and ​Z​ are 
both ​O( | S |  ⋅ |T | )​. Finally, the time complexity for ​D​-update 
is ​O( | S |  log ​n​r​​ + |T |  ⋅ |S | )​, where ​|S |  log ​n​r​​​ is for sorting the 
variable array ​​ζ​ t​​​. ​​n​r​​​ is the average number of the children of 
a location. In all, the total time complexity is ​O(L ⋅ |S |  ⋅ |T |  ⋅ 
K + |S |  log ​n​r​​)​, where ​L​ is the number of iterations of the 
ADMM iterations.

This means that the major difference in the computa-
tional time between the proposed two models lies in the dif-
ferent ways in which the parent–child constraint is treated. 
According to Theorem 1 and Corollary 1, it is obvious that 
MREF-II’s constraint is tighter than that of MREF-I. Due to 
the additional constraint imposed by Corollary 1, the con-
straint of MREF-II also contains a nonsmooth term, which is 
the max function and is more challenging to solve. However, 
due to our efficient dynamic programming-based algorithm, 
the optimization to this max function (i.e., the update of the 
variable ​D​) is accelerated. Compared to MREF-I, there is only 
an additional computation time of ​O( log ​n​r​​)​ for MREF-II. 
Typically, in practice, ​log ​n​r​​ ≪ |S |  ⋅ K​. This indicates that the 
computational time of MREF-II is generally as efficient as 
MREF-I, even though it solves a much harder problem.

2) Applicability Analysis: As mentioned above, the differ-
ence between the models MREF-I and MREF-II lies in their 
respective assumptions for the parent–child relationship; 
MREF-I is based on Theorem 1 while MREF-II is based on 
Corollary 1. Specifically, MREF-I assumes that if there is no 
event for a location, then there is no event in any of its sub-
regions; MREF-II, in addition to this assumption, also 

(31)
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expects that if there is no event in any subregion of a loca-
tion, then there is no event in this location.

Therefore, if every social media message (e.g., tweet) 
contains spatial information for all the geographical levels 
(including city level, state level, country level), then both 
of these assumptions are applicable. In this case, the use of 
model MREF-II is preferable because it effectively consid-
ers the prior knowledge based on a more comprehensive 
assumption to ensure good model generalization. However, 
in social media like Twitter, messages seldom contain com-
plete spatial information that includes city-level or state-
level locations. Due to this scarcity of spatial information at 
the finer grained geographical level, sometimes even there 
is an event happening in a city, especially a small city, it is 
hard to detect it in city level but more likely to show up at 
the state or country level because the tweets from that city 
might only contain state or country-level spatial informa-
tion. This means the discernible georesolution is restricted 
to state or country level. Therefore, in such a situation, the 
assumption inherent in MREF-II is not preferable because 
even though there is no event detected from any city-level 
model, there still might be an event detected using the state 
or country-level models. Hence, if such situations appear 
very frequently in a data set, then the MREF-I model is pref-
erable. In applications where the events usually tale place in 
more populous locations (e.g., bigger cities), however, this 
situation arises less frequently because such locations gener-
ally have sufficient social media messages geocoded in finer 
granularity. Then, MREF-II might still be advantageous.

V I.   E X PER IMEN TS

In this section, the proposed models, MREF-I and MREF-II, 
are evaluated on several real-world data sets from two differ-
ent domains. After the experimental setup has been intro-
duced in Section VI-A, the effectiveness of the methods is 
evaluated against several existing methods for different spa-
tial resolutions, along with an analysis of the models’ per-
formance on precision-recall curves for all the comparison 
methods in Section VI-B. The parameter sensitivity analysis 
is presented in Section VI-C.

A. Experimental Setup

1) Data Sets and Labels: The experimental evaluations in 
this study are based on nine data sets on different domains. 
Of these, eight data sets are used for event forecasting under 
the civil unrest domain while the other is applied to the influ-
enza outbreaks domain. For the civil unrest domain data sets, 
Table 2 shows the specific country from which the Twitter 
data was gathered for each data set. The raw Twitter data 
are collected from the Datasift Twitter collection engine and 
divided into periods for the training and test sets, as shown 
in Table 2. The data collection is partitioned into a sequence 
of date-interval bins for forecasting day by day. The event 

forecasting results are validated against a labeled events set, 
known as the gold standard report (GSR), which is publicly 
available from the Harvard Dataverse: https://dataverse.
harvard.edu/dataset.xhtml?persistentId​=​doi:10.7910/DVN/
EN8FUW. GSR is a collection of civil unrest news reports 
manually labeled by social science domain experts from the 
most influential newspaper outlets in Latin America [2], as 
shown in Table 1. For civil unrest forecasting, three spatial res-
olutions are considered, namely country level, state level, and 
city level. An example of a labeled GSR event is given by the 
tuple: (CITY=“Hermosillo,” STATE = “Sonora,” COUNTRY 
= “Mexico,” DATE = “2013-01-20”).

For the data set applied to the influenza outbreaks 
domain, we collected tweets containing at least one of 124 
predefined flu-related keywords (e.g., “cold,” “fever,” and 
“cough”) provided by Paul and Dredze [61]; the time peri-
od covered by this data set is also shown in Table 2. The 
data collection for the influenza data set are partitioned 
into a sequence of week-interval bins for week-wise fore-
casting. The predictions were validated against the flu sta-
tistics reported by the Centers for Disease Control and Pre-
vention (CDC), downloadable via the link: https://gis.cdc.
gov/grasp/fluview/main.html. CDC typically organizes the 
influenza surveillance data by HHS regions,1 which groups 
U.S. states into ten regions. CDC publishes the weekly 
influenza-like illness (ILI) activity level within each state in 
the United States based on the proportion of outpatient vis-
its to healthcare providers for ILI. There are four ILI activi-
ty levels: minimal, low, moderate, and high, where the 
level “high” corresponds to a salient flu outbreak and is 
considered the target for forecasting. In forecasting influ-
enza outbreaks, three spatial resolutions are considered, 
namely country level, HHS-region level, and state level. An 
example of a CDC flu outbreak event is: (STATE = “Cali-
fornia,” HHS_REGION = “Region 9,” COUNTRY = “Unit-
ed States,” WEEK = “01-09-2013 to 01-15-2013”).

Table 1  Data Sets and Labels

1HHS regions: http://www.hhs.gov/about/agencies/regional-offices/

*In addition to the top three domestic news outlets, the following 
news outlets are included: The New York Times; The Guardian; The Wall 
Street Journal; The Washington Post; The International Herald Tribune; The 
Times of London; Infolatam.
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2) Parameter Settings and Metrics: There is one tunable 
parameter in our MREF-I and MREF-II models, namely the 
regularization parameter ​γ​. This parameter was set for all nine 
data sets based on a tenfold cross validation on the training set.

In the experiment, the event forecasting task is to predict 
whether there will be an event in the next time step for a spe-
cific location at several different spatial resolutions. For civil 
unrest data sets, a time step is one day and the spatial resolu-
tions are country level, state level, and city level. For disease 
outbreaks, a time step is one week and spatial resolutions are 
country level, HHS-region level, and state level. For each spa-
tial resolution, a predicted event is matched to a GSR event 
if the location for the current spatial resolution is matched 
and the date is within two time steps before the actual event 
occurrence; otherwise, it is considered a false forecast. To 
validate the prediction performance, different metrics are 
adopted. Precision designates the fraction of all the predic-
tions that match actual events that occur. Recall denotes the 
percentage of all the actual events that have been success-
fully predicted. In addition, another metric, F-measure, is 
defined as the harmonic mean of precision and recall ​F-meas
ure  =  2 ⋅ Precision ⋅ Recall / (Precsion + Recall)​.

3) Comparison Methods: The following methods are 
included in the performance comparison.

a) �LASSO [2]. Different LASSO models were built for 
each of the corresponding spatial resolutions. The 
feature set for each is represented by the set of key-
word counts. To tune the regularization parameter, 
different values from the set ​​ℛ​p​​  =  { 0 . 01, 0 . 02, …,  
0 . 1, 0 . 2, …, 1, 2…, 10}​ were tested based on a tenfold 
cross validation on the training set. Specifically, for 
each data set, we partitioned the training set into ten 
equal segments along the time line. We then used 
nine segments for training the model and the remain-
ing segment for validating the results, giving a total of 
ten rounds by iterating the segment used for the vali-
dation. For each round a validation performance is 
obtained and our focus is on the average performance 
across all ten rounds. The regularization parameter 
was set at 0.15 because this value achieved the best 
average performance for all ten rounds.

b) �Multitask learning (MTL) [1]. In the multitask model, 
each task consists of the forecasting for each loca-
tion and spatial resolution. Keyword counts are the 
features. As in LASSO, the values in ​​ℛ​p​​​ were tested 
to select the regularization parameters. Finally, the 
parameters were set as ​​λ​ 1​​  =  0 . 015​ and ​λ  =  0 . 001​,  

which were selected because they achieved the best 
overall performance in the tenfold cross validation.

c) �Tree-guided group LASSO for multitask learning 
(TMTL) [43]. Here the relationships among the tasks 
follow the geohierarchy defined in Fig. 2. Specifically, 
each subtree consists of a parent task as root and all 
of its children as leaves, as defined in Definition 2. 
Keyword counts are the features. As with LASSO, the 
values in ​​ℛ​p​​​ were tested to select the regularization 
parameter, which was set as ​λ  =  0 . 3​ because this 
yielded the best overall performance in the tenfold 
cross validation.

d) �Autoregressive exogenous (ARX) [9]. For each separate 
location, the count of future events is predicted based 
on the counts of both historical events and tweets 
indexed by the keywords. When forecasting, an out-
put not less than “1” indicates event occurrence; oth-
erwise, no event is deemed to have occurred.

e) �Logistic regression (LR) [62]. For each spatial resolu-
tion, LR utilizes a logit function to map the tweet 
observations onto future event occurrences (“0” 
denotes no occurrence, “1” denotes occurrence). 
The input features here are the counts of keywords.

f) �Latent Direchlet allocation-based logistic regression 
(LDA-LR) [6]. After extracting the latent topics by 
LDA from the tweets, the LDA-LR model was built on 
features that represent the proportions of the latent 
topics. Individual models were built for each spatial 
resolution. To set the value of the number of topics, 
several values ​{ 10, 20, ⋯, 100}​ were tested based on a 
tenfold cross validation. The number of topics was set 
at 30 because this achieved the best performance in 
the cross validation.

g) �Kernel-density-estimation-based logistic regression 
(KDE-LR) [16]. This approach utilizes KDE-smoothed 
historical-event counts and the proportions of latent 
topics as features, and builds a model for each spatial res-
olution. Similar to LDA-LR, the values ​{ 10, 20, …, 100}​ 
were tested based on a tenfold cross validation. Finally, 
the number of topics was set at 30 because it achieved 
the best performance in the cross validation.

B. Performance

In this section, the performances of all the methods are 
evaluated and compared. First, the specific spatial event 
forecasting performance for different spatial resolutions is 

Table 2  Domains for the Experimental Evaluations
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discussed for civil unrest and influenza outbreaks, after 
which the precision–recall curves for the overall forecasting 
performance are examined.

1) Civil Unrest Event Forecasting Performance at Multiple 
Spatial Resolutions: In Table 3, the performances of our 
MREF-I and MREF-II and competing methods are compared 
for civil unrest event forecasting. Three metrics, namely 
precision, recall, and F-measure, were adopted to quantify 
the performance. The model performances for each of the 
spatial resolution levels and for the overall performance are 
shown in the table. The overall performance is the averaged 
performance across the different spatial resolutions.

Table 3 shows that the forecasting performance gener-
ally improves as the spatial resolution becomes coarser. For 
example, at the city level, the F-measure is typically 0.2–0.5, 
while for the state level, it is typically 0.3–0.6, and for the 
country level, it increases to about 0.8–1.0. Of these data 
sets, all the methods generally achieved better performances 
for Brazil, which is a large country with a large number of 
civil unrest events. In all, the proposed MREF-II model out-
performed all the other methods in six data sets in overall 
performance, five data sets in city-level performance, three 
data sets in state-level performance, and five data sets in 

country-level performance. This is because MREF-II lever-
ages the tasks’ relationships in terms of geohierarchy, geo-
resolution, and sufficiently considers the geo-parent–child 
constraints in Corollary 1. MREF-II also achieved good per-
formance at the finest granularity, namely city level, outper-
forming the other methods by around 6% in five data sets 
and placing second in two more. This is because MREF-II 
can provide better predictions at the finest resolution by bor-
rowing information from coarser resolutions, which effec-
tively handles the shortage of finest level data in social media 
data sets. MREF-I achieved the second best performance by 
partially considering the parent–child constraints between 
locations. In general, the performance of the methods con-
sidering the feature sparsity is better than those achieved by 
existing methods. Specifically, LASSO, MTL, TMTL, and 
our MREF-I and MREF-II models all achieved better perfor-
mances for each spatial resolution level than any of the oth-
ers. LASSO, MTL, TMTL, MREF-I, and MREF-II obtained 
the best overall performance in seven of the eight data sets 
shown, demonstrating the effectiveness of utilizing regulari-
zation terms for filtering out unrelated features and ensur-
ing the model’s generalizability. Among these, the multitask-
learning-based methods such as MTL, TMTL, MREF-I, and 
MREF-II also take into account the relatedness of different 

Table 3  Event Forecasting Performance on Multiple Civil Unrest Data Sets
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geographical locations, enabling them to handle the data 
scarcity inherent in small locations. Among the other meth-
ods LR, KDE-LR, and LDA-LR, all of which utilize the logis-
tic regression framework, obtained similar performances, 
with KDE-LR and LDA-LR being especially close because 
they both consider the latent topics. The performance of 
ARX is not as good as regularization-based methods, which 
consistently outperformed ARX by 1%–18%.

2) Influenza Outbreak Event Forecasting Performance in 
Multiple Spatial Resolutions: In Table 4, the performances 
of MREF-I, MREF-II, and the competing methods are illus-
trated for influenza outbreak event forecasting. Their per-
formances for all the different spatial resolutions and their 
overall performance were investigated.

As in Table 3, Table 4 shows that the forecasting per-
formance generally becomes better when the spatial reso-
lution becomes coarser. For example, at the state level, 
the F-measure is typically 0.1–0.2, at the region level, the 
F-measure is typically 0.2–0.4, and at the country level, 
the F-measure increases to about 0.6–0.9. In general, the 
performance of the methods utilizing regularization terms 
is better than other methods. In particular, LASSO, MTL, 
TMTL, MREF-I, and MREF-II achieve better performance 
at each spatial resolution level than the others. LASSO, 
MTL, TMTL, MREF-I, and MREF-II obtained the best 
overall performances, with F-measures of around 0.5, 
while the other methods were slightly lower, at around 
0.3–0.4. This demonstrates the effectiveness of utilizing 
regularization terms for filtering out unrelated features 
and ensuring the model’s generalizability. KDE-LR and 

LDA-LR again achieved similar performances because 
they both consider the latent topics as features. The per-
formance of ARX was once more not as good as those of 
regularization-based methods, which outperformed it by 
over 20%. MREF-II outperformed all the other methods 
for overall performance, by 13% at the state level, 18% at 
the HHS-region level, and 7% overall. This again demon-
strates the advantage enjoyed by MREF-II due to character-
izing the location relatedness and sufficiently leveraging 
the parent–child constraint of the hierarchical locations.

3) Efficiency on Running Time: The rightmost column 
of Table 4 shows the training time efficiency compari-
son for forecasting influenza outbreaks. The running 
times on the test sets for all the comparison methods are 
effectively instantaneous (i.e., less than 0.01 second for 
one prediction) so are not provided here. According to 
Table 4, the running time of ARX was 21 s, outperform-
ing the other methods. The running times achieved by 
all these methods were below at most 40 min for a huge 
three-year-long training set for week-wise event forecast-
ing tasks, making this eminently practical for real-world 
applications. The efficiency evaluation results on civil 
unrest data sets followed a very similar pattern and thus 
these data are not provided here.

4) Event Forecasting Performance on Precision–Recall 
Curves: Fig. 4 illustrates the overall event forecasting per-
formance on precision–recall curves for three data sets 
in two domains, namely civil unrest and influenza out-
breaks. These curves were drawn by varying the boundary 
between values for positive and negative predictions. The 
other civil unrest data sets followed a similar pattern to 
the “El Salvador” and “Uruguay” data sets and thus are not 
provided here due to limited space. The overall perfor-
mance shown is the averaged performance for different 
spatial resolutions. For the three data sets shown in Fig. 
4, MREF-II generally outperformed the other methods 
because it is in most cases the closest to the (1,1) points 
in the plots. Moreover, the ROC curves for MREF-II were 
consistently above the other methods in these data sets, 

Table 4  Forecasting Performance on Influenza Outbreak Data Set 

(Precision, Recall, and F-Measure)

Fig. 4. Precision-recall curves for the performances on different data sets.
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when precision and recall vary. MREF-I consistently 
achieved the second best performance consistently. Other 
than MREF-I and MREF-II, the models MTL, TMTL, and 
LASSO achieve the most competitive results. The perfor-
mance of KDE-LR and LDA-LR exhibit similar patterns 
because they utilize latent topics as features, unlike the 
other methods. Once again, ARX obtained a particularly 
poor performance for the flu data set, although it achieved 
an average performance in the other data sets.

C. Sensitivity Analyses

The proposed models MREF-I and MREF-II both include 
a tunable parameter, namely the regularization parameter 
​γ​, for the regularization terms. For civil unrest data sets, 
only the sensitivity analysis results for the Colombia data 
set are illustrated here as a typical example. The other civil 
unrest data sets follow very similar patterns.

1) Parameter Sensitivity of MREF-I: Fig. 6(a) illustrates 
the performance for civil unrest event forecasting of MREF-I 
versus ​γ​. By varying it over a wide range from 0.01 to 10, the 
performance in terms of F-measures for civil unrest event 
forecasting can be illustrated for different spatial resolu-
tions, namely city level, state level, and country level. For 
all spatial resolutions, the F-measures at ​γ  =  0 . 01~2​ are 
basically higher than that at ​γ  =  2~10​. The country level is 
more consistent across different values of  ​γ​. Starting from ​
γ  =  0 . 01​, the F-measures in different spatial resolutions 
increase slightly as ​γ​ increases, reaching their highest values 
in the range of ​γ  =  0 . 5~2​, then decreasing at the city level 
and state level in the range of​ γ  >  2​. These results show 
that the value of the regularization parameter ​γ​ and the regu-
larization terms influence the overall performance, and it 
should be neither too small nor too large.

Fig. 6(b) shows the performance of MREF-I versus ​γ​  for 
the influenza outbreaks data set. For all spatial resolutions, 
the F-measures at ​γ  =  0 . 01~0 . 8​ are essentially higher 
than those at ​γ  >  0 . 8​, especially for the city level and the 
state level; the country level is more consistent across differ-
ent values of ​γ​. Starting from ​γ  =  0 . 01​, the F-measures in 
different spatial resolutions increase slightly as ​γ​  increases 
until ​γ  =  0 . 8​, where the highest value is achieved, after 
which they decrease to smaller values for the F-measures at 
the city level and state level, where they are in the range of ​
γ  >  1​. These results show that an appropriate value of regu-
larization parameter ​γ​  that is neither too small nor too large 
can again optimize the model performance.

2) Parameter Sensitivity of MREF-II: Fig. 6(a) illus-
trates the performance for civil unrest event forecasting of 
MREF-II versus ​γ​. Similar to the experiment on MREF-I, the 
performance in terms of F-measures for civil unrest event 
forecasting are illustrated for different spatial resolutions 
when ​γ​  varies from 0.01 to 10. Starting from ​γ  =  0 . 01​, the 
F-measures at different spatial resolutions increase slightly 
as ​γ​ increases across the range of ​γ  =  0 . 5~2​, decreasing 
at the city level and state level across the range of ​γ  >  6​. 
These results show that the value of regularization param-
eter ​γ​ and the regularization terms influence the overall per-
formance, and it should therefore be neither too small or too 
large, which is similar to the situation for MREF-I.

Fig. 6(b) shows the performance of MREF-II versus ​γ​  for 
the influenza outbreaks data set. For all spatial resolutions, the 
F-measures at ​γ  =  0 . 01~0 . 8​ are essentially higher than those 
at ​γ  >  0 . 8​, particularly for the city level and the state level; 
the country level is more consistent across different values 
of ​γ​. The F-measures is stable in the range of ​γ  =  0 . 01~0 . 1​ 
across different spatial resolutions but slightly increases when ​

Fig. 5. Sensitivity analyses on regularization parameter ​γ​.

Fig. 6. Sensitivity analyses on regularization parameter ​γ​.
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γ  =  0 . 1~0 . 8​, where the highest value is achieved, after which 
it drops to smaller values at the city level and state level. These 
results again show that an appropriate value of  ​γ​  that is neither 
too small nor too large yields the best model performance, espe-
cially at the city and state levels.

V II.   CONCLUSION

For spatial event forecasting, the accuracy and discernibility 
of the predictive model are two the key concerns. Their joint 
consideration and optimization present several challenges, 
however. In this paper, we propose a new multiresolution 

spatial event forecasting framework to address all the chal-
lenges simultaneously. To achieve this, we propose two novel 
multitask learning models that leverage the heterogeneous 
relationships among the prediction tasks, and develop effec-
tive parameter optimization algorithms based on ADMM 
and dynamic programming. Experiments on several data sets 
in two different domains were conducted to evaluate the per-
formance and parameter sensitivity of the proposed models. 
The results demonstrate that because of the effective utiliza-
tion of the shared information across different spatial resolu-
tions and neighborhoods, the proposed model outperforms 
existing methods used for comparison.� 
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