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Abstract

With the popularity of smart phones, users’ activities on location-based social networks
(LBSN ) evolve faster than traditional social networks. Existing models focus on modeling
users’ long-term preferences, leveraging social collaborative filtering to enhance prediction
performance. However, the dynamic mobility mechanism of user’s check-in behaviors on
LBSNSs is seldom considered. In this paper, we propose a new dynamic model that consid-
ers both geo-aware user preferences and the social interaction excitation arising from social
connections to learn the dynamic mobility mechanism of user’s behaviors on LBSNs. Geo-
aware location features, such as semantic features, latent features and dynamic features, are
utilized to characterize the location information and reveal the evolution of the geographical
impact of location. These geo-aware location features enable us to exploit user’s personal
preferences. Meanwhile, we integrate a user’s social connections and friends’ preferences
for modeling social interaction excitations. Finally, we jointly incorporate geo-aware user
preference learning and social interaction excitation modeling to create a conditional inten-
sity function for temporal point processes with which to explore the dynamic mobility
mechanism of evolving user’s check-in behaviors on LBSNs. Extensive experiments on sev-
eral real-world check-in datasets confirm that our proposed algorithm performs better than
existing state-of-the-art methods.

Keywords LLBSNs - Dynamic model - Temporal point process

1 Introduction

Successful products in the mobile Internet era have a strong social element, with most
social networks providing location-based services. For instance, Gowalla, Brightkite, and
Foursquare allow users to share their experiences with friends when they visit a location
[17]. Oceans of check-in data from smartphones and websites carry user’s mobility prefer-
ences, time schedule, and social information [32, 44], hence the ability to accurately predict
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the location and time of a user’s next check-in activity could have many interesting appli-
cations. For instance, if an advertiser could successfully predict the location and time of a
user’s check-in activity they could provide them with more relevant and timely information
and marketers could select the optimum location and time to present them with a personal-
ized promotion or special offer. For government agencies, predicting users’ future activity
would facilitate traffic control and provide early warnings of potential public emergencies.
In this paper, we aim to model evolving user behaviors to predict the location and time of a
user’s next check-in activity. Although a great deal of progress has been achieved in recent
years, learning a user’s check-in behavior on LBSNs is still a non-trivial task due to the
following three potentially serious challenges.

(1) Geo-aware User Preference Learning. Previous studies have indicated that the motiva-
tions driving a user’s check-in behavior falls into three main categories: 1) participat-
ing in an event, such as at a casino, or in a hospital; 2) the user’s inherent preferences;
and 3) their wish to follow a trend [2, 5, 17, 22, 33, 45]. However, existing models of
user behavior focus only on the user’s inherent preferences, totally ignoring factors 1)
and 3), both of which are related to geographical features of the location itself. Another
drawback is that existing methods typically use longitude and latitude directly as geo-
graphical location features [3, 49], which creates two main problems: 1) the lack of
appropriate semantics leads to faulty interpretations as we simply cannot understand
why people are visiting this location; and 2) the longitude and latitude values alone
provide no useful information regarding the geographic evolution of a location, such
as the fashion trend of the location, its attraction for new users, the average time inter-
vals typically linked to user check-in behavior at the location, and so on. So, how can
we best exploit the full potential of having geographical information for a particular
location?

(2) Dynamic Excitation of Social Interaction. Nowadays, LBSNs provide a convenient
way to share experiences among people via geo-location tags. Their interactions with
social networks will affect users’ check-in behavior as users share their life experience
with geo-location tags. Early studies have generally characterized social influence as
a fixed factor that can be utilized to improve a model’s performance and enhance its
robustness [36]. However, a fixed social factor cannot reflect real world variations in
social influences. We refer to these variations in social influences as dynamic excita-
tions of social interaction. The analysis of dynamic changes in social interactions is
more difficult than leveraging social influences as a fixed factor. Thus, the dynamic
influence of social interactions over time has not yet been thoroughly investigated. At
the same time, most existing approaches only consider direct social interactions, with
little attention being paid to the high-order social interactions in social networks.

(3) Dynamic Mobility Mechanism. As people’s daily mobility activities have become
increasingly frequent, so have their check-in behaviors changed over time. For exam-
ple, according to statistics presented in the Brightkite data set, during the competition
season, the number of check-in records for gymnasts and their supporters in or near
to their gymnasiums exceeds those during the non-competition season by more than
57.8% and is 27.3% higher than their yearly average. The number of check-in activ-
ity drops back to normal after the competition season ends. This is also visible in the
analysis of the check-in data sets for California and Tokyo shown in Fig. 1, which
depicts the normalized value of average visiting frequency for all locations over a six
month period. It is clear that changes in the visiting frequency happen in just a few
days or weeks. All these phenomena are manifestations of the dynamic evolution of
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Fig. 1 Normalized values of the average visiting frequency of all locations for the 6 months in California
(from January 1 to June 30, 2009) and Tokyo (from July 1 to December 31, 2012) check-in data sets

user behaviors on LBSNs. These dynamic evolutions are not only caused by changes
in user preferences but are also due to the impact of social interactions and changes
in the frequency of check-in activity. Studying dynamic evolution is thus helpful for
modeling evolving user behaviors over a long period of time. The key objective when
studying the above dynamic evolution is the dynamic mobility mechanisms driving
the user behavior, including the context dependency and dynamic change modeling.

Existing methods either do not address these challenges at all or fail to address them
effectively [2, 35, 51]. For instance, the idea behind existing preference learning models is
to represent users’ inherent preferences in a lower dimensional space, where the assumption
is that preferences either do not change or change only slowly, typically utilizing models
based on matrix or tensor factorization. As mentioned in Challenge 1, fashion trends change
rapidly over time, and existing static preferences learning models find it impossible to cap-
ture such fast-moving changes. One limit of existing static preferences learning models,
such as matrix or tensor factorization method, is that it cannot be incrementally updated
if the underlying data distribution has dramatic changes. Also, existing models are unable
to integrate dynamic social influences because they ignore the way that social influences
change along with crowd’s preferences, which change constantly instead of remaining sta-
ble. For example, RCH [34], HPY [12] and CEPR [19] all exploit social influences as a static
weight or fixed vector. Existing models are thus unable to capture the changes in user pref-
erences and social interactions, both of which affect user check-in behaviors. Furthermore,
existing models fail to explore the dynamic mobility mechanisms governing the evolution
of user check-in behaviors as they ignore their context dependency and occurrence rate.

