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The presence of data noise and corruptions has recently invoked increasing attention on robust least-squares

regression (RLSR), which addresses this fundamental problem that learns reliable regression coefficients when

response variables can be arbitrarily corrupted. Until now, the following important challenges could not be

handled concurrently: (1) rigorous recovery guarantee of regression coefficients, (2) difficulty in estimating

the corruption ratio parameter, and (3) scaling to massive datasets. This article proposes a novel Robust re-

gression algorithm via Heuristic Corruption Thresholding (RHCT) that concurrently addresses all the above

challenges. Specifically, the algorithm alternately optimizes the regression coefficients and estimates the op-

timal uncorrupted set via heuristic thresholding without a pre-defined corruption ratio parameter until its

convergence. Moreover, to improve the efficiency of corruption estimation in large-scale data, a Robust re-

gression algorithm via Adaptive Corruption Thresholding (RACT) is proposed to determine the size of the

uncorrupted set in a novel adaptive search method without iterating data samples exhaustively. In addition,

we prove that our algorithms benefit from strong guarantees analogous to those of state-of-the-art methods

in terms of convergence rates and recovery guarantees. Extensive experiments demonstrate that the effective-

ness of our new methods is superior to that of existing methods in the recovery of both regression coefficients

and uncorrupted sets, with very competitive efficiency.
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1 INTRODUCTION

The presence of noise and corruption in real-world data can be inevitably caused by experimental

errors, accidental outliers, or even adversarial data attacks. As traditional least squares regres-

sion methods are vulnerable to outlier observations [21], we study robust least-squares regres-

sion (RLSR) to handle the challenge of learning a reliable set of regression coefficients given the

presence of significant adversarial corruption in its response vector. Due to the ubiquitousness

of data corruption and the popularity of regression methods, RLSR has become a critical compo-

nent of several important real-world applications in various domains such as signal processing

[11, 31, 42], economics [18, 27], bioinformatics [20], social media [10, 35], and image processing

[23, 34].

Given a data matrix X = [x1, . . . xn] ∈ Rp×n and its corresponding response vector y ∈ Rn , a

commonly adopted model from existing methods assumes the observed response is obtained from

the generative model y = XT β∗ + ε , where β∗ is the true regression coefficients that we wish to

recover and ε ∈ Rn is the noise vector under stochastic distributions. However, this method cannot

explicitly model adversarial attacks on the data, which may generate arbitrarily corrupted data.

Instead, we model the noise vector into two parts: adversarial data corruption and white noise

with small bound. Then, the response vector is represented as y = XT β∗ +u + ε , where u ∈ Rn

is the corruption vector with arbitrarily corrupted values and ε contains the white noises. Notice

that for an adaptive adversary, the corruption ratio γ cannot be larger than 1/2 since the adversary

can introduce a corruption vector as u = XT (β ′ − β∗) to make it impossible for any algorithm to

distinguish the ground truth β∗ and adversarially chosen model β ′.
For those seeking to address the robust regression problem, the major challenges can be sum-

marized as follows. (1) Difficulty in estimating the corrupted data. For data corruption estimation,

a common assumption for corruption vector u is that the vector is sparsely supported such as

‖u‖0 ≤ γ · n, where γ is the corruption ratio. A naive solution is to require the parameter inputted

by users, where the parameter is expected to be larger than the exact corruption ratio γ ∗ to ensure

all the corrupted data is eliminated [1]. Unfortunately, it is seldom practical for users to estimate

the corruption ratio under the assumption that the response vector can be arbitrarily corrupted.

Also, the corruption vector u can be handled in L1-penalty based methods [25] by solving the

problem: arg minβ,u ‖β ‖1 + λ‖u‖1, s.t., y = XT β +u. However, it still requires a parameter λ to

control the sparsity of data corruption, which is also difficult for users to estimate in practice.

(2) Rigorous recovery guarantee of regression coefficients. The existing theoretical analysis on ro-

bust regression methods always assumes severe restrictions on the data distribution. For example,

data is required to be sampled from an isotropic Gaussian ensemble [34] or row-sampled from

an incoherent orthogonal matrix [25]. The severe data restrictions of these methods make their

recovery properties hard to be applied in real-world data. Moreover, some robust regression meth-

ods, such as a sub-sampling algorithm [22] require mild assumptions on the data, but the recovery

boundaries of their methods are not rigorous in a massive dataset. (3) Scaling to massive datasets.

The fast-growing amount of data makes the efficiency of robust regression algorithms more im-

portant than ever before. For instance, the system of the urban Internet of Things (IoT) [37] can

produce thousands of data records every second in monitoring air quality, energy consumption,

and traffic congestion. Therefore, it is necessary for the robust model to handle data faster than

the throughput of these real-world systems.

To simultaneously address these technical challenges, this article presents a novel Robust regres-

sion model via Heuristic Corruption Thresholding (RHCT) and its adaptive estimation variation,

named Robust regression via Adaptive Corruption Thresholding (RACT). The main contributions

of our study are summarized as follows:
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—Proposing efficient algorithms to address the RLSR problem. Two novel robust regression al-

gorithms, RHCT and RACT, are proposed to recover the regression coefficients and uncor-

rupted set based on heuristic corruption thresholding and its adaptive variation, respec-

tively. Unlike with a fixed corruption ratio, our methods can dynamically estimate the data

corruption ratio based on the optimized regression coefficients in each iteration. The new

design of corruption estimation makes our methods perform efficiently when the data size

becomes large.

—Designing effective approaches to estimate the corruption ratio. A novel heuristic corruption

thresholding method is proposed to estimate the corruption ratio by minimizing a novel

heuristic function of residual errors. To improve the efficiency of corruption ratio estimation

when the data size is extremely large, we also propose an adaptive variation method to

estimate the corruption ratio based on adaptive searching steps without computing heuristic

values for all the data samples. Our empirical results show the adaptive variation runs more

than 500% faster than heuristic-based methods when the data size is over 1 million.

—Providing a rigorous robustness guarantee for regression coefficient recovery. We prove that our

RHCT algorithm converges at a geometric rate and recovers β∗ exactly under the assumption

that the least-squares function satisfies both the Subset Strong Convexity (SSC) and Subset

Strong Smoothness (SSS) properties. Specifically, we prove that our corruption thresholding

methods ensures that the residual of the estimated uncorrupted set in each iteration has a

tight upper error bound for the true uncorrupted set.

—Conducting extensive experiments for performance evaluation. Our proposed algorithm was

evaluated with eight competing methods in both synthetic and real-world datasets. The

results demonstrate that our approaches consistently outperform existing methods in both

regression coefficients and uncorrupted set recovery, delivering a competitive running time.

The remainder of this article is organized as follows. Section 2 reviews the background and re-

lated work in robust regression models and outlier detection methods. Section 3 gives a formal

problem formulation. The proposed RHCT algorithm and its adaptive variation, RACT, are pre-

sented in Section 4. Section 5 presents the proof for the recovery guarantees. In Section 6, the

experimental results on both synthetic and real-world datasets are analyzed, and the article con-

cludes with a summary of our work in Section 7.

2 RELATED WORK

The work related to this article is summarized in two categories: robust regression models and

outlier detection.

