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Abstract

Self-paced learning (SPL) mimics the cognitive
process of humans, who generally learn from easy
samples to hard ones. One key issue in SPL is the
training process required for each instance weight
depends on the other samples and thus cannot eas-
ily be run in a distributed manner in a large-scale
dataset. In this paper, we reformulate the self-
paced learning problem into a distributed setting
and propose a novel Distributed Self-Paced Learn-
ing method (DSPL) to handle large scale datasets.
Specifically, both the model and instance weights
can be optimized in parallel for each batch based on
a consensus alternating direction method of multi-
pliers. We also prove the convergence of our al-
gorithm under mild conditions. Extensive experi-
ments on both synthetic and real datasets demon-
strate that our approach is superior to those of ex-
isting methods.

1 Introduction
Inspired by the learning processes used by humans and ani-
mals [Bengio et al., 2009], Self-Paced Learning (SPL) [Ku-
mar et al., 2010] considers training data in a meaningful or-
der, from easy to hard, to facilitate the learning process. Un-
like standard curriculum learning [Bengio et al., 2009], which
learns the data in a predefined curriculum design based on
prior knowledge, SPL learns the training data in an order that
is dynamically determined by feedback from the individual
learner, which means it can be more extensively utilized in
practice. In self-paced learning, given a set of training sam-
ples along with their labels, a parameter λ is used to repre-
sents the “age” of the SPL in order to control the learning
pace. When λ is small, “easy” samples with small losses are
considered. As λ grows, “harder” samples with larger losses
are gradually added to the training set. This type of learning
process is modeled on the way human education and cogni-
tion functions. For instance, students will start by learning
easier concepts (e.g., Linear Equations) before moving on to
more complex ones (e.g., Differential Equations) in the math-
ematics curriculum. Self-paced learning can also be finely ex-
plained in a robust learning manner, where uncorrupted data

samples are likely to be used for training earlier in the process
than corrupted data.

In recent years, self-paced learning [Kumar et al., 2010]
has received widespread attention for various applications
in machine learning, such as image classification [Jiang et
al., 2015], event detection [Jiang et al., 2014a; Zhang et al.,
2017c] and object tracking [Supancic and Ramanan, 2013;
Zhang et al., 2016]. A wide assortment of SPL-based meth-
ods [Pi et al., 2016; Ma et al., 2017a] have been devel-
oped, including self-paced curriculum learning [Jiang et al.,
2015], self-paced learning with diversity [Jiang et al., 2014b],
multi-view [Xu et al., 2015] and multi-task [Li et al., 2017;
Keerthiram Murugesan, 2017] self-paced learning. In addi-
tion, several researchers have conducted theoretical analyses
of self-paced learning. [Meng et al., 2015] provides a the-
oretical analysis of the robustness of SPL, revealing that the
implicit objective function of SPL has a similar configuration
to a non-convex regularized penalty. Such regularization re-
stricts the contributions of noisy examples to the objective,
and thus enhances the learning robustness. [Ma et al., 2017b]
proved that the learning process of SPL always converges to
critical points of its implicit objective under mild conditions,
while [Fan et al., 2017] studied a group of new regularizers,
named self-paced implicit regularizers that are derived from
convex conjugacy.

Existing self-paced learning approaches typically focus on
modeling the entire dataset at once; however, this may in-
troduce a bottleneck in terms of memory and computation,
as today’s fast-growing datasets are becoming too large to be
handled integrally. For those seeking to address this issue, the
main challenges can be summarized as follows: 1) Computa-
tional infeasibility of handling the entire dataset at once. Tra-
ditional self-paced learning approaches gradually grow the
training set according to their learning pace. However, this
strategy fails when the training set grows too large to be han-
dled due to the limited capacity of the physical machines.
Therefore, a scalable algorithm is required to extend the ex-
isting self-paced learning algorithm for massive datasets. 2)
Existence of heterogeneously distributed “easy” data. Due to
the unpredictability of data distributions, the “easy” data sam-
ples can be arbitrarily distributed across the whole dataset.
Considering the entire dataset as a combination of multiple
batches, some batches may contain large amount of “hard”
samples. Thus, simply applying self-paced learning to each
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batch and averaging across the trained models is not an ideal
approach, as some models will only focus on the “hard” sam-
ples and thus degrade the overall performance. 3) Depen-
dency decoupling across different data batches. In self-paced
learning, the instance weights depend on the model trained
on the entire dataset. Also, the trained model depends on the
weights assigned to each data instance. If we consider each
data batch independently, a model trained in a “hard” batch
can mistakenly mark some “hard” samples as “easy” ones.
For example, in robust learning, the corrupted data samples
are typically considered as “hard” samples, then more cor-
rupted samples will therefore tend to be involved into the
training process when we train data batches independently.