From a technological point of view, existing methods are not suitable for modeling evolv-
ing user behaviors. For instance, classic matrix factorization or tensor factorization methods
cannot model changes in user preferences and the temporal dependency of user behaviors.
Although Markov models, which are a generalized method widely used to model context
dependency, fail to capture long-term dependency when the number of states is large. This
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is because the overall state-space grows exponentially with the number of time steps con-
sidered. Recently, LSTM has shown considerable promise for learning context dependency;
existing models based on LSTM aim to integrate a user’s preferences and social influences
to recommend locations to him or her. However, models based on deep learning normally
lack the type of intuitive interpretations needed to explain the underlying reasons for an
individual user’s check-in behavior and the dynamic changes in it. Also, deep learning mod-
els need a huge training data and their results are often unsatisfactory when forced to deal
with data sparsity.

In this paper, we propose a novel framework DGPS for studying evolving user behav-
iors on LBSNSs, in which a dynamic model jointly performs geo-aware personal preference
learning and social interaction excitation modeling. In this new framework, users’ check-in
behaviors are considered in chronological order as a temporal point process. Temporal point
process with the intensity function provides a common mathematical framework for mod-
eling time-dependent dynamic evolution processes [8], such as earthquakes and aftershock
data. Each check-in activity performed by a user can be represented as a point in temporal-
spatial space, as illustrated in Fig. 2, which allows us to adopt a temporal point process to
capture the context dependency and dynamic changes in these check-in activities. To model
evolving user behaviors, the conditional intensity function is leveraged utilizing an inhomo-
geneity temporal point process to model instantaneous rate of the user’s check-in activities,
for example the second of the user’s check-in activities at time ¢4 (enjoying drinking at a
bar). Here, the user’s personalized preference learning and social interaction excitation are
incorporated into the conditional intensity function, in this case his drinking preferences (red
broken dot lines) and friends’ influences via social networks (green dashed lines). Knowing
the motivation for a user’s behavior, we can then build a unique geo-aware location feature
engineered to characterize the location as a vector and thus exploit that user’s personalized
preferences. In this case, the geo-aware features of the location consist of three components
matched to corresponding motivation categories: 1) Semantic features, 2) Latent features,
and 3) Dynamic features, as illustrated in Fig. 3. This allows us to introduce a preference
coefficient to describe the contribution of each of the three categories of geo-aware location
features based on the user’s preferences. To study the impact of social factors on the user’s
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Fig. 2 The second user’s check-in behavior arises from personal preferences (red broken line) and exterior
interaction excitation (green dashed line). Here, the exterior interaction excitation comes from the user’s
social connections. DGPS aims to forecast the location and time of the user’s future check-in activities
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Fig. 3 Inspired by the motivation of a user’s behavior, we build a unique geo-aware location feature that
consists of semantic features, latent features, and dynamic features

behaviors, we can integrate social structure information and friends’ behavior preferences
to model the user’s social interaction excitations via a triggering term. The high order social
interaction is preserved via a propagating method (see the bottom user effect on the sec-
ond user in Fig.2) even though there is no direct link. Finally, our proposed DGPS model
adopts the ADMM optimization framework to learn the parameters of the proposed model
in a supervised way. Our proposed approach thus contributes to activity prediction by taking
into account the evolving user’s check-in behavior, covering both location and correspond-
ing time, i.e. predictive behavior modeling. The key idea here is to model the instantaneous
rate of the user’s check-in activities by tracking the conditional intensity function for the
temporal point process and parameterizing the conditional intensity function for the user’s
preference learning and dynamic social excitation.
The main contributions of this paper are summarized as follows.

e Extracting Geo-aware location features for learning user preferences. We propose
a geo-aware location feature engineering based on Google map service, non-negative
matrix factorization and several specific extraction methods. Unlike traditional geo-
graphical features, geo-aware location features involve an understandable semantic
expression, the representation of latent factors, the user distribution entropy of loca-
tion, and the ratios of new users, and so on. By extracting geo-aware location features,
DGPS provides deep insights into user preferences.

® Modeling evolving user check-in behaviors on LBSNs. To address the challenge of
fast evolution of user behaviors, we propose DGPS for modeling evolving user pref-
erences and social interaction excitations based on a temporal point process. DGPS
integrates user’ personal preferences and social interaction excitations to create a con-
ditional intensity function for the temporal point process, which can then be applied to
explore the dynamic mobility mechanism of user check-in behaviors on LBSNs.

e High Performance. By extracting geo-aware location features and leveraging a tem-
poral point process to model user check-in behaviors on LBSNs, DGPS supports high
prediction performance for user check-in behaviors. We have conducted experiments on
several real-world data sets to demonstrate the performance of our proposed new DGPS
model. The experimental results show that our proposed model delivers a markedly
better performance than many of the existing state-of-art methods.
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The remainder of this paper is organized as follows: The following section briefly sur-
veys related work. Section 3 gives the intuition and whole framework of DGPS model.
Section 4 presents the process of geo-aware location features extraction. Section 5 presents
our proposed dynamic model and learning process in details. Section 6 contains an exten-
sive experimental evaluation. Finally we provide a brief discussion and conclude the paper
in Section 7.

2 Related works

In recent years, the studies on location-based social networks achieve impressive achieve-
ment. We review highly related works. In addition, we introduce some related works about
temporal point process.

2.1 LBSNs model

During the past decade, many approaches have been proposed for modeling user’s check-in
behaviours on LBSNs, we discuss existing models from different aspects.

Mobility pattern mining. Early studies focused on regular pattern of user’s check-in
behavior, such mobility pattern and spatial-temporal pattern. For example, Monreale
et al. built a decision tree for scoring mobility pattern [28], and Gambs et al. pro-
posed Mobility Markov Chain (MMC) for modeling the transfer probability between
different locations in check-in historical data [11]. The performance of pattern-based
methods depended on extracting meaningful patterns, which were a overly exacting task.
Pattern-based methods also seem have poor robustness and lack diversity in check-in
locations.

User preference learning. Inspired by recommendation systems, some researchers real-
ized the importance of user preferences and geographical influence on modeling user
behavior. To analyse the preferences of user’s check-in behavior, the matrix factorization
models have been widely extended to user-location factorization models by incorporating
the geographical influences. Two of the representative was GeoMF [21] and RCH [34].
Lian et al. proposed a weighted matrix factorization framework (GeoMF), which lever-
aged spatial clustering phenomenon derived from geographical influence for addressing
the challenge of data sparsity. Wang et al. proposed regularity and conformity heteroge-
neous (RCH) algorithm, which jointly performed user’s personal preferences and exterior
popular preferences into a uniform matrix factorization framework. In which, RCH intro-
duced heterogeneous spatial data for modeling exterior popular preferences, such as bus
data, taxi data and check-in data.