2.1 Robust Regression Models

A large body of literature on the robust regression problem has been built up over the last few

decades. Most of the studies focus on handling stochastic noise in small amounts [14, 19]; however,

these methods cannot be applied to data that exhibits malicious corruption [6, 38, 40]. Some work

discovers regression coefficients with adversarial data corruption [1, 6, 16, 39], but most of them

[16, 29] lack the theoretical guarantee of regression coefficients recovery. To theoretically guaran-

tee the recovery performance, Chen et al. [6] proposed a trimmed inner product based algorithm,

but the recovery boundary of their method is not tight in a massive dataset. Also, McWilliams

et al. [22] proposed a sub-sampling algorithm for a large-scale corrupted linear regression; how-

ever, the recovery result they provide is not close to an exact recovery [1]. To pursue the exact

recovery results for the RLSR problem, some work focused on L1 penalty based convex formula-

tions [25, 33]. However, these methods imposed severe restrictions on the data distribution, such
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as row-sampling from an incoherent orthogonal matrix [25]. Although robust regression meth-

ods, such as M-estimator [14] and least-trimmed squares [28], have been shown to be effective

in many applications, their success relies on the proper choices of threshold parameters, such as

corruption ratio [1] and regularization parameter [29], which are difficult to determine manually.

For instance, Chen et al. [6] require the upper bound of the outliers number, which is also difficult

to estimate when they assume the data can be adversarially corrupted. She and Owen [29] rely on

a regularization parameter to control the size of the uncorrupted set based on soft-thresholding.

Recently, Bhatia et al. [1] proposed a hard-thresholding algorithm for the RLSR problem. Although

the method guarantees an exact recovery of regression coefficients β under a mild assumption for

covariate matrix, their results are highly dependent on the corruption ratio parameter γ inputted

by users. Specifically, the parameter is required to be larger than the exact corruption ratio γ ∗ to

ensure its convergence. Unfortunately, it is seldom practical to estimate the corruption ratio under

the assumption that the response vector is arbitrarily corrupted.

2.2 Anomaly and Outlier Detection

Outlier detection, also known as anomaly detection, has been well studied in a wide range of

practical applications [2, 8, 24]. Literature on this work can be broadly classified into the following

two types [9]: parametric methods [7] and non-parametric methods [32]. Parametric outlier

detection methods explicitly assume the probabilistic or distribution model for the given data,

while the non-parametric methods do not assume any knowledge of the data distribution. In

parametric outlier detection, some work utilized heavy-tailed distributions [41] such as Student

t-distribution and Poisson distribution, to model the outliers, while others detected outliers based

on Gaussian distribution [9, 30] under the assumption that outliers have a small probability of

occurrence in the population. However, the lack of prior knowledge regarding the underlying

distribution of the dataset makes the distribution-based methods difficult to use in practice.

Moreover, the data can be corrupted adversarially without following any distribution, which

makes any assumption on data distribution infeasible.

In non-parametric methods, no prior knowledge on the data distribution is assumed. One pop-

ular non-parametric approach for outlier detection is based on kernel functions [17, 26]. These

approaches utilize kernel functions to approximate the actual density distribution. The instances

lying in the low probability area of the kernel density function are declared to be outliers. The

kernel-function-based methods are computationally expensive when the data dimension increases.

Another type of work, called distance-based outlier detection methods, detects outliers based on

local neighborhood or k-nearest neighbors (kNN) in measuring the distance between each data

point. However, both neighborhood and kNN searches in large datasets are not expensive, which

typically requires O (N 2) distance computation. Compared to distance-based methods, density-

based outlier detection methods [3, 4, 15] generally have a stronger capability of modeling outliers

by investigating not only the neighbors but the local densities. For instance, Breuning et al. [4]

quantify the outlying degree of points using the local outlier factor to distinguish outliers from

the rest of the data no matter the parameter of neighborhood distance. However, the approach re-

quires computing the local outlier factor for all data points, which is much more computationally

expensive than distance-based methods. Last, all the outlier detection methods require detecting

outlier data points before utilizing the regression models, which hardly make a theoretical guar-

antee on the recovery of regression coefficients.

3 PROBLEM FORMULATION

In this study, we consider the problem of RLSR with adversarially corrupted data. Given a covari-

ate matrix X = [x1, . . . ,xn], where each column x i ∈ Rp×1 and β∗ represents the ground truth
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Table 1. Math Notations

Notations Explanations

p,n ∈ R number of features and data samples

X ∈ Rp×n data samples containing all the features

β, β∗ ∈ Rp×1 estimated and ground truth regression coefficients

u ∈ Rn×1 corruption vector with adversarial values

ε ∈ Rn×1 dense noise vector, where εi ∼ N (0,σ 2)
y ∈ Rn×1 response vector, where y = XT β∗ +u + ε
r ∈ Rn×1 residual vector, where r = |y − XT β |
S ⊆ [n] estimated uncorrupted set

S∗ ⊆ [n] ground truth uncorrupted set, where S∗ = supp (u)
Ψ ,Ψ∗ ⊆ [μ] estimated and ground truth feature sets

coefficients of the regression model, we assume the corresponding response vector y ∈ Rn×1 is

generated using the following model:

y = y∗ +u + ε, (1)

where y∗ = XT β∗ and u is the unbounded corruption vector introduced by an adversary. ε repre-

sents the additive dense noise, where εi ∼ N (0,σ 2). The goal of our study is to learn a new problem,

which is to recover the regression coefficients β∗ and simultaneously determine the uncorrupted

point set Ŝ . The problem is formally defined as follows:

β̂, Ŝ = arg min
β,S

���yS − XT
S β

���2

2

s .t . S ⊂ [n], |S | ≥ G (β ).

(2)

Given a subset S ⊂ [n], yS restricts the row of y to indices in S and XS signifies that the columns

of X are restricted to indices in S . Therefore, we have yS ∈ R |S |×1 and XS ∈ Rp×|S | . We use the

notation S∗ = supp (u) to denote the set of uncorrupted points, where supp (·) is the subset whose

elements are not zero. Also, for any vectorv ∈ Rn , the notationvS represents the |S |-dimensional

vector containing the components in S . The functionG (·) is to determine the size of set S according

to the regression coefficients β , which is explained in Section 4. The notations used in this paper

are summarized in Table 1.

The optimization problem in Equation (2) is challenging because the joint optimization of re-

gression coefficients β and the uncorrupted set S is a non-convex problem in general and existing

methods cannot guarantee rigorous recovery and provide an efficient convergence rate. To prove

the theoretical recovery of regression coefficients, we require that the least squares function sat-

isfies the SSC and SSS properties [1], which are defined as follows:

Definition 3.1 (SSC and SSS Properties). The least-squares function f (β ) = ‖yS − XT
S β ‖

2
2 satisfies

2ζα -SSC property and 2κα -SSS property if the following holds:

ζα I �
1

2
�2 fS (β ) � κα I for ∀S ∈ Sα . (3)

Equation (3) is equivalent to

ζα ≤ min
S ∈Sα

λmin

(
XSX

T
S

)
≤ max

S ∈Sα

λmax

(
XSX

T
S

)
≤ κα ,
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where λmin and λmax are defined as the smallest and largest eigenvalues of matrix X, respectively.

The SSC and SSS properties will be utilized in Section 5 to prove the theoretical guarantee on the

recovery of regression coefficients.

4 PROPOSED METHODOLOGY

We propose a robust regression algorithm via heuristic corruption thresholding, RHCT, in Sec-

tion 4.1. To improve the efficiency of the corruption estimation, an adaptive corruption threshold-

ing based algorithm, RACT, is proposed in Section 4.2.

4.1 Robust Regression via Heuristic Corruption Thresholding

In order to solve the problem in Equation (2) with the guarantee on the rigorous recovery of re-

gression coefficients, we propose a novel heuristic corruption thresholding based robust regression

algorithm, RHCT. As the regression coefficients β and uncrorrupted set S in Equation (2) are inter-

dependent, the algorithm iteratively optimizes β and S until both of them are converged. Although

the optimization of regression coefficients β has a closed-form solution when S is fixed, the opti-

mization of S is not trivial because it mounts to a non-convex discrete optimization problem. To

handle it, we propose a heuristic corruption thresholding method to determine the size of set S and

then apply the estimated uncorrupted size into hard thresholding operator for the optimization of

S elements.

Let residual vector r = y − XT β and rδ (k ) be the kth elements of r in ascending order of magni-

tude. The heuristic corruption thresholding method determines the size of the optimal uncorrupted

set τ̂ by optimizing the following problem:

τ̂ = arg min
τ

L (τ ) s .t . rδ (τ ) ≤
2τrδ (τo )

τo
, (4)

where the function L is defined as

L (τ ) :=
(rδ (τ ) + 1)/τ

(rδ (n) − rδ (τ ) )/(n − τ )
. (5)

The variable τo in the constraint is defined as follows:

τo = arg min
1≤τ ≤n

����� r 2
δ (τ ) −

‖rSτ ′ ‖22
τ ′

����� s .t . τo ∈ Z+, (6)

where τ ′ = τ − 
n/2� and Sτ ′ is the position set containing the smallest τ ′ elements in residual r .

The constraint is imposed to avoid the case when τ is close to n, where the residual becomes so

arbitrary that the denominator can become very large, making L much smaller than the value of

the estimated threshold τ̂ . Applying the estimated uncorrupted set size τ̂ and residual vector r ,

the hard thresholding operator determines the elements in the uncorrupted set S by selecting τ̂
samples with minimum values from residual vector r in ascending order. The formal definition of

the hard thresholding operator is as follows:

Definition 4.1 (Hard Thresholding Operator). Defining δ−1
r (i ) as the position of the ith element

in residual vector r ’s ascending order of magnitude, the heuristic hard thresholding of r is defined

as

Hτ̂ (r ) = {i ∈ [n] : δ−1
r (i ) ≤ τ̂ }. (7)

We will first present the reasoning behind our choice of function in this section, and then show

that our heuristic function can indeed ensure a rigorous recovery of regression coefficients β in

Section 5. Basically, our method follows an intuition that when the coefficients β are close to β∗,
the residual ri = yi − Xiβ of the uncorrupted sample i is smaller than that of corrupted sample in
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high possibility. The intuition can be explained by the generative model in Equation (1), where

the corrupted samples have the residual r ≈ u + ε , but the residual of uncorrupted samples only

contains the white noise ε . Moreover, as the corruption vectoru is arbitrary and unbounded, when

the residual vector r is sorted in ascending order, the slope of overall corrupted data is always much

larger than the slope of the uncorrupted data. As Figure 1 shows, point p∗ has the minimum L
value in the feasible domain. Therefore, we can estimate the corresponding threshold τ∗ of point

p∗ as the optimal threshold. To avoid a zero value for the numerator of L (τ ), we add 1 to all the

values in the residual vector.

Algorithm 1 shows the detailed steps of the heuristic corruption thresholding method. The result

of the L function for each uncorrupted size τ is computed in Lines 2–3 and stored in vector l ,
which is initialized in Line 1. The method will keep searching the uncorrupted size from the index

τ = δ−1
l

(1), which has the smallest value in the l vector to the largest index δ−1
l

(
n/2�) in the

ascending order of l (i ) until the current index τ satisfies the constraint in Equation (2). Then, the

estimated uncorrupted set Ŝ = Hτ (r ) is returned in Line 9. Otherwise, H
n/2� (r ) is returned in

Line 13 in case no τ satisfies the constraint in Equation (2).

The robust regression algorithm RHCT, based on heuristic hard thresholding, is proposed in

Algorithm 2. It follows an intuitive strategy of updating β to provide a better fit for the current

estimated set S in Line 3, and updating the residual vector r in Lines 4–5. It then estimates an active

set S of uncorrupted points via heuristic hard thresholding in Line 6 based on the residual vector

r = y − Xβ in the current iteration. The active set is initialized using all the data samples in Line 1.

The algorithm continues until the change in the residual vector falls within a small range. Figure 2

shows the residual of the uncorrupted set in the 1st and 5th iterations. It intuitively explains the

convergence progress of our algorithm: the optimization steps of β based on St make rSt
smaller

than its previous iteration, and it leads to smaller L values for items in St . Then, these items in St

ALGORITHM 1: Heuristic Corruption Thresholding

Input: Residual vector r , sample number n.

Output: Uncorrupted Set Ŝ
1 l ← 0, i ← 1

2 for j = 1..n do

3 lj ←
(rδ (j )+1)/j

(rδ (n )−rδ (j ) )/(n−j ) // compute the heuristic value for each data sample.

4 repeat

5 τ ← δ−1
l

(i )

6 τ ′ ← τ − 
n/2�

7 τo ← arg min1≤k≤n

����� r2
δ (k )
−
‖r Sτ ′ ‖

2
2

τ ′

����� s .t . k ∈ Z+ // compute the value of τo based

on current τ.

8 if rδ (τ ) ≤
2τ rδ (τo )

τo
then

9 returnHτ (r ) // return the heuristic hard thresholding H (·) when constraint

is satisfied.

10 end

11 i ← i + 1

12 until i ≤ 
n/2�
13 returnH
 n

2 � (r ) // return estimated corruption set with τ = 
n2 � if no proper value of

τ is found.
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Fig. 1. The blue line in Figure 1(a) indicates the values of residual vector r in ascending order, and the red

point in Figure 1(b) shows the corresponding value of the heuristic function. τ∗ is the estimated thresh-

old with the minimum L; τ1 and τ2 are the candidate threshold values in τ∗’s left- and right-hand sides,

respectively.

Fig. 2. Residual r in ascending order for the 1st (left) and 5th (right) iterations of RHCT algorithm.

have a much higher possibility of being kept in St+1 than items in [n] \ St . This progress continues

until the active set is fixed.

4.2 Adaptive Corruption Thresholding

The RHCT algorithm estimates the uncorrupted set S by computing the heuristic function L val-

ues in Equation (5) for each data sample and the L values of all the data samples are required

to be sorted for further uncorrupted set estimation. Although the computation of the heuristic

function for each data sample is efficient, when the data size is extremely large, both the heuristic

function computation and sorting operation are very time consuming. To solve this problem, a
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ALGORITHM 2: Rhct Algorithm

Input: Corrupted training data {x i ,yi }, i = 1 . . . n, tolerance ϵ

Output: solution β̂
1 S0 = [n], t ← 0

2 repeat

3 βt+1 ← (XStX
T
St

)−1XStySt // Update the regression coefficients β with estimated

corruption set St .

4 for i = 1..n do

5 r t+1
i ← |ySt i − xT

St i
β | // Update the residual value for each data sample.

6 St+1 ← HCT (r t+1) // calculate the estimated corruption set St+1 based on

residual vector r t+1.

7 t ← t + 1

8 until ‖r t+1
St+1
− r t

St
‖2 < ϵn

9 return βt+1

novel adaptive corruption thresholding method is proposed to estimate the uncorrupted set with-

out computing the heuristic function values for each data sample. Instead, the new method starts

searching for the uncorrupted size from n to 
n/2� + 1 in adaptive descent steps. Before introduc-

ing the details of the new proposed method, we will re-formalize the problem of uncorrupted size

estimation as

τ̂ := arg max

n/2�<τ ≤n

τ s .t . rδ (τ ) ≤
2τrδ (τo )

τo
,τ ∈ Z+, (8)

where rδ (k ) represents the kth elements of residual vector r in ascending order of magnitude. The

variable τo in the constraint is defined as an intermediate variable whose r 2
δ (τo )

has the closest value

to
‖r Hτ ′ (r ) ‖22

τ ′ , where τ ′ = τ − 
n/2� andHτ ′ (r ) represents the position set containing the smallest

τ ′ elements in the residual r .

Compared to the problem defined in Equation (4), the new problem can be more efficiently solved

without computing and sorting heuristic function values. One intuitive way to solve the problem

is searching from n to 
n/2� + 1 one by one and returning the first τ̂ that satisfies the constraint

in Equation (8). Although the intuitive method is easy to implement and can always achieve an

optimal solution, it is not efficient to verify the constraint from n to the estimated uncorrupted size

τ̂ one by one when the interval between n and τ̂ is very large. We define an intermediate variable

Δ as Δ ≡ τorδ (τ )

2τ rδ (τo )
; then, the constraint in Equation (8) can be rewritten as Δ ≤ 1.

In the case that Δ is larger than 1, we get
rδ (τ )

rδ (τo )
> 2τ

τo
> 2, which shows the residual of δ (τ ) is at

least two times larger than δ (τo ). Because rδ (τ ) = XT
δ (τ )

(β∗ − β t ) +uδ (τ ) + εδ (τ ) and the variance

of dense noise vector ε is small, the value of rδ (τ ) is mainly dependent on the value of data cor-

ruption uδ (τ ) . Since uδ (τo ) ≈ 0, a decrease of τ can make uδ (τ ) smaller but keeps the value uδ (τo )

unchanged. Therefore,
rδ (τ )

rδ (τo )
becomes smaller and the value of Δ is closer to 1. Similarly, in the case

that Δ < 1, we need to increase the value of τ to make Δ closer to 1. It is important to note that

the estimation method in Equation (8) requires the coefficients β to be optimized simultaneously.

Thus, we optimize the uncorrupted set S along with coefficients β until both of them converge.

The detailed steps of the adaptive corruption thresholding method are shown in Algorithm 3.

The uncorrupted size τi of the ith iteration is initialized to n in Line 1. The result of auxiliary

variables τo and Δi are computed in Line 3 and Line 4, respectively. After that, the corrupted

size τi+1 is updated to τi − �η · (Δi − 1) · n� in Line 6 for the i + 1 iteration, where the step size is

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 3, Article 28. Publication date: June 2019.
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ALGORITHM 3: Adaptive Corruption Thresholding

Input: Residual vector r , sample number n, threshold ϵ , step length η
Output: Uncorrupted Set Ŝ

1 i ← 0, τi ← n

2 repeat

3 τo ← arg min1≤k≤n

������ r2
δ (k )
−
‖r S

τ ′
i
‖22

τ ′i

������ s .t . k ∈ Z+

4 Δi ←
τorδ (τi )

2τi rδ (τo )
// compute the value of intermediate variable Δ in the ith

iteration.

5 repeat

6 τi+1 ← τi − �η · (Δi − 1) · n� // update τ with an adaptive searching step.

7 τ ′i+1 ← τi+1 − 
n/2�
8 if τ ′i+1 < 0 then

9 η ← η/2 // reduct the size of parameter η if current τ is too small.

10 end

11 until τ ′i+1 > 0

12 i ← i + 1

13 until |Δi − 1| > ε

14 returnHτi−1 (r ) // return the hard thresholding based on the τ in the i − 1th

iteration.

adaptively controlled by the value of Δi − 1. Notice that if the value of Δi − 1 is larger than zero,

a smaller uncorrupted size will be estimated; otherwise, the size is increased. To prevent the step

size from being too large, which makes the estimated corrupted size smaller than 
n/2�, the step

size parameter η will also be adaptively shrunk in Lines 8–10. Finally, the estimated uncorrupted

set will be returned by hard thresholding based on the residual vector r in Line 14.

5 THEORETICAL RECOVERY ANALYSIS

In this section, the theoretical recovery analyses of our proposed algorithms will be presented.

Both the RHCT and RACT algorithms share the same constraint and recovery steps, which leads

them to have the same recovery property. Therefore, the recovery analysis of algorithm RHCT

without dense noise is shown in this section, i.e., y = XT β +u. For the case with dense noise,

y = XT β +u + ε will be presented in Appendix A.

The convergence proof relies on the optimality of two steps carried out by the algorithm, the β
optimization step that selects the best coefficients based on the uncorrupted set, and the heuristic

hard threshold step that automatically discovers the best active set based on the current regression

coefficients.

Lemma 5.1. For a given residual vector r ∈ Rn , let δ (k ) be the kth position of the ascending order

in vector r , i.e., rδ (1) ≤ rδ (2) ≤ · · · ≤ rδ (n) . For any 1 ≤ τ1 < τ2 ≤ n, let S1 = {δ (i ) |1 ≤ i ≤ τ1} and

S2 = {δ (i ) |1 ≤ i ≤ τ2}. We then have ‖rS1 ‖22 ≤
τ1

τ2
‖rS2 ‖22 ≤ ‖rS2 ‖22 .

Proof. Let S3 = {δ (i ) : τ1 + 1 ≤ i ≤ τ2}. Clearly , we have ‖rS2 ‖22 = ‖rS1 ‖22 + ‖rS3 ‖22 . Moreover,

since each element in S3 is larger than any of the element in S1, we have ‖rS1 ‖22 ≤ ‖rS2 ‖22 +
|S3 |
|S1 | ‖rS1 ‖22 ≤

|S1 |
|S1 |+ |S3 | ‖rS2 ‖22 =

τ1

τ2
‖rS2 ‖22 ≤ ‖rS2 ‖22 . �

Lemma 5.2. Let St be the estimated uncorrupted set at the t th iteration. If τt ≥ τ∗ = γn, then |S∗ ∩
St | ≥ τt − n

2 .
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Proof. When St contains all the elements of [n] \ S∗, |S∗ ∩ St | gets the smallest value τt − |[n] \
S∗ |. So we have

|S∗ ∩ St | ≥ τt − |[n] \ S∗ | = τt − (1 − γ )n, (9)

Because γ > 1
2 , we have

|S∗ ∩ St | ≥ τt − n +
n

n
= τt −

n

2
. (10)

�

Lemma 5.3. Let τt be the estimated uncorrupted threshold at the t th iteration. If τt > τ∗ = γn, then

‖r t
St
‖22 ≤ [1 +

128(1−γ )
2γ−1 ]‖r t

S∗
‖22 .

Proof. To simplify the notation, we will omit all the subscripts t that signify the t th iteration in

the explanation below and assumes the residual vector r is sorted in ascending order of magnitude.

According to the optimization step in Equation (4), we have the following properties:

rτ ≤2 ·
τrτo

τo

(a)
≤ 8 · rτo

r 2
τ

(b )
≤ 64

τ ′
‖rS∗∩St

‖22

|St \ S∗ |r 2
τ

(c )
≤ (1 − γ ) · n · 64

τ ′
‖rS∗∩St

‖22 .