In order to simultaneously address all these technical chal-
lenges, this paper presents a novel Distributed Self-Paced
Learning (DSPL) algorithm. The main contributions of this
paper can be summarized as follows: 1) We reformulate the
self-paced problem into a distributed setting. Specifically, an
auxiliary variable is introduced to decouple the dependency
of the model parameters for each data batch. 2) A distributed
self-paced learning algorithm based on consensus ADMM is
proposed to solve the SPL problem in a distributed setting.
The algorithm optimizes the model parameters for each batch
in parallel and consolidates their values in each iteration. 3)
A theoretical analysis is provided for the convergence of our
proposed DSPL algorithm. The proof shows that our new al-
gorithm will converge under mild assumptions, e.g., the loss
function can be non-convex. 4) Extensive experiments have
been conducted utilizing both synthetic and real-world data
based on a robust regression task. The results demonstrate
that the proposed approaches consistently outperform exist-
ing methods for multiple data settings. To the best of our
knowledge, this is the first work to extend self-paced learning
to a distributed setting, making it possible to handle large-
scale datasets.

The reminder of this paper is organized as follows. Sec-
tion 2 gives a formal problem formulation. The proposed dis-
tributed self-paced learning algorithm is presented in Section
3 and Section 4 presents a theoretical analysis of the conver-
gence of the proposed method. In Section 5, the experimental
results are analyzed and the paper concludes with a summary
of our work in Section 6.

2 Problem Formulation
In the context of distributed self-paced learning, we consider
the samples to be provided in a sequence of mini batches
as {(X(1),y(1)), . . . , (X(m),y(m))}, where X(i) ∈ Rp×ni

represents the sample data for the ith batch, y(i) is the corre-
sponding response vector, and ni is the instance number of
the ith batch.

The goal of self-paced learning problem is to infer the
model parameter w ∈ Rp for the entire dataset, which can
be formally defined as follows:

argmin
w,v

m∑
i=1

fi(w,vi) + ‖w‖22

s.t. vij ∈ [0, 1], ∀i = 1, . . . ,m, ∀j = 1, . . . , ni

(1)

Notations Explanations
p feature number in data matrixX(i)

ni instance number in the ith data batch
X(i) data matrix of the ith batch
y(i) the response vector of the ith batch
w model parameter of the entire dataset
vi instance weight vector of the ith batch
vij weight of the jth instance in the ith batch
λ parameter to control the learning pace
L loss function of estimated model

Table 1: Mathematical Notations

where ‖w‖22 is the regularization term for model parameters
w. Variable vi represents the instance weight vector for the
ith batch and vij is the weight of the jth instance in the ith
batch. The objective function fi(w,vi) for each mini-batch
is defined as follows:

fi(w,vi) =

ni∑
j=1

vijL(yij , g(w,xij))− λ
ni∑
j=1

vij (2)

We denote xij ∈ Rp and yij ∈ R as the feature vector and
its corresponding label for the jth instance in the ith batch.
The loss function L is used to measure the error between
label yij and the estimated value from model g. The term
−λ
∑ni

j=1 vij is the regularization term for instance weights
vi, where parameter λ controls the learning pace. The nota-
tions used in this paper are summarized in Table 1.

The problem defined above is very challenging in the fol-
lowing three aspects. First, data instances for all m batches
can be too large to be handled simultaneously in their en-
tirety, thus requiring the use of a scalable algorithm for large
datasets. Second, the instance weight variable vi of each
batch depends on the optimization result for w shared by all
the data, which means all the batches are inter-dependent and
it is thus not feasible to run them in parallel. Third, the ob-
jective function of variableswi and vi are jointly non-convex
and it is an NP-hard problem to retrieve the global optimal
solution [Gorski et al., 2007]. In next section, we present a
distributed self-paced learning algorithm based on consensus
ADMM to address all these challenges.

3 The Proposed Methodology

In this section, we propose a distributed self-paced learning
algorithm based on the alternating direction method of multi-
pliers (ADMM) to solve the problem defined in Section 2.

The problem defined in Equation (1) cannot be solved in
parallel because the model parameter w is shared in each
batch and the result of w will impact on the instance weight
variable vi for each batch. In order to decouple the relation-
ships among all the batches, we introduce different model pa-
rameters wi for each batch and use an auxiliary variable z to
ensure the uniformity of all the model parameters. The prob-
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lem can now be reformulated as follows:

argmin
wi,vi,z

m∑
i=1

fi(wi,vi;λ) + ‖z‖22

s.t. vij ∈ [0, 1], ∀i = 1, . . . ,m, ∀j = 1, . . . , ni
wi − z = 0, ∀i = 1, . . . ,m

(3)

where the function fi(wi,vi) is defined as follows.

fi(wi,vi;λ) =

ni∑
j=1

vijL(yij , g(wi,xij))− λ
ni∑
j=1

vij (4)

Unlike the original problem defined in Equation (1), here
each batch has its own model parameterwi and the constraint
wi − z = 0 for ∀i = 1, . . . ,m ensures the model parameter
wi has the same value as the auxiliary variable z. The pur-
pose of the problem reformulation is to optimize the model
parameters wi in parallel for each batch. It is important to
note that the reformulation is tight because our new problem
is equivalent to the original problem when the constraint is
strictly satisfied.

In the new problem, Equation (3) is a bi-convex optimiza-
tion problem over vi and wi for each batch with fixed z,
which can be efficiently solved using the Alternate Convex
Search (ACS) method [Gorski et al., 2007]. With the variable
v fixed, the remaining variables {wi}, z and α can be solved
by consensus ADMM [Boyd et al., 2011]. As the problem is
an NP-hard problem, in which the global optimum requires
polynomial time complexity, we propose an alternating al-
gorithm DSPL based on ADMM to handle the problem effi-
ciently.

The augmented Lagrangian format of optimization in
Equation (3) can be represented as follows:

L =
m∑
i=1

fi(wi,vi;λ) + ‖z‖22 +
m∑
i=1

αTi (wi − z)

+
ρ

2

m∑
i=1

‖wi − z‖22

(5)

where {αi}mi=1 are the Lagrangian multipliers and ρ is the
step size of the dual step.

The process used to update model parameter wi for the ith
batch with the other variables fixed is as follows:

wk+1
i = argmin

wi

fi(wi,vi;λ) + [αki ]
T (wi − zk)

+
ρ

2
‖wi − zk‖22

(6)

Specifically, if we choose the loss function L to be a
squared loss and model g(w,xij) to be a linear regression
g(w,xij) = wTxij , we have the following analytical solu-
tion for wi:

wk+1
i =

(
2

ni∑
j=1

vijxijx
T
ij + ρ · I

)−1

·
(
2

ni∑
j=1

vijxijyij −αki + ρzk
) (7)

The auxiliary variable z and Lagrangian multipliersαi can
be updated as follows:

zk+1 =
ρ

2 + ρm

m∑
i=1

(wk+1
i +

1

ρ
αki )

αk+1
i = αki + ρ(wk+1

i − zk+1)

(8)

The stop condition of consensus ADMM is determined by
the (squared) norm of the primal and dual residuals of the kth

iteration, which are calculated as follows:

‖rk‖22 =
m∑
i=1

‖wk
i − zk‖

2
2

‖sk‖22 = mρ2‖zk − zk−1‖22

(9)