Social influence. Many recent studies showed the combination of social connections and
geographical influence was helpful to improve performance of prediction or recommen-
dation model of user’s check-in activities [18, 22, 50]. For example, Gao et al. proposed
Hierarchical PitmanYor (HPY) process model to assesses the role of social networks in
user’s check-in behavior which aimed to well explain user’s mobility activities [12, 13].
Yuan et al. proposed a W* (Who + Where + When + What) jointly probabilistic graph
model which took into consideration of some factors, such user’s profile information,
check-in location, check-in time and twitter content, to predict user’s mobility activity
[48]. Lian et al. incorporated geo-location features as geographical influences into the
proposed collaborative exploration and periodically returning (CEPR) model [19]. Jia et al.
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analysed the influence of social connections theoretically, and proposed a Bayes net-
works for maximizing social influences and benefiting the performance of model [15].
Besides, Xu et al. studied the dynamic influence in social group and model user’s will-
ingness on event participation, which aims to predict user’s social events participation
[42, 43].

Time effect. The influence of temporal information of user’s check-in event were another
hot topics. The time effect modeling of user’s behavior mainly leverage temporal peri-
odic pattern, sequences pattern and tensor factorization. Xu et al. proposed a time series
model for mining user multiple periodic behaviors, and incorporated periodic pattern
into collective filtering model to recommend location [40]. To model time effect in intu-
itive way, the matrix factorization models have been widely extended to time effect
tensor factorization models by incorporating the temporal information, such as multi-
dimensional collaborative recommendations model [3], the regularized content-aware
tensor factorization (RCTF) [20]. Liu et al. proposed WWO to capture the user’s sequen-
tial preferences with temporal interval assessment for recommending new locations to
the user [25].

Deep learning models. Recently, deep learning techniques have great achievements in
area of NLP, CV and sequence analysis. Some works delivered deep learning model
into research area of LBSNs model for prediction and recommendation tasks. Liu et al.
proposed spatial temporal recurrent neural networks (ST-RNN) which modeled time-
specific transition matrices and distance-specific transition matrices respectively for
studying correlation between geographical influences and temporal effect [23]. Yin et al.
adopted a deep learning model to learn the location representation from heterogeneous
feature and a user’s preferences for POIs recommendation in home-town or out-of-
town scenarios [46, 47].To overcome data sparsity problems, they formulated social
regularization and region-depend smoothing objective functions.

As described above, although there were many studies to learn user’s behavior model by
exploring geographical influences, social connections and time effect, these works did not
address the aforementioned challenges (e.g., evolution of geographical influences, dynamic
excitation of social interaction and geo-aware user preferences learning) arising from fast
evolving user’s check-in activities on LBSNs. Most of the above model focused on geo-
graphical influences and social connections and ignore the equally crucial of time factors.
It is a fact that time effect are now viewed not a simply factors with a role in affecting
user’s check-in behavior, but as a leading actor that addresses the problem of evolving user’s
behavior on LBSNs. To combat the aforementioned challenges in Section 1, we propose
DGPS that jointly perform geo-aware user’s personal preferences learning and social inter-
action excitation modeling into a temporal point process for studying dynamic mobility
mechanism of user’s behavior on LBSNs.

2.2 Temporal point process

Temporal point processes are mathematical tools in statistics and probability, and they have
been widely used for modeling many different phenomena in many domains such as seis-
mology, computational finance and sociology [6, 24, 30, 37, 38]. In [8, 39], Du et al. and
Xiao et al. summarized some typical temporal point processes and corresponding parame-
terized intensity function. Recently, the temporal point process and its variants have been
used to model the human activities. For example, Costa et al. used a temporal point pro-
cess to model inter-arrival times (IATs), which aimed to perform prediction tasks on Reddit
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and Twitter [10]. Nan Du et al. incorporated a low-rank matrix factorization technique into
a self-exciting point process for performing recommendation tasks [9]. Recurrent neutral
networks have unique internal state (memory) to process sequences of inputs, and make
impressive achievement on sequences analysis. Nan Du et al. proposed a recurrent marked
temporal point process (RMTPP), in which RMTPP used RNN automatically learn the
representation of sequence data given historical data [8].

Existing models focus on the specific tasks and domains, and not well model the evolving
user behaviors on LBSNs. DGPS aims to explore user’s check-in activities by considering
user preferences and social interactions with a temporal point process. Different from exist-
ing models, DGPS adopts an intuitive way to learn user’s personal preferences and social
interaction excitations derived from social connections. In the following, we will first give
the intuition and overview of DGPS.

3 Intuition and overview

To learn evolving user behaviors on LBSNs, an intuitive model jointly performs geo-aware
personal preference learning and social interaction excitation modeling, and meanwhile,
the dynamic mobility mechanism of user’s check-in activities are captured by a dynamic
model based on the temporal point process. The model consists of two closely related
components, see Fig. 4. To mine geo-aware user’s personal preferences, we build a geo-
aware location feature engineering, which aims to access a representation of location and
reveal evolution of geographical influences of location. In which, geo-aware location fea-
tures includes three components: semantic features, latent features, and dynamic features.
We extract geo-aware features for each location of user’s check-in activities in chronolog-
ical order, and notate {(fi1, t1), (fi2, t2), ...(fiT, tT)}, see the orange module in Fig. 4. On
the basic of obtaining geo-aware location features, we leverage a parameter to learn user’s

DGPS Model
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T
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Time
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Geo-aware Location
Features Extraction Dynamic model of User’s Behavior on LBSNs

Fig. 4 The framework of our proposed method: DGPS. To learn user behaviors on LBSNs, DGPS first
extracts geo-aware location features for every location {(fi1, 1), ...(fiT, tr)} from the check-in activities
{(l1,t1)...(I7, t7)} in chronological order. Relying on the geo-aware location features, we further mine the
user’s geographical preferences. Finally, we incorporate user preference learning and social interaction exci-
tations into a conditional intensity function for exploring dynamic mobility mechanism of user’s check-in
activities on LBSNs
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geo-aware preferences, in which the user’s preferences consider both inherent influence of
location (e.g., semantic features and latent features) and evolution influences (dynamic fea-
tures). To model social interaction excitation, we firstly measure users’ similarity on social
networks relying on Jaccard similarity coefficient, and we leverage the previous intensity
of friends’ check-in activity as friends’ preferences. Another key point of social interaction
modeling is to explore time effect of social influences. Therefore, by considering evolution
of social influences, we integrate social similarity and friends’ preferences as social inter-
actions and leverage a time kernel function as a triggering term to model social interaction
excitation. Finally, we leverage a conditional intensity function of temporal point process to
model the dynamic evolution of user’s check-in activities, illustrated as the dark gray mod-
ule in Fig. 4. In which, the conditional intensity function jointly performs geo-aware user
preference learning and social interaction excitation modeling. To learn the parameters, we
use ADMM framework and maximize likelihood estimation method to solve our optimiza-
tion problems. Before we start the description of our model, the main notations used in this
paper is given in Table 1.