(11)

Inequality (a) follows from τo ≥ τ/4, and inequality (b) follows from the definition of τo in

Equation (6) and the fact that |S∗ ∩ St | ≥ τ ′ in Lemma 5.2. Inequality (c) follows from |St \ S∗ | ≤
(1 − γ ) · n and ‖rSt \S∗ ‖22 ≤ |St \ S∗ |r 2

τ . Then, we have

‖rSt \S∗ ‖22 ≤
[
(1 − γ ) · n · 64

τ ′
+ 1

]
‖rS∗\St

‖22

+

[
(1 − γ ) · n · 64

τ ′

]
‖rS∗∩St

‖22

‖rSt \S∗ ‖22 + ‖rS∗∩St
‖22

(d )
≤

[
(1 − γ ) · n · 64

τ ′
+ 1

]
‖rS∗ ‖22

‖rSt
‖22

(e )
≤

[
1 +

128(1 − γ )

2γ − 1

]
‖rS∗ ‖22 .

(12)

Inequality (d) follows from ‖rS∗ ‖22 = ‖rS∗\St
‖22 + ‖rS∗∩St

‖22 . Inequality (e) follows from τ ′ = τt −
n
2 . �

Theorem 5.4. Let X = [x1, . . . ,xn] ∈ Rp be the given data matrix and y = XT β∗ +u be the

corrupted output with ‖u‖0 = γn. Let Σ0 be an invertible matrix such that X̃ = Σ−1/2
0 X ; f (β ) =

‖yS − X̃Sβ ‖22 satisfies the SSC and SSS properties at level α , γ with 2ζα,γ and 2κα,γ . If the data sat-

isfies
κγ

ζ1−α
< 1√

λ
(
√

2 − 1), then after t = O (log 1
η

μ ‖u ‖2
ϵ

) iterations, Algorithm 2 yields an ϵ-accurate

solution β t .

Proof. Let Gt = (XSt
XT

St
)−1XSt

, the t th iteration of Algorithm 2 satisfies

β t+1 = GtySt
= Gt

(
XT

St
β∗ +uSt

)
= β∗ +GtuSt

.

Thus, the residual in the (t + 1)th iteration for any set S ⊂ [n], yields

r t+1
S = yS − XT

S β
t+1 = uS − XT

S GtuSt
.
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For each iteration, we have two conditions when choosing different values of τ t+1. For condition

1, τ t+1 ≤ τ∗, and we have ‖r t+1
St+1
‖22 ≤ ‖r t+1

S∗
‖22 (see Lemma 5.1).

‖uSt+1 ‖22 =
���uSt+1 − XT

St+1
GtuSt

���2

2
− ���XT

St+1
GtuSt

���2

2

+ 2uT
St+1

XT
St+1

GtuSt

(a)
≤ ���XT

S∗
GtuSt

���2

2
− ���XT

St+1
GtuSt

���2

2
+ 2uT

St+1
XT

St+1
GtuSt

(b )
≤

κ2
α1

ζ 2
1−γ

‖uSt
‖22 + 2

κα1

ζ1−γ
‖uSt
‖2‖uSt+1 ‖2,

(13)

where α1 = maxt {1 − τt

n
}. Inequality (a) follows from ‖r t+1

St+1
‖22 ≤ ‖r t+1

S∗
‖22 , and inequality (b) fol-

lows from the setting X̃ = Σ−1/2
0 X , the SSC/SSS properties, |St | ≤ (1 − γ ) · n, and |S∗ \ St+1 | ≤ α1 · n.

Solving the quadratic equation for the corruption vector gives us

‖uSt+1 ‖2 ≤ (1 +
√

2)
κα1

ζ1−γ
‖uSt
‖2. (14)

For condition 2, τ t+1 > τ∗. According to Lemma 5.3, ‖r t
St
‖22 ≤ λ‖r t

S∗
‖22 where λ = 1 +

128(1−γ )
2γ−1 , so

we have

‖uSt+1 ‖22 =
���uSt+1 − XT

St+1
GtuSt

���2

2
− ���XT

St+1
GtuSt

���2

2

+ 2uT
St
XT

St+1
GtuSt

(c )
≤λ���XT

S∗
GtuSt

���2

2
− ���XT

St+1
GtuSt

���2

2
+ 2uT

St
XT

St+1
GtuSt

(d )
≤ λ

κ2
γ

ζ 2
1−α2

‖uSt
‖22 + 2

κγ

ζ1−α2

‖uSt
‖2‖uSt+1 ‖2

(e )
≤λ

κ2
γ

ζ 2
1−α2

‖uSt
‖22 + 2

√
λ

κγ

ζ1−α2

‖uSt
‖2‖uSt+1 ‖2,

(15)

where α2 = maxt {1 − τt

n
}. Inequality (c) follows from Lemma 5.3, and inequality (d) follows from

the definition of the SSC/SSS properties, |St | ≤ (1 − α2) · n, and |S∗ \ St+1 | ≤ γ · n. Inequality (e)

follows from the fact that
√
λ ≥ 1. Solving the quadratic equation in Equation (15) gives us

‖uSt+1 ‖2 ≤ (1 +
√

2)
√
λ

κγ

ζ1−α2

‖u‖2. (16)

Combine these two conditions and let t1 be the iterations for the case of condition 1. We get

‖β t+1 − β∗‖2 = ‖GtuSt
‖2 ≤ μ‖uSt

‖2
≤ μ · ηt1

1 · η
t+1−t1 ‖u‖2 ≤ μ · ηt+1‖u‖2,

where μ = max{
√

κα1

ζ1−γ
,
√

κγ

ζ1−α2
},η1 =

(1+
√

2)κα1

ζ1−γ
, andη =

(1+
√

2)
√

λκγ

ζ1−α2
. When

κγ

ζ1−α2
<
√

2−1√
λ

, we haveη < 1,

and after t = O (log 1
η

μ ‖u ‖2
ϵ

), ‖β t+1 − β∗‖2 ≤ ϵ . �

6 EXPERIMENTAL RESULTS

In this section, we report the extensive experimental evaluation carried out to verify the robustness

and efficiency of the proposed method. All the experiments were conducted on a 64-bit machine
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with an Intel(R) core(TM) quad-core processor (i7CPU@3.6GHz) and 32.0GB memory. Details of

both the source code and sample data used in the experiments can be downloaded here.1

6.1 Experiment Setup

6.1.1 Datasets and Labels. To demonstrate the performance of our proposed method, we car-

ried out comprehensive experiments in both synthetic and real datasets. For the synthetic dataset,

following the setting in in [1], the simulation samples were randomly generated according to the

model in Equation (1) for the RLSR problem, sampling the regression coefficients β∗ ∈ Rp as a ran-

dom unit norm vector. The covariance dataX was drawn independently and identically distributed

from x i ∼ N (0, Ip ), and the uncorrupted response variables were generated as y∗i = xT
i β
∗. The set

of corrupted points S was selected as a uniformly random (n−τ∗)-sized subset of [n], where τ∗ is

the size of the uncorrupted set. The corrupted response vector was generated as y = y∗ +u + ε ,

where the corruption vectoru was sampled from the uniform distribution [−5‖y∗‖∞, 5‖y∗‖∞] and

the additive dense noise was εi ∼ N (0,σ 2).
For the real-world datasets, we use house rental transaction data from New York City and

Los Angeles on the Airbnb2 website from January 2015 to October 2016. The datasets can be

downloaded here.3 For the New York City dataset, we use the first 321,530 data samples from

January 2015 to December 2015 as training data and the remaining 329,187 samples from January

to October 2016 as testing data. For the Los Angeles dataset, the first 106,438 samples from May

2015 to May 2016 are chosen as training data, and the remaining 103,711 samples are used as

testing data. In each dataset, there were 21 features after data preprocessing, including the number

of beds and bathrooms, location, and average price in the area.

6.1.2 Evaluation Metrics. For the synthetic data, performance of the regression coefficients re-

covery is measured by the standard L2 error as follows:

e = ‖β̂ − β∗‖2,

where β̂ represents the recovered coefficients for each method and β∗ is the true regression co-

efficients. To validate the performance for corrupted set discovery, the F1-score is measured by

comparing the discovered corrupted sets with the actual ones. For the real-world dataset, mean

absolute error (MAE) is used to evaluate the performance of rental price prediction. Defining ŷ
and y as the predicted price and ground truth price, respectively, the MAE between ŷ and y can

be presented as follows:

MAE(ŷ,y) =
1

n

n∑

i=1

|ŷi −yi |.

To compare the scalability of each method, the CPU running time for each of the competing

methods was also measured in different settings of data size, corruption ratio, and feature number.

6.1.3 Comparison Methods. The following methods are included in the performance compari-

son presented here: Ordinary least squares (OLS). The OLS method trains the model based on the

whole dataset without considering the corrupted samples in the dataset. We also compared our

method to the Huber Loss [13] and regularized L1 algorithm for robust regression [25, 33]. For

extensive L1 minimization solvers, Yang et al. [36] showed that the Homotopy and DALM solvers

outperform other proposed methods both in terms of recovery properties and running time. Both

1https://github.com/xuczhang/RHCT_ACT.
2https://www.airbnb.com/.
3http://insideairbnb.com/get-the-data.html.
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of the L1 solver methods are parameter free. And, we compared our method to RELM-IRLS [5] with

Bisquare loss function, which is a unified model for robust regularized extreme learning machine

(ELM) [12] using iteratively reweighted least squares (IRLS) [5]. Another recently proposed hard

thresholding method [1], Torrent (abbr. Torr), developed for robust regression, was also compared

to our method. As the method requires a parameter for the corruption ratio, which is difficult to

estimate in practice, we chose four versions with different parameter settings: TORR*, TORR25,

TORR50, and TORR80. TORR* uses the true corruption ratio as its parameter, and the others apply

parameters that are uniformly distributed across the range of ±25%, ±50%, and ±80% off the true

value, respectively. For the RACT method, we chose the step length η = 0.01 in all the experiments.

All the results are averaged over 10 runs.

6.2 Recovery of Regression Coefficients

As RELM-IRLS does not explicitly estimate regression coefficient, we selected seven competing meth-

ods with which to evaluate the recovery performance of regression coefficients β : OLS, Huber, DALM,

Homotopy, TORR*, TORR25, and TORR50. As the recovery error for the OLS and Huber method

is almost 10 times larger than those of the other methods, its result is not shown in Figure 3 in

order to present the other results properly. Figures 3(a) and 3(b) show the recovery performance

for different data sizes when the feature number is fixed. Looking at the results, we can conclude

the following: (1) Both the RHCT and RACT methods outperform all the competing methods ex-

cept for TORR*, whose parameter is rarely given in practice. (2) The results of the TORRENT-based

methods are significantly affected by their corruption ratio parameters; TORR50 performs almost

twice as badly as TORR* and yields worse results than one of the L1-Solver methods, DALM. How-

ever, RHCT and RACT perform consistently throughout, with no impact of the parameter. (3) The

L1-Solver methods generally exhibit worse performance than the hard-thresholding-based algo-

rithms. Specifically, compared to DALM, Homotopy is more sensitive to the number of corrupted

instances in the data. Figure 3(c) shows the similar performance when the feature number in-

creases. Specifically, the overall recovery error of hard-thresholding-based methods increases less

than 10% when the feature number increases 100% while L1-Solver methods increase more than

50%. Figure 3(d) shows the performance of hard-thresholding-based methods are almost 200% bet-

ter than L1-Solver methods when data samples are much larger than the feature number, even for

the TORRENT methods with mistakenly estimated corruption ratios. Figures 3(e) and 3(f) show

that RHCT and RACT perform equally as well as TORR* without dense noise, with all achieving

almost exact recovery of regression coefficients β .

6.3 Recovery of Uncorrupted Sets

As most competing methods do not explicitly estimate uncorrupted sets, we compared our pro-

posed methods with the TORR algorithm using a number of different parameter settings ranging

from the true corrupted ratio up to a deviation of 80%. As the results show in Table 2, we found

the following: (1) The F1 score of RHCT is 1.1% less than that of TORR* on average, although it

is important to note that the latter uses the true corruption ratio, which cannot be estimated ex-

actly in practice. This indicates that the RHCT method has a very competitive result even though

it assumes that the corruption ratio is unknown. (2) The RACT method significantly outperforms

the other methods, doing even better than TORR* when the data contains dense noise. This is

because dense noise will change the actual corruption ratio when some data samples containing

dense noise accidentally have larger corruption residuals, which makes the TORR* method, using

a fixed corruption ratio, perform worse than the RACT method, which uses a dynamically esti-

mated corruption ratio. (3) The results of the TORRENT-based methods are highly dependent on

the corruption ratio parameter: The results for a 25% corruption estimation error are much better
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Fig. 3. Performance on regression coefficients recovery.

than those for an 80% error. However, RHCT and RACT are parameter-free methods that are capa-

ble of consistently obtaining good results. (4) When increasing the data size and corruption ratio,

the F1 scores slightly increase for all the methods. In contrast, the F1 score decreases when the

feature number increases. (5) In a no-dense-noise setting, the RHCT and RACT methods perform a

near optimal recovery result, while TORR* exactly recovers the result only because it is using the
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Table 2. F1 Scores for Performance on Uncorrupted Set Recovery

p = 100, n = 1K p = 100, n = 2K p = 100, n = 4K

10% 20% 30% 40% 10% 20% 30% 40% 10% 20% 30% 40%

TORR80 0.949 0.881 0.779 0.612 0.950 0.883 0.783 0.622 0.951 0.883 0.785 0.626

TORR50 0.967 0.925 0.865 0.781 0.968 0.926 0.868 0.785 0.968 0.926 0.871 0.787

TORR25 0.981 0.958 0.927 0.887 0.982 0.960 0.929 0.891 0.982 0.960 0.931 0.892

RHCT 0.989 0.979 0.973 0.956 0.991 0.987 0.977 0.964 0.992 0.987 0.978 0.971

RACT 0.993 0.989 0.984 0.972 0.993 0.989 0.984 0.978 0.993 0.989 0.985 0.981

TORR* 0.993 0.987 0.979 0.971 0.995 0.990 0.980 0.972 0.995 0.989 0.982 0.975

p = 200, n = 10K p = 400, n = 10K p = 800, n = 10K

10% 20% 30% 40% 10% 20% 30% 40% 10% 20% 30% 40%

TORR80 0.950 0.883 0.785 0.627 0.950 0.883 0.785 0.624 0.950 0.883 0.783 0.621

TORR50 0.968 0.927 0.871 0.788 0.968 0.926 0.870 0.786 0.968 0.926 0.869 0.785

TORR25 0.982 0.960 0.933 0.894 0.982 0.960 0.932 0.892 0.982 0.960 0.931 0.892

RHCT 0.991 0.988 0.981 0.973 0.991 0.987 0.979 0.970 0.991 0.985 0.978 0.966

RACT 0.992 0.991 0.987 0.981 0.993 0.989 0.986 0.981 0.993 0.989 0.985 0.980

TORR* 0.995 0.990 0.985 0.976 0.995 0.989 0.984 0.975 0.995 0.989 0.983 0.975

p = 200, n = 100K p = 400, n = 10K (nd) p = 400, n = 100K (nd)

10% 20% 30% 40% 10% 20% 30% 40% 10% 20% 30% 40%

TORR80 0.950 0.883 0.786 0.627 0.953 0.889 0.793 0.636 0.953 0.889 0.793 0.636

TORR50 0.968 0.927 0.871 0.788 0.971 0.933 0.880 0.800 0.971 0.933 0.880 0.800

TORR25 0.982 0.960 0.933 0.893 0.986 0.968 0.943 0.909 0.986 0.968 0.943 0.909

RHCT 0.992 0.989 0.982 0.974 0.994 0.994 0.993 0.993 0.993 0.994 0.994 0.993

RACT 0.990 0.990 0.987 0.982 0.992 0.993 0.994 0.993 0.943 0.994 0.991 0.990

TORR* 0.995 0.990 0.984 0.976 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

true corruption ratio. (6) Although the F1 score of the RACT method is 1.6% better than the RHCT

method on average when the data contains dense noise, RHCT outperforms RHCT has the similar

performance as RACT in the no-dense-noise setting.

6.4 Result of Rental Price Prediction

To evaluate the robustness of our proposed methods in a real-world dataset, we compared the

performance of rental price prediction in different corruption settings, ranging from 5% to 40%.

The additional corruption was sampled from the uniform distribution [−0.5|yi |, 0.5|yi |], where

|yi | represents the absolute price value of the ith sample data. We selected eight competing meth-

ods with which to evaluate rental price prediction performance: OLS, Huber, DALM, Homotopy,

RELM-IRLS, TORR*, TORR25, and TORR50. Since the DALM and Homotopy methods require alloca-

tion of identity matrices with the dimension of whole data samples, it leads to an out-of-memory

issue when there are more than 10,000 data samples. To solve the issue, we randomly divide the

whole dataset into batches with 10,000 samples and average the result for each batch. Table 3

shows the MAE of rental price prediction and its corresponding standard deviation from 10 runs

in the New York City and Los Angeles datasets. From the result, we can conclude the following:

(1) Our proposed methods, RHCT and RACT, outperform the other methods except TORR* more

than 50% in different corruption ratio settings for both datasets. Moreover, RHCT has slightly bet-

ter results when the corruption ratio is less than 30%, but RACT works better when the corruption

ratio is large. (2) Although RELM-IRLS uses Bisquare to enhance the robustness, its performance
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Table 3. Mean Absolute Error of Rental Price Prediction

New York City (Corruption Ratio)

5% 10% 20% 30% 40% Avg.

OLS 18.126±3.62 22.285±5.485 30.251±7.943 42.960±10.074 50.230±12.508 32.770±7.926

Huber 10.1±0.689 12.29±1.609 14.931±2.928 21.67±5.322 25.627±7.268 16.9236±3.5632

DALM 112.965±51.809 155.342±40.9 229.954±111.281 293.061±145.39 253.036±130.827 208.872±96.041

Homotopy 86.566±51.948 147.668±42.132 221.66±120.232 290.429±148.648 251.684±137.501 199.601±100.092

TORR25 8.15±0.078 8.342±0.226 9.203±0.307 9.628±1.017 11.022±1.402 9.269±0.606

TORR50 8.63±0.331 9.615±0.925 11.185±1.634 15.095±3.166 18.862±4.519 12.6774±2.115

RELM-IRLS 34.757±1.069 36.178±2.854 35.683±1.835 37.133±4.51 34.524±1.485 35.655±2.3506

RHCT 7.973±0.002 7.974±0.004 7.979±0.008 7.984±0.008 7.986±0.016 7.979±0.0076

RACT 8.0321±0.022 8.015±0.038 7.99±0.014 7.979±0.008 7.973±0.004 7.998±0.017

TORR* 7.971±0.000 7.971±0.000 7.971±0.000 7.971±0.000 7.971±0.000 7.971±0.000

Los Angeles (Corruption Ratio)

5% 10% 20% 30% 40% Avg.

OLS 33.459±13.176 47.012±12.971 64.571±23.784 84.631±27.027 190.651±74.737 84.0648±30.339

Huber 19.274±2.816 22.885±3.451 31.779±9.521 40.696±9.498 58.016±21.436 34.53±9.3444

DALM 155.424±55.351 135.488±67.74 208.605±87.44 306.279±171.85 567.848±305.205 274.729±137.512

Homotopy 130.769±64.978 112.375±68.634 186.989±110.681 301.435±189.407 550.084±335.766 256.330±153.893

TORR25 16.171±0.175 16.493±0.161 17.658±1.248 19.75±1.865 36.487±7.633 21.312±2.216

TORR50 16.907±0.404 19.523±1.325 24.755±3.314 31.954±6.268 69.398±18.887 32.507±6.040

RELM-IRLS 52.908±2.02 53.818±2.465 53.745±1.719 59.742±6.245 72.742±21.153 58.591±6.720

RHCT 15.935±0.004 15.931±0.007 15.968±0.027 16.171±0.239 16.36±0.507 16.073±0.157

RACT 16.209±0.418 16.123±0.343 15.981±0.087 15.947±0.014 15.949±0.035 16.042±0.179

TORR* 15.904±0.001 15.906±0.000 15.906±0.001 15.91±0.005 15.911±0.008 15.907±0.003

is still worse than other competing methods except DALM and Homotopy because the corrupted

data will have a high impact on the ELM based regression. (3) The TORR* method outperforms

all the other methods; however, the method requires a corruption ratio parameter that is hard to

estimate in practice. (4) Similar to the result in synthetic data, TORRENT-based methods’ perfor-

mance is significantly affected by the corruption parameters. Specifically, the results of TORR25

and TORR50 are at least 50% and 80% worse than TORR*, respectively. (5) Both the DALM and

Homotopy methods perform even worse than the OLS and Huber method because their results are

combined with results in small batches due to their scalability issues. As Huber is a loss function

in robust regression, which makes it less sensitive to corrupted data, it has a better performance

than OLS method.

6.5 Efficiency

To evaluate the efficiency of our proposed method, we compared the performance of all the

competing methods for three different data settings as follows: different corruption ratios, data

sizes, and feature numbers in Figures 4(a)–4(c), respectively. Since the DALM and Homotopy

methods cannot be scaled to a large data size, we compared our methods with TORR-based

methods in large datasets, ranging from 100,000 to 1 million samples, in Figure 4(d). In general, as

Figure 4 shows, we can conclude the following: (1) The hard-thresholding-based methods signif-

icantly outperformed the L1-Solver-based methods. (2) The running time of the RHCT and RACT

methods increases slowly when either the feature number or data size increases, just as in the

TORRENT-based methods. (3) Figure 4(a) shows that the corruption ratio has little impact on the
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Fig. 4. Running time for different corruption ratios and data sizes.

efficiency of all the methods because the difference of running time in various corruption ratios

is less than 5%. (4) Even though RHCT performs the additional step of estimating the uncorrupted

set in each optimization iteration, the efficiency of RHCT still outperforms TORR in small datasets,

which indicates that the heuristic corruption thresholding step in RHCT performs efficiently and

the RHCT algorithm can converge quickly when the data size is small. However, when the data

size increases from 100,000 to 1 million in Figure 4(d), the running time of RHCT increases more

than 50 times, which is much larger than TORRENT-based methods. This fact shows the efficiency

of RHCT is highly impacted by the number of data samples, because the heuristic corruption

thresholding step requires computation of the heuristic values for each data sample and sorts

them altogether. (6) The running time of RELM-IRLS is less than the other competing methods in

a small dataset because of the fast training speed of ELM regression. However, when the data size

increases, its efficiency is dramatically decreased. Instead, RACT outperforms all the competing

methods when the data size is larger than 100,000 in Figure 4(d) because its corrupted set is

adaptively estimated without computing heuristic values as in RHCT, which makes RACT less

impacted by the data size.

7 CONCLUSION

In this article, a novel robust regression algorithm, RHCT, is proposed to recover the regression

coefficients and the uncorrupted set in the presence of adversarial corruption in the response
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vector. To determine the corrupted set, we designed a heuristic corruption thresholding method

to estimate the optimal uncorrupted set that is alternately updated with the optimized regression

coefficients. Moreover, an adaptive corruption thresholding based algorithm, RACT, is designed

to improve running-time efficiency when the amount of data becomes extremely large. We

demonstrate that our algorithms can recover regression coefficients rigorously in the condition

of the SSC and smoothness properties, with a geometric convergence rate. Extensive experiments

on a massive amount of simulation data demonstrated that the proposed algorithms outperform

other comparable methods in both effectiveness and efficiency.

APPENDIX

A ADDITIONAL THEORETICAL ANALYSIS

In this section, the regression coefficient recovery analysis for the case with dense noise is pre-

sented. Specifically, the corrupted response vector y is represented as y = XT β +u + ε , where u
and ε stand for the vector of adversarial data corruption and dense noise, respectively.

Theorem A.1. Let X = [x1, . . . ,xn] ∈ Rp×n be the given data matrix and the corrupted response

vector y = XT β∗ +u + ε with ‖u‖0 = γn. Let Σ0 be an invertible matrix such that X̃ = Σ−1/2
0 X ;

f (β ) = ‖yS − X̃Sβ ‖22 satisfies the SSC and SSS properties at level α , γ with 2ζα,γ and 2κα,γ . If the

data satisfies
φα ,γ√

ζα

< 1
2 , after t = O (log 1

η

‖u ‖2√
nϵ

) iterations, Algorithm 2 yields an ϵ-accurate solution

β t with ‖β∗ − β t ‖2 ≤ ϵ + C ‖ε ‖2√
n

for some C > 0.

Proof. We use St to represent the uncorrupted set after consolidation in the t th iteration, and

we observe that the optimality of the regression coefficient β on the estimated corrupted set St

ensures the following: ���ySt
− XT

St
β t+1

���2
=
���XT

St
(β∗ − β t+1) + εSt

+uSt

���2

≤���ySt
− XT

St
β∗

���2
= ‖εSt

+uSt
‖2.

Using the triangle inequality of the L2 norm, we have���XT
St

(β∗ − β t+1)���2
− ‖εSt

+uSt
‖2 ≤‖εSt

+uSt
‖2���XT

St
(β∗ − β t+1)���2

≤2‖εSt
+uSt

‖2
√
ζα ‖β∗ − β t+1‖2

(a)
≤ 2‖εSt

+uSt
‖2

‖β∗ − β t+1‖2
(b )
≤ 2√

ζα

(‖εSt
‖2 + ‖uSt

‖2).

Inequality (a) follows from |St | ≤ αn, where α = maxt { τt

n
}. Inequality (b) follows from the tri-

angle inequality ‖εSt
+uSt

‖2 ≤ ‖εSt
‖2 + ‖uSt

‖2. According to the hard thresholding step in Equa-

tion (5), we have the following:���XT
St+1

(β∗ − β t+1) + εSt+1 +uSt+1

���2
=
���ySt+1 − XT

St+1
β t+1

���2
= ‖rSt+1 ‖2

‖uSt+1 ‖2 −
���XT

St+1
(β∗ − β t+1)���2

− ‖εSt+1 ‖2
(c )
≤λ‖rS∗ ‖2
(d )
≤ λ���XT

S∗
(β∗ − β t+1) + εS∗

���2
.

Inequality (c) follows from the Lemma 5.3, where λ = 1 +
128(1−γ )

2γ−1 . Inequality (d) utilizes the

definition of rS∗ . Let FPt+1 = St+1 \ S∗, FNt+1 = S∗ \ St+1, TPt+1 = S∗ ∩ St+1, and according to the
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triangle inequality property, we have

‖uSt+1 ‖2 ≤
���XT

FPt+1
(β∗ − β t+1)���2

+ ‖εFPt+1
‖2 +
√
λ2 − 1

���XT
TPt+1

(β∗ − β t+1)���2

+
√
λ2 − 1‖εTPt+1 ‖2 + λ

���XT
FNt+1

(β∗ − β t+1)���2
+ λ‖εFNt+1 ‖2

(e )
≤φα,γ ‖β∗ − β t+1‖2 + (1 + λ +

√
λ2 − 1)‖ε ‖2

(f )
≤

2φα,γ√
ζα

(‖uSt
‖2 + ‖ε ‖2) + (1 + 2λ)‖ε ‖2

≤
2φα,γ√
ζα

‖uSt
‖2 +

⎡⎢⎢⎢⎢⎣
2φα,γ√
ζα

+ (1 + 2λ)
⎤⎥⎥⎥⎥⎦ ‖ε ‖2.

Let φα,γ =
√
κα + (λ +

√
λ2 − 1)

√
κ1−γ , inequality (e) follows from |FPt+1 | ≤ αn, |TPt+1 | ≤ (1 −

γ )n, |FNt+1 | ≤ (1 − γ )n and ‖εSt+1 ‖2 ≤ ‖ε ‖2. Inequality (f) follows from the fact in inequality (b).

Let η =
2φα ,γ√

ζα

. When
φα ,γ√

ζα

< 1
2 , we have η < 1. Replacing the coefficients with η, we get

‖uSt+1 ‖2 ≤η‖uSt
‖2 + (η + 2λ + 1)‖ε ‖2

≤η‖uSt
‖2 + (2 + 2λ)‖ε ‖2

≤ηt ‖u‖2 + (2 + 2λ)
t∑

i=1

ηi−1‖ε ‖2

≤ηt ‖u‖2 +
(2 + 2λ)

1 − η ‖ε ‖2.

Using the inequality for ‖β∗ − β t+1‖2 again gives us

‖β∗ − β t+1‖2 ≤
2√
ζα

(‖uSt
‖2 + ‖ε ‖2)

≤ 2ηt

√
ζα

‖u‖2 +
2(3 + 2λ − η)√

ζα (1 − η)
‖ε ‖2.

Let C =
2(3+2λ−η)

1−η
, after t = O (log 1

η

‖u ‖2√
nϵ

) iterations, Algorithm 2 yields an ϵ-accurate solution

β t with ‖β∗ − β t ‖2 ≤ ϵ + C ‖ε ‖2√
n

. �
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