After the weight parameterwi for each batch has been up-
dated, the instance weight vector vi for each batch will be
updated based on the fixedwi by solving the following prob-
lem:

vt+1
i = argmin

vi

ni∑
j=1

vijL(yij , g(wt+1
i ,xij))− λ

ni∑
j=1

vij

(10)
For the above problem in Equation (10), we always obtain

the following closed-form solution:

vt+1
i =∞

(
L
(
yij , g(w

t+1
i ,xij)

)
< λ

)
(11)

where ∞(·) is the indicator function whose value equals to
one when the condition L

(
yij , g(w

t+1
i ,xij)

)
< λ is satis-

fied; otherwise, its value is zero.
The details of algorithm DSPL are presented in Algorithm

1. In Lines 1-2, the variables and parameters are initialized.
With the variables vi fixed, the other variables are optimized
in Lines 5-13 based on the result of consensus ADMM, in
which both the model weights wi and Lagrangian multipli-
ers αi can be updated in parallel for each batch. Note that if
no closed-form can be found for Equation (6), the updating
ofwi is the most time-consuming operation in the algorithm.
Therefore, updating wi in parallel can significantly improve
the efficiency of the algorithm. The variable vi for each batch
is updated in Line 14, with the variablewi fixed. In Lines 15-
18, the parameter λ is enlarged to include more data instances
into the training set. τλ is the maximum threshold for λ and
µ is the step size. The algorithm will be stopped when the
Lagrangian is converged in Line 20. The following two al-
ternative methods can be applied to improve the efficiency of
the algorithm: 1) dynamically update the penalty parameter ρ
after Line 11. When r > 10s, we can update ρ← 2ρ. When
10r < s, we have ρ ← ρ/2. 2) Move the update of variable
vi into the consensus ADMM step after Line 9. This ensures
that the instance weights are updated every time the model is
updated, so that the algorithm quickly converges. However,
no theoretical convergence guarantee can be made for the two
solutions, although in practice they do always converge.
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Algorithm 1: DSPL ALGORITHM

Input: X ∈ Rp×n, y ∈ Rn, λ0 ∈ R, τλ ∈ R, µ ∈ R
Output: solutionw(t+1), v(t+1)

1 Initializew0
i = 1, v0

i = 1
2 Choose εL > 0, εr > 0, εs > 0, λ← λ0, t← 0
3 repeat
4 k ← 0
5 repeat
6 zk+1 ← 1

m

∑m
i=1(w

k+1
i + 1

ρ
αki )

7 Update variableswk+1
i in parallel, for ∀i = 1 . . .m

8 wk+1
i ← argmin fi(wi,vi)+

9

[αki ]
T (wi − zk) + ρ

2
‖wi − zk‖22

10 Update dual αk+1
i ← αki + ρ(wk+1

i − zk+1) in
parallel

11 Update primal and dual residuals rk+1 and sk+1.
12 k ← k + 1

13 until ‖rk+1‖22 < εr and ‖sk+1‖22 < εs

14 vt+1
i ←∞

(
L
(
yij , g(w

t+1
i ,xij)

)
< λ

)
, for

∀i = 1 . . .m
15 if λ < τλ then
16 λ← λ ∗ µ
17 else
18 λ← τλ
19 t← t+ 1

20 until ‖Lt+1 − Lt‖2 < εL
21 return zt+1, vt+1

4 Theoretical Analysis
In this section, we will prove the convergence of the proposed
algorithm. Before we start to prove the convergence of Algo-
rithm 1, we make the following assumptions regarding our
objective function and penalty parameter ρ:
Assumption 1 (Gradient Lipchitz Continuity). There exists
a positive constant ϕi for objective function fi(wi) of each
batch with the following properties:

‖Owifi(xi)− Owifi(yi)‖ ≤ ϕi‖xi − yi‖,
∀xi,yi, i = 1, . . . ,m

(12)

Assumption 2 (Lower Bound). The objective function in
problem (3) has a lower bound B as follows:

B = min
wi,vi,z

{ m∑
i=1

fi(wi,vi) + ‖z‖22

}
> −∞ (13)

Assumption 3 (Penalty Parameter Constraints). For ∀i =
1 . . .m, the penalty parameter ρi for each batch is chosen
in accord with the following constraints:
• For ∀i, the subproblem (6) of variable wi is strongly

convex with modulus γi(ρi).
• For ∀i, we have ρiγi(ρi) > 2ϕ2

i and ρi ≥ ϕi.
Note that when ρi increases, subproblem (6) will be even-

tually become strongly convex with respect to variable wi.
For simplicity, we will choose the same penalty parameter ρ
for all the batches with ρ = maxi(ρi). Based on these as-
sumptions, we can draw the following conclusions.

Lemma 1. Assume the augmented Lagrangian format of op-
timization problem (3) satisfies Assumption 1, the augmented
Lagrangian L has the following property:

L({wk+1
i }, zk+1,αk+1) ≤ L({wk

i }, zk,αk) (14)
Proof. Since the the objective function fi(wi) for each batch
is gradient Lipchitz continuous with a positive constant ϕi,
the Lagrangian in Equation (5) has the following property ac-
cording to Lemma 2.2 in [Hong et al., 2016]:
L({wk+1

i }, zk+1,αk+1)− L({wk
i }, zk,αk)

≤
m∑
i=1

(
ϕ2
i

ρ
− γi(ρ)

2

)
‖wk+1

i −wk
i ‖

2
2 −

γ

2
‖zk+1 − zk‖22

(a)

≤ −γ
2
‖zk+1 − zk‖22 ≤ 0

(15)
where γ = mρ > 0. The inequality (a) follows from
Assumption 2, namely that ργi(ρ) > 2ϕ2

i , so we have(
ϕ2

i

ρ −
γi(ρ)
2

)
< 0.

Lemma 2. Assume the augmented Lagrangian of problem
(3) satisfies Assumptions 1-3, the augmented Lagrangian L
is lower bounded as follows:

lim
k→∞

L({wk+1
i }, zk+1,αk+1) ≥ B (16)

where B is the lower bound of the objective function in prob-
lem (3).

The proof details of 2 can be found in the paper’s extended
version1.
Theorem 3. The Algorithm 1 converges when Assumptions
1-3 are all satisfied.

Proof. In Lemmas 1 and 2, we proved that the Lagrangian
is monotonically decreasing and has a lower bound during
the iterations of ADMM. Now we will prove that the same
properties hold for the entire algorithm after updating variable
v and parameter λ.
L({wt+1},vt+1, zt+1,αt+1;λt+1)

(a)

≤ L({wt},vt+1, zt,αt;λt+1)
(b)

≤ L({wt},vt, zt,αt;λt+1)

=L({wt},vt, zt,αt;λt) + (λt − λt+1)

m∑
i=1

ni∑
j=1

vtij

(c)

≤ L({wt},vt, zt,αt;λt)
Inequality (a) follows Lemma 1 and inequality (b) follows the
optimization step in Line 14 in Algorithm 1. Inequality (c)
follows from the fact that λ increases monotonically so that
λt ≤ λt+1. As L({wt+1}, zt+1,αt+1) for some constant
values of v and λ has a lower bound B, we can easily prove
that L({wt+1},vt+1, zt+1,αt+1;λt+1) ≥ B + C − τλn,
where C is a constant and n is the size of the entire dataset.
Therefore, the Lagrangian L is convergent. According to the
stop condition for Algorithm 1, the algorithm converges when
the Lagrangian L is converged.

1https://xuczhang.github.io/papers/ijcai18 dspl extend.pdf

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3151



5 Experimental Results
In this section, the performance of the proposed algorithm
DSPL is evaluated for both synthetic and real-world datasets
in robust regression task. After the experimental setup has
been introduced in Section 5.1, we present the results for
the regression coefficient recovery performance with differ-
ent settings using synthetic data in Section 5.2. Due to
the space limitation, the real-world data evaluation based on
house rental price prediction is presented in the extended
version2. All the experiments were performed on a 64-
bit machine with an Intel(R) Core(TM) quad-core processor
(i7CPU@3.6GHz) and 32.0GB memory. Details of both the
source code and the datasets used in the experiment can be
downloaded here3.

5.1 Experimental Setup
Datasets and Labels
The datasets used for the experimental verification were com-
posed of synthetic and real-world data. The simulation sam-
ples were randomly generated according to the model y(i) =
[X(i)]Tw∗ + u

(i) + ε(i) for each mini-batch, where w∗ rep-
resents the ground truth coefficients and u(i) the adversarial
corruption vector. ε(i) represents the additive dense noise for
the ith batch, where ε(i)j ∼ N (0, σ2). We sampled the re-
gression coefficientsw∗ ∈ Rp as a random unit norm vector.
The covariance data X(i) for each mini-batch was drawn in-
dependently and identically distributed from xi ∼ N (0, Ip)
and the uncorrupted response variables were generated as
y
(i)
∗ =

[
X(i)

]T
w∗ + ε(i). The corrupted response vector

for each mini-batch was generated as y(i) = y
(i)
∗ + u(i),

where the corruption vector u(i) was sampled from the uni-
form distribution [−5‖y(i)

∗ ‖∞, 5‖y(i)
∗ ‖∞]. The set of uncor-

rupted points was selected as a uniformly random subset of
[ni] for each batch.

The real-world datasets utilized consisted of house rental
transaction data from two cities, New York City and Los An-
geles listed on the Airbnb4 website from January 2015 to
October 2016. These datasets can be publicly downloaded5.
For the New York City dataset, the first 321,530 data samples
from January 2015 to December 2015 were used as the train-
ing data and the remaining 329,187 samples from January to
October 2016 as the test data. For the Los Angeles dataset,
the first 106,438 samples from May 2015 to May 2016 were
used as training data, and the remaining 103,711 samples as
test data. In each dataset, there were 21 features after data
preprocessing, including the number of beds and bathrooms,
location, and average price in the area.

Evaluation Metrics
For the synthetic data, we measured the performance of the
regression coefficient recovery using the averaged L2 error
e = ‖ŵ − w∗‖2, where ŵ represents the recovered coeffi-
cients for each method and w∗ represents the ground truth

2https://xuczhang.github.io/papers/ijcai18 dspl extend.pdf
3https://goo.gl/cis7tK
4https://www.airbnb.com/
5http://insideairbnb.com/get-the-data.html

4/10 5/10 6/10 7/10 8/10 9/10

TORR 0.093 0.109 0.088 0.086 0.079 0.083
TORR25 0.174 0.165 0.189 0.214 0.216 0.241
RLHH 0.635 0.619 0.670 0.907 0.851 0.932
DRLR 0.014 0.131 0.222 0.274 0.304 0.346
SPL 0.038 0.047 0.047 0.044 0.053 0.064

DSPL 0.030 0.034 0.039 0.036 0.041 0.045

Table 2: Regression Coefficient Recovery Performance for Different
Corrupted Batches

regression coefficients. For the real-world dataset, we used
the mean absolute error (MAE) to evaluate the performance
for rental price prediction. Defining ŷ and y as the predicted
price and ground truth price, respectively, the mean absolute
error between ŷ and y can be presented as MAE(ŷ,y) =
1
n

∑n
i=1

∣∣ŷi− yi∣∣, where yi represents the label of the ith data
sample.

Comparison Methods
We used the following methods to compare the performance
of the robust regression task: Torrent (Abbr. TORR) [Bhatia
et al., 2015], which is a hard-thresholding based method that
includes a parameter for the corruption ratio. As this param-
eter is hard to estimate in practice, we opted to use a variant,
TORR25, which represents a corruption parameter that is uni-
formly distributed across a range of ±25% off the true value.
We also used RLHH [Zhang et al., 2017b] for the comparison,
which applies a recently proposed robust regression method
based on heuristic hard thresholding with no additional pa-
rameters. This method computes the regression coefficients
for each batch, and averages them all. The DRLR [Zhang et
al., 2017a] algorithm, which is a distributed robust learning
method specifically designed to handle large scale data with
a distributed robust consolidation. The traditional self-paced
learning algorithm (SPL) [Kumar et al., 2010] with the pa-
rameter λ = 1 and the step size µ = 1.1 was also compared
in our experiment. For DSPL, we used the same settings as
for SPL with the initial λ0 = 0.1 and τλ = 1. All the results
from each of these comparison methods were averaged over
10 runs.

5.2 Robust Regression in Synthetic Data
Recovery Coefficients Recovery
Figure 1 shows the coefficient recovery performance for dif-
ferent corruption ratios in uniform distribution. Specifically,
Figures 1(a) and 1(b) show the results for a different number
of features with a fixed data size. Looking at the results, we
can conclude: 1) Of the six methods tested, the DSPL method
outperformed all the competing methods, including TORR,
whose corruption ratio parameter uses the ground truth value.
2) Although DRLR turned in a competitive performance when
the data corruption level was low. However, when the corrup-
tion ratio rose to over 40%, the recovery error is increased
dramatically. 3) The TORR method is highly dependent on
the corruption ratio parameter. When the parameter is 25%
different from the ground truth, the error for TORR25 was
over 50% compared to TORR, which uses the ground truth
corruption ratio. 4) When the feature number is increased,
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Figure 1: Regression coefficient recovery performance for different corruption ratios.
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Figure 2: Relationship between parameter λ and coefficient recovery
error and the corresponding Lagrangian.

the average error for the SPL algorithm increased by a factor
of four. However, the results obtained for the DSPL algorithm
varied consistently with the corruption ratio and feature num-
ber. The results presented in Figures 1(a) and 1(c) conform
that the DSPL method consistently outperformed the other
methods for larger datasets, while still achieving a close re-
covery of the ground truth coefficient.

Performance on Different Corrupted Batches
The regression coefficient recovery performance for different
numbers of corrupted batches is shown in Table 2, ranging
from four to nine corrupted batches out of the total of 10
batches. Each corrupted batch used in the experiment con-
tains 90% corrupted samples and each uncorrupted batch has
10% corrupted samples. The results are shown for the aver-
aged L2 error in 10 different synthetic datasets with randomly
ordered batches. Looking at the results shown in Table 2, we
can conclude: 1) When the ratio of corrupted batches exceeds
50%, DSPL outperforms all the competing methods with a
consistent recovery error. 2) DRLR performs the best when

the mini-batch is 40% corrupted, although its recovery error
increases dramatically when the number of corrupted batch
increases. 3) SPL turns in a competitive performance for dif-
ferent levels of corrupted batches, but its error almost doubles
when the number of corrupted batches increases from four to
nine.

Analysis of Parameter λ
Figure 2 show the relationship between the parameter λ and
the coefficient recovery error, along with the corresponding
Lagrangian L. This result is based on the robust coefficient
recovery task for a 90% data corruption setting. Examining
the blue line, as the parameter λ increases, the recovery er-
ror continues to decrease until it reaches a critical point, after
which it increases. These results indicate that the training
process will keep improving the model until the parameter λ
becomes so large that some corrupted samples become incor-
porated into the training data. In the case shown here, the crit-
ical point is around 1.0. The red line shows the value of the
Lagrangian L in terms of different values of the parameter λ,
leading us to conclude that: 1) the Lagrangian monotonically
decreases as λ increases. 2) The Lagrangian decreases much
faster once λ reaches a critical point, following the same pat-
tern as the recovery error shown in blue line.

6 Conclusion
In this paper, a distributed self-paced learning algorithm
(DSPL) is proposed to extend the traditional SPL algorithm
to its distributed version for large scale datasets. To achieve
this, we reformulated the original SPL problem into a dis-
tributed setting and optimized the problem of treating differ-
ent mini-batches in parallel based on consensus ADMM. We
also proved that our algorithm can be convergent under mild
assumptions. Extensive experiments on both synthetic data
and real-world rental price data demonstrated that the pro-
posed algorithms are very effective, outperforming the other
comparable methods over a range of different data settings.
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