4 Geo-aware location features extraction

Extracting geo-aware location features aims to represent location as a vector and reveal
the evolution of geographical influence of a given location. For example, see Fig. 5, the
location marked with an asterisk in left side is a location in Washington DC. The geo-
aware features of the location marked with an asterisk consist of three components (the
right side): semantic features (orange module), latent features (green module), and dynamic
features (grey module). To this end, this section presents the details of extraction procedure
of geo-aware location features.

4.1 Semantic features

The category of the check-in location carries semantic information of user’s check-in activ-
ity. To explore the semantic content of user’s check-in behaviors, we query category labels

Table 1 Main Notations

Notations Description

(1) Conditional intensity function.

L(t) Geo-aware location features.

B The preference coefficient of location features.
X User-location frequency matrix.

U User preference matrix.

A\ Location latent features matrix.

w Weight matrix.

rg) The set of user’s neighbour nodes in social network.
w Time excitation kernel factors.

k The number of latent factors.

t Time slice, where the length is 7.

i,J Index label.
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Fig.5 Illustration of the geo-aware location features of a given location. The geo-aware location features of
the location marked with an asterisk include semantic features, latent features and dynamic features. Geo-
aware location extraction processes rely on Google map API, non-negative matrix factorization, and several
specific extraction methods

of neighboring places around location by Google map API, which represent the seman-
tic features of the location. Since the same category or function of locations always have
more closer geographical distance in urban planing. It is reasonable that using category
labels of neighboring places represent semantic information of a given location. For exam-
ple, the value of longitude and latitude of Virginia Tech North Virginia Center (NVC) is
(38.897378, —77.189441). The neighboring place query results have 9 labels within 150
meters: four of them are university, and three of them are school, the rest are store. And
this result is consistent with that NVC is a research center of university. The location cate-
gory list of Google map API shows in Table 2. Most locations can receive acceptable results
within a radius of 150 meters, while the rest locations need to extend query radius to 500
or 1000 meters. Finally the average radius is 250 meters. According to the query result, we
compute the number of occurrences of corresponding categories of location to formulate
a fixed-length vector. To highlight the main semantic characteristic of location, we utilize
softmax function on the vector, as in Eq. 1, where ¢; is the number of occurrences of the
i-th location category, s; is corresponding item in semantic vector. The semantic vector s
consists of all the s; in the location categories list.

I

4.2 Latent features

Matrix factorization gains impressive achievement as an example for mining latent factors
of user preferences. In which, non-negative matrix factorization (NMF) fits to process a low-
rank approximation of non-negative matrix. To explore user preferences, we leverage NMF
to learn latent features by decomposing the user-location frequency matrix. Specifically, we
construct a user-location frequency matrix, and decompose it into the product of two lower
dimensional matrices. We use Eq. 2 to calculate the user-location frequency matrix.

¢j

2Lc

2

Xij =
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Table 2 Location category label summaries

Location category list

accounting airport amusement aquarium art gallery atm
park
bakery bank bar beauty salon  bicycle store book store
bowling alley bus station cafe campground  car dealer car rental
car repair car wash casino cemetery church city hall
clothing store convenience  courthouse dentist department doctor
store store
electrician electronics embassy fire station florist funeral home
store
furniture store gas station gym hair care hardware store  hindu temple
home goods hospital insurance jewelry store  laundry lawyer
store agency
library liquor local government  locksmith lodging meal
store office delivery
meal takeaway mosque movie movie theater moving museum
rental company
night club painter park parking pet store pharmacy
physiotherapist plumber police post office real estate restaurant
agency
roofing contractor rv park school shoe store shopping mall ~ spa
stadium storage store subway supermarket synagogue
station
taxi stand train transit travel veterinary care  university
station station agency
Z00

Where c; is the number of check-in occurrences of the j-th location, and > 1, C represents
the whole number of check-in occurrences of all locations of i-th user. x;; is the frequency
of i-th user visits j-th location. X € R"*" is user-location frequency matrix, where m is the
number of users, and » is the number of locations. Considering the data sparsity problem, a
weight matrix is introduced to overcome it, as in Eq. 3. Here w;; is a binary weights depend
on the value of x;; is observed or unknown.

3

S 1, if x;; is observed
Y 0, if x;; is not observed.

To access the representation of latent features of a location, we formulate an objective
function as Eq. 4, and decompose the frequency matrix X into the product of two lower
dimensional non-negative matrix U and V.

min  |[WoO (X —UV)|?
st. U>=0 V=0 4

where, U € R"™** and V e R¥*" are user preference matrix and latent feature matrix for
location, respectively. k is the number of latent factors of non-negative matrix factorization.
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Lee et al. proposed a multiplicative updates for weight non-negative matrix factorization
with Eqs. 5 and 6 [16].

(wWoxvT

U=Uomaovvr ©)
UT[wW o X)

V(—V@W (6)

The matrix of V is the location representation in form of k latent components. Section 6
further shows the sensitivity of k against to model performance.

4.3 Dynamic features

Semantic features are inherent characteristic of location, and the latent features are the
global representation of latent factors and can not change quickly. To study the evolution
of geographical influence of location, we extract eight types of dynamic features. Firstly,
we divide time lines into 7 intervals. From Fig. 1, we observe the time intervals of succes-
sive peaks of the average visiting frequency of locations are around 7 days. Thus, the time
interval is set as one week (7 days) in this study. We chronologically order user’s check-in
activities and denote them as {(/1, #1), ...(I, t7)}. In the following, we will extract features
in each time unit for every location, and the superscript ¢ represents time interval, and the
subscript [ represents the location.

a) The distinct number of users for each location |C ; (user)] € N. It was also used
in Song et al. [33]. The distinct number of users for each location on each time unit
shows the geographical attraction of the location. With the increase number of distinct
users, the location has more active geographical attraction, and vice versa. This quantity
reflects the current status of attraction for a location.

b) The number of check-ins |C/ (check-in)| € N. This quantity directly reflects the “heat”
of a location and is a common feature used in [49].

¢) The ratio of check-ins on a location rl’ € [0, 1), which is the ratio of the number of
check-ins at a location / to the total number of check-ins, given time ¢.

d) User’s entropy at the location Hl’ (user), which is calculated based on the user’s
check-in frequency at the location, given time ¢. Specifically, if the check-in frequency
of i-th user is p(i), the user’s entropy can be calculated with Eq. 7. This entropy
indicates the uncertainty of user distribution at this location.

Hf (user) = =Y p(i) log p(i) )

¢} (new user)
¢j (distinct user) ’
users to total number of distinct users, given the time ¢ and the location /. Here, we can
make a reasonable assumption that if the ratio increases over time, the geographical
influence of the location will be enlarged at once, and vice versa.

e) The new user ratio, rlt (new user) = which is the ratio of number of new

f) The ratio of the number of users in consecutive time, r;(#;|#; 1) = %, which
is the ratio of number of distinct users at the previous time to number of distinct users
at the current time, given a location /.

g) The ratio of successive users r/ (users) = %, which is the ratio of number
of successive users to the total number of distinct usesr. The ratio reflects the long-term

influences of location to loyal user.
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h) The average difference of time of successive check-in behaviors 6z, which is cal-
culated by Eq. 8. In which, g is the number of users that have successive check-in
behaviors.

1
b= DIt — il ®)

q

Above features reflect dynamic evolution of geographical influences of a location in
term of the number of check-in activities, time and user’s entropy, etc. So far, we jointly
put semantic features, latent features, and dynamic feature in sequences for constructing
geo-aware location features. Finally, we give the pseudocode of geo-aware location feature
engineering in Algorithm 1. With these features at hand, we incorporate a learning model
to explore geo-aware user’s personal preferences in next step.

Algorithm 1 Location features engineering extracting algorithm.

Input:
Input Check-in activities datasets on LBSNs;
Output:
Output Check-in activities with geo-aware location features

{(fir, 1), (fi2, 12), o (firs ) s
1: divide check-in dataset into T equal time intervals according to check-in timestamps,
as {(I1, 1), (b, o), ...dr, t7)};

: build location categories dictionaries.
: for each location in Check-in activities datasets do

search nearby place categories within average 250 meters radius;

construct location categories vector;

use Eq. 1 to normalize location categories vector for accessing semantic features s;
end for
: use Eq. 2 to build user-location frequency matrix X and weight matrix W;
: minimize Eq. 4;
. while not converges do
update U by Eq. 5;
update V by Eq. 6;
: end while
14: for each location in Check-in activities datasets do
15: extract geo-location dynamic features using item (4.3) to item (4.3) in Section 4.3;
16: construct geo-location dynamic features d;
17: end for
18: for each location in Check-in activities datasets do
19: index latent features / in V;
20: generalize the location dynamic features f; = [s, [, d];
21: end for
22: return Check-in activities with location features {( fi1, t1), (fi2, t2), ...(fiT, tT)};

R A A i

T
W N = O

5 DGPS Model

In this section, we present DGPS. Firstly, we introduce the preliminary of conditional
intensity function of temporal point process in following section. Sections 5.2, 5.3, and
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5.4 present user’s personal preference learning, social interaction excitation modeling, and
dynamic modeling of user’s behavior, respectively. Section 5.5 shows the learning and
forecasting algorithm of DGPS. Lastly, we discusses the time complexity of DGPS in
Section 5.6.

5.1 Preliminary

Temporal point process can be characterized by a conditional intensity function A*(¢), where
the conditional intensity function reflects the expected instantaneous rate of user’s activity
under historical data, that is intensity of user’s activity [1]. In general, the definition is given
in Eq. 9.
. E(N@+dt)—N@)|H(
20y = tim EVE+dD = N@)IH@) o)
dt—0 dt
Where 1*(r) is the conditional intensity for the occurrence of a new event given the
historical data H(t), within a time window [t 4+ df). N(¢) is the number of event, E is
expected number of occurrence of new event. Transferring dt to the left side, as Eq. 10.

A*(t)dt = P {a new check-in event within [z, t + dt)|H (¢)} (10)

A*(t)dt indicates the occurrences probability of a new check-in event within time [, £ 4dt).
* notation indicates intensity function relies on historical data.

The above formulation shows that the temporal point process is an effective way to
model the occurrences of discrete events such as check-in data. This allows us to embed
key factors known to affect a user’s check-in behavior into a conditional intensity function,
making it possible to model the mechanism generating that user’s behavior. We can also
now separate the key factor into two parts for learning user’s preferences and exploring the
mutual influences of social connections. Furthermore, we can leverage the temporal point
process to capture temporal dependency of context of a user’s check-in activity and model
dynamic changes in their check-in behavior over a long period of time. This analysis of
the context dependency and dynamic changes in a user’s check-in behavior is helpful for
efforts to accurately predict the location and time of a user’s next check-in activity. Under
the proposed framework, the reason why a user visits a location is clear and straightfor-
ward, and we can intuitively explore the dynamic mobility mechanism of their check-in
behavior based on this knowledge of the relevant dynamic changes and context dependency.
Therefore, to study the dynamic mobility mechanism of user’s behaviors on LBSNs, DGPS
utilizes conditional intensity function of temporal point process for modeling instantaneous
rate of expected occurrences of user’s check-in activities on LBSNs. The conditional inten-
sity function, jointly encodes user’s personal preference and social interaction excitations.
In the following, we will introduce how to incorporate user’s personal preference learning
and social interaction excitation modeling into a conditional intensity function A*(¢).

5.2 User’s personal preference learning

Many studies demonstrate that there is a strong correlation between the user’s preferences
and geographical influence of locations [2, 21, 46, 50]. Relying on geo-aware location
feature engineering, we can model user’s personal preferences with the product of the geo-
aware location features and a preference parameter, as in Eq. 11. Here, L(t) is the geo-aware
location features on each time unit, and 8 is preference coefficient.

() = BT« L(1) (11)
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Equation 11 reflects that user’s check-in behaviors derived from user preferences. What
is more, the instantaneous rate of user’s check-in behaviors varies with geo-aware location
features over time. We adopt a parameter S to learn the correlation between user preferences
and geo-aware location features. Although the correlation may have negative value, it lacks
reasonable explanation in real-world scenarios. Therefore, we set 8 to be non-negative.

5.3 Social interaction excitation modeling

The social characteristics of user behaviors is important. Through social interactions on
social networks, people influence others, and in turn, is influenced by others. To explore
social networks influence on user behaviors, we integrate social connections and friends’
preferences to model social interactions. Considering the varying importance of social inter-
actions over time, a time-aware strategy is applied. Firstly, we preserve the structure of
user’s social connections and measure social similarity between user and his friends, which
quantize the contribution of friends’ preference. Inspired by the social theory, more mutual
friends reflect more smaller distance in social networks and more similar preferences in
physical world. Jaccard coefficient is a popular way to measure of similarity for two sam-
ple sets, by comparing members for two sets with common elements, yielding a value from
0 to 1. Thus, we leverage Jaccard coefficient to measure similarity among users in social
network, using Eq. 12. I'(:) indicates the user’s friend set, x and y are users in social
networks.

Je, _ r@wnro)

= 12
P ULy (12

Due to the widespread use of smartphones, the information spreads fast, which enhances
the influence of social interaction. To capture evolving changes of social interactions, we
leverage the last time friend’s intensity (i.e., instantaneous rate of friend’s check-in activi-
ties) as the friend’s preferences. Subsequently, we model social interactions between a user
and his friends with the product of social similarity and the friend’s preference. Further,
we sum up social interaction of all of the user’s friend (i.e., all directly connected nodes
in social networks), and divide by the number of user’s friends. Meanwhile, we leverage a
time kernel function for learning time effect, which is e=?“~'/), Here w is not less than 0.
Formally, we introduce the social interactions into the conditional intensity function of the
user’s behavior, as given in Eq. 13.

AE@) = BT x Ly(t) + |Nl71| Z | JCry % Ay(ti—1) Z e @U—1)) (13)
YCNei i<t
Where, Ay (#;—1) is the friend’s intensity last time, and |Nei]| is the directly connect node
set of user x excluding the user x. Here the first term aims to learn user’s personal prefer-
ences, and the second term aims to model social interaction excitations. The parameter
and w are inferred by the learning algorithm of DGPS.

5.4 Dynamic modeling of user’s behaviors

Based on the basis of point process framework [1], conditional intenstiy function can infer
conditional density function f*(z), which is given in Eq. 14.

o o

YOm0 T o

(14)
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where, F*(t) is cumulative probability function, and it indicates the cumulative probability
of a new check-in event before time ¢ since last event. | — F*(¢) represents no check-in
event occurrence from time ¢ to ¢;_1, which is denoted as Q*(¢) and Eq. 15.

t
O*(t) = exp (—/ A*(t)dr) (15)
ti—

Now, we can write the conditional density function of temporal point process as Eq. 16,
given on last check-in event time.

1
Pl =2 e [ @) (16)
ti—1
After obtaining the conditional density function, we can forecast the probability of a loca-

tion of user’s next check-in activity, using check-in activities historical data. Furthermore,
DGPS can calculate the expected time of user’s next check-in activities via Eq. 17.

i = / (ot (17)
t

However, this expectation is too difficult to calculate, and we estimate the expected time
using the method in [9, 29] as follows.

Algorithm 2 DGPS learning and forecasting algorithm.

Input:
Input User’s check-in activities with location features {( fi1, t1), (fi2, ©2), -..(fiT, tT)};
Social networks;
Output:
Output Forecasting result of individual user check-in event location and time;
1: for each user u in datasets do
2: calculate JC similarity using Eq. 12;
3: end for
4: initialize 8, w;
5: while Og ,, ; , not converges do
6: update 8 by Eq. 24;
7 update z by Eq. 25;
8 update u by Eq. 26;
9 update w via gradient descent using Eq. 28;
10: end while
11: for each user u in datasets do

12: calculate conditional intensity f*(¢;+1) using Eq. 16;
13: calculate time expectation #; 1 using Eq. 18;
14: end for

15: return f*(t; 1), tiv1;

T
1
1
livl =7 Z’iﬁ (18)
i=1
where, t{”l is the next expected time of i-th time interval.
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1 Calculate the expected time interval t”+1 ..t7"! by Ogata’s thinning algorithm;

2 Calculate the average expected time in history as the estimating time via Eq. 18.

Given user’s check-in historical activity data {( fi1, t1), (f12, t2), ...(fir, tT)} and con-
ditional intensity function Aﬁ (#) (the subscripts indicate conditional intensity function,
which is related to parameters B, ). Formally, we write the likelihood function and log-
likelihood function in Egs. 19 and 20, respectively. In the following section, we will
introduce how to learning the two parameters: 8 and w.

T
LB o) =[] @l
i=1
T 4
= ]'[A;;,wm)exp(— / z,w(wdr) (19)
i=1 li-1

T "
In(L|B, w) = In (]_[ Azyw(t,-)exp(—/ )\gyw(r)dr)>
i=1 ti-1

T

T
= S0 = [ 30 20)

5.5 Parameter learning

To learn model parameters, we minimize negative log-likelihood function of Eq. 20. Mean-
while, we add the sparsity regularization ||8]|; into log-likelihood function for parameter
control, and finally, we has Eq. 21. Due to non-differentiable problem arising from £; norm,
we leverage alternating direction method of multipliers framework to solve the optimiza-
tion problem of objective function, which is a popular way for addressing the problem of
non-differentiable [4]. Based on ADMM, we break the optimization problem of objective
function into some sub-problems, each of which is easier to handle.

Op.0» = Zln(ﬂ * L(t;) + Z JC % Ay(ti— I)Ze w(t—t})

yCNel tj<t

T
[ 6" Lo+ e X JC ks (m) Yo e ) +yIBIRD

yCNez tl<t

Under ADMM framework, we rewrite an equivalent form of the objective function
(Eq. 21) by introducing an auxiliary parameter z, as in Eq. 22.

Oﬁ,w,z = Oﬁ,w +vylzli st B=z 22)
Then we formulate the augmented Lagrangian function Og ,, - ., as Eq. 23.
0
Op.w.2u =O0p0 + vzl + pu" (B —2) + Ellﬂ —zl3 (23)

We convert Og s, z,u to three sub-problems involving parameters 8, z, u, denoted by
Eq. 24 to Eq. 26.

gl = arg min (Oﬂk g”ﬂk — 4 uk||%> (24)
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. P
1= argmin (y 1200+ S - B — a3 (25)
Z

W=k ) <'Bk+l _Zk+l) (26)

We adopt gradient descent method for updating g in Eq. 24, and gradient of g is Eq. 27.
Og is related item of B in the objective function Eq. 21. The updating method of z uses the
soft thresholding [7].

005 XT: L(t)
o BT % L(1) + ﬁ Yyenei JC xhy(tim) X o e~ @—1j)

i=1

T
- / L(s)ds) 27)
0

Similarly, we update @ by gradient descent method, Eq. 28 is w gradient. O,, is related
item of w in the objective function Eq. 21.

aow = XT: th<[; INlei\ ZygNei JC x* )‘y(ti—l)eiw(liitj)(tjiti)
dw BT 5 L(t) + 1y yenei JC % hy(ti-1) Dt e—@=t))

i=1

S e Loyenei JC %y (ti)e T TN(T — 1) — (1 — e« T 1) %)

w?

We rank f*(#;11) result for forecasting the next check-in location. Meanwhile, we esti-
mate the expected time of next check-in activity by Eq. 18. Finally, we give the pseudocode
of DGPS in Algorithm 2.

5.6 Model complexity

We divide DGPS into two steps for analysing time complexity. The first stage is geo-
aware location feature engineering process. The time complexity of non-negative matrix
is o((m + n)k), where m is the number of user, n is the number of location, and k is
the number of latent factors. The complexity of semantic features and dynamic features
extracting process is o(n). The time complexity of first stage is thus o((m + n)k) + o(n).
The second stage is DGPS model learning algorithm. Given a check-in dataset, and each
user’s the number of average check-ins event is N. The length of time lines is 7. DGPS
learning algorithm leverages maximum likelihood estimation and alternative direction
method of multipliers framework to solve problem of parameter optimization. Accord-
ing to the complexity calculation methods in [31, 41], the complexity of DGPS learning
algorithm is o(mN2T). Therefore, the total time complexity of DGPS is approximated to
o((m + n)k) + o(n) + o(mN2T).

6 Experiments

In this study, we aim to accurately predict location and time of user’s next check-in activity.
To comprehensively evaluate the performance of DGPS, we conducted extensive experi-
ments on several real-world data sets from Brightkite, Gowalla, Foursquare check-in data
sets [5, 25, 45]. Meanwhile, we compared DGPS with some state-of-art methods. An intro-
duction to and the parameter settings of these models is provided in Section 6.5. All the
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experiments were performed on a computer with four cores (3.5 GHz CPU) and 32 GB of
RAM and a single NVIDIA GPU with 8 GB memory. Details of datasets and experiments
settings are given in the following sections.

6.1 Experiments settings

In this study, we focus on three check-ins datasets. Each check-in record contains the user
ID, check-in time, location ID and the latitude and longitude of the check-in location.
Details of data sets are as follows:

— BrightKite check-in dataset was provided by a location-based social network service
provider. The social network of data set consists of 58,228 nodes and 214,078 edges.
The data set also collected a total of 4,491,143 check-ins of these users over the period
of Apr. 2008 - Oct. 2010. In order to obtain the semantic label of nearby place of the
check-in location, we divide the data set into five states (or city) in USA, including
California, Colorado, New York, Texas and Washington states (or cities).

— Gowalla check-in dataset has collected a total of 6,442,890 check-ins over the period
of Feb. 2009 - Oct. 2010. We selected New York city as a representative data set.

— Foursquare check-in data set has collected a total of 573,703 check-ins over the period
of Apr. 2012 - Feb. 2013. We selected Tokyo city as a representative data set.

In the data preprocessing, we remove the users who have less than ten check-ins. After
that, Table 3 further lists the statistics of check-in datasets in corresponding states (or cities).
We split these datasets into 70% for training and 30% for test, in a chronological order. The
time interval decides training and prediction time granularity. We set the time interval as 7
days in this study. The other parameters are set as follows: k = 90, y = 0.1 in California,
New York(B), Texas and Washington datasets, y = 0.5 in Colorado datasets, and k = 90,
y = 0.1 in New York(G), Tokyo data sets. The effects of these parameters are further
investigated in Section 6.6.

6.2 Evaluation metrics

To quantitatively study the comprehensive performance of DGPS, we adopted the following
performance metrics:

®  Prediction performances. We evaluate the performance of DGPS in term of precision
(including Precision@p, p = 1,5, 10, 20), Recall at predicted length 20, F1 score,
rank (average precision rank, APR) and time deviation.

Table 3 The statistic of data sets(Check-ins are the number of check-in record, Locations are the number of
unique locations, Users are the number of unique users, Socials are the number of edges in social networks,
New York(B) is BrightKite data set, New York(G) is Gowalla data set)

Data sets California  Colorado  New York(B)  Texas Washington ~ New York(G)  Tokyo

Check-ins 521622 182413 138537 221694 126047 47310 390118
Locations 54581 27128 24164 35228 18191 2249 10647
Users 6042 2075 1174 3214 1708 1327 5079
Socials 44914 14932 14928 19798 7698 16845 37092

@ Springer



Geoinformatica

®  Dynamic performance. We simulate the check-in intensity of the selected user using
check-in historical data for revealing the dynamic performances of DGPS. Meanwhile,
we also show the semantic label of location of the selected user.

®  Sensitivity. We test the sensitivity of the prediction performance to parameter variation.

F1 score. Both the accuracy and recall are considered into the F1 score, which is the
harmonic average of the accuracy and recall value, as Eq. 29.

Precision x Recall
Fl=2x — (29)
Precision + Recall

APR (average percentile rank).  The percentile rank of prediction for location /; is Eq. 30
[34].

_n— rank(l;) + 1

N n

PR (30)

where n is the number of locations, rank(l;) is the position of location /; in the predicted
list. APR is average of PR.

Time-dev (time deviation). We calculate average differences between true time and pre-
dicted time using Eq. 31.

| Treal — Tpre |
Treal

Time-dev = 31)
where T4 is the true time of user check-in activity, 7). is predicted time of user check-
in activity.

6.3 Prediction performance of DGPS

In this section, we report the prediction performance of DGPS. Table 4 summarizes the
prediction performance in terms of the different evaluation measures on the data sets of
several states (or cities). From Table 4, we can observe that DGPS achieves a good predic-
tion performance, especially for the APR and Time-dev. In addition, based on experiments
of prediction performance, the following conclusions have been drawn: (1) Data sparsity
may has some effects to DGPS. For example, the performance on Texas dataset is less than
the other datasets (sparseness is 2 x 1075). In Texas dataset, time intervals of most succes-
sive check-in activities are more than one month. Extreme sparsity problem leads to DGPS

Table 4 The forecasting performance of DGPS on different data sets.(New York(B) is BrightKite dataset,
New York(G) is Gowalla dataset.)

Data sets Precision@1 Precision@5 Precision@10 Precision@20 Recall F1 score APR Time-dev

California 0.102 0.139 0.208 0.237 0.204 0.219  0.897 0.086
Colorado 0.087 0.128 0.171 0.187 0.175 0.181  0.862 0.091
New York(B) 0.075 0.179 0.201 0.229 0.239 0.234  0.883 0.087
Texas 0.089 0.097 0.150 0.178 0.191 0.184  0.797 0.104
Washington  0.109 0.142 0.178 0.227 0.259 0.242  0.892 0.111
New York(G) 0.067 0.103 0.128 0.147 0.162 0.154  0.715 0.177
Tokyo 0.082 0.142 0.161 0.169 0.181 0.175  0.857 0.113
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that cannot well capture the user’s preferences. (2) Richer social relations are benefits to
DGPS for achieving better prediction performance. For example, average social relations
of per user are 7.4, 7.2, 12.7, 6.1 and 4.5 in California, Colorado, New York(B), Texas and
Washington (i.e. divide the total number of social relations to the total number of users),
respectively. The prediction performance on California, Colorado and New York(B) is better
than Texas. The experimental results demonstrate the successes of social interaction excita-
tion modeling. (3) The number of average check-in record of each location has a significant
effect to the prediction performance of DGPS. Such as, the user in California and New
York(B) have more check-in records of per user than the user in Texas and Washington. The
performance of DGPS on California and New York(B) data set obtains better results than
Texas and Washington. But the people in Colorado is a little different. The potential reason
is that users in this city like to explore new locations. (4) For the Tokyo population, the per-
formance of DGPS on the Foursquare data set was similar to that achieved by BrightKite,
but for the New York population the performance of DGPS on the Gowalla dataset was poor,
likely due to data sparsity. The average number of check-ins of per user was less than 36 in
the New York(G) data set, the lowest among all the datasets.

As all location features are essential to learn user preferences and improve the perfor-
mance of DGPS, we study their impacts in this experiment. To further explore the impact of
different features in DGPS, we compare DGPS with its three variants using different com-
bination of features. Table 5 shows the variant using the combination of different features.
DGPS-SL, DGPS-SD and DGPS-LD lack one specific feature, and DGPS-SLD includes all
features.

Tables 6 and 7 show the prediction performance on California and Colorado data sets.
From both tables, we observe that DGPS-SLD achieves the best performance than the three
variant on both data sets, indicating the benefits brought by all features. In addition, DGPS-
LD outperforms than DGPS-SL and DGPS-SD, and the performance of DGPS-SL is close
to DGPS-SD. The results illustrate the contribution to DGPS among different features are
also not the same. We conclude latent features and dynamic features are more important
than semantic features. But if DGPS lacks any specific features, it cannot achieve good
performance.

6.4 Dynamic analysis

To further evaluate the dynamic performance of DGPS on user’s behavior modeling, we
carry on a case study to compare simulated intensity of check-in activities with real visiting
variation. We select three representative users from New York, Texas and Washington, and
we calculate variation of simulated intensity of each user, respectively. Meanwhile, we col-
lect the number of check-ins on each time unit for corresponding user, that is ground truth.
Then we normalize both simulated results and ground truth, and plot both of them with time

Table 5 Different features of

DGPS Semantic features Latent features Dynamic features
DGPS-SL . .
DGPS-SD o .
DGPS-LD . °
DGPS-SLD o . .
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Table 6 The impact of different features of DGPS on prediction performances in the California data set

Features Precision@1 Precision@5 Precision@10 Precision@20 Recall F1 score APR Time-dev

DGPS-SL  0.051 0.091 0.113 0.130 0.173 0.148  0.720 0.205
DGPS-SD  0.060 0.103 0.147 0.167 0.178 0.172  0.773 0.104
DGPS-LD 0.084 0.115 0.156 0.172 0.181 0.176  0.816 0.095
DGPS-SLD 0.102 0.139 0.208 0.237 0.204 0.219  0.897 0.086

variation. The left figures in Figs. 6, 7 and 8 are the comparison between simulated inten-
sity and ground truth. From these figures we can see that, although the value of simulated
intensity is higher than the real value, simulated result of DGPS can well fit the instanta-
neous rate of real check-in event with time variation. Meanwhile, we draw the wordcloud
of semantic label of user visited venue. Excluding the common place such as store restau-
rant, worldcloud of semantic label of visited location points out the user’s life preferences.
Figure 6b shows that a user from New York more likely be a women since the user’s check-
in regions have many cloth store, show store, bar and night club, etc. The user from Texas
in Fig. 7b may be a doctor, since he always check in locations with doctor labels. Figure 8b
shows the user from Washington has check-in activities in many venues, and thus we infer
that he might have a colourful life in his leisure time.

6.5 Comparisons with other algorithms

To further demonstrate the benefits of DGPS, we compare DGPS with seven baselines.

e RSTE. Recommend with Social Trust Ensemble[26] considers both user’s taste and
their trusted friends’ favors into a probabilistic factor analysis model. Without any rat-
ing information in our datasets, we use the frequencies matrix X replace the rating
matrix R. Meanwhile, directly connected nodes simulate the trusted friends sets in
RSTE model.

® GeoMF. GeoMF introduces spatial clustering phenomenon into weight matrix factor-
ization model for POIs recommendation [21]. Specifically, GeoMF augments user’s
activity areas and POI’s geographical influence areas into user’s and POI’s matrices,
respectively. We set the number of latent factors as 30, and the other parameters are fine
tune suggested by the paper.

e HP. Hawkes process is a classical temporal point process, and we fit a self-excitation
Hawkes process using the intensity function in [39], and the parameters are initialized
randomly.

e W3. W4 (who, when, where, and what) is a probability model fusing user’s pro-
file, location, twitter and temporal information etc. [48]. It can predict user’s location

Table 7 The impact of different features on DGPS prediction performances in the Colorado data set

Features Precision@1 Precision@5 Precision@10 Precision@20 Recall F1 score APR Time-dev

DGPS-SL  0.058 0.093 0.133 0.141 0.151 0.146  0.733 0.143
DGPS-SD  0.071 0.096 0.151 0.161 0.153 0.157  0.747 0.121
DGPS-LD  0.081 0.114 0.162 0.170 0.163 0.166  0.790 0.109
DGPS-SLD 0.087 0.128 0.171 0.187 0.175 0.181 0.862 0.091
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Fig.6 Case study in New York (user ID is 293). Figure a shows comparison between simulated intensity and
real visiting frequencies. Figure b shows the wordcloud of semantic label of visited location of the user

via his twitter and check-in historical data. Since our data set does not have the text
information, we remove the attribute of what, then W4 transforms to W3.

e LSTM. Long Short-Term Memory network is a recurrent neural network in the area
of deep learning. LSTM can remember the long effect and short-term influence via a
unique cell (including input, forget and output gate), which are well-suited to making
prediction based on time series data. In this study, we use LSTM as the representation
of deep learning methods instead of GRU (Gated recurrent unit). GRU always achieves
better performance than LSTM in NLP area instead of sequence modeling. In this study,
after extracting location features, we build a location-feature sequence. Then we use a
standard LSTM [14] to train a sequence prediction model under PyTorch framework.
Parameters are fine tuned to yield the best result.
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Fig.7 Case study in Texas (user ID is 689). Figure a shows comparison between simulated intensity and real
visiting frequencies. Figure b shows the wordcloud of semantic label of visited location of the user
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Fig.8 Case study in Washington (user ID is 1974). Figure a shows comparison between simulated intensity
and real visiting frequencies. Figure b shows the wordcloud of semantic label of visited location of the user

o  MFM. Most Frequent Model is a simple baseline to making prediction based on user’s
frequencies to a location. We rank the frequencies of the user’s frequency based on his
check-in history, and assign the high value locations as the predicted result.

e PMF. Probability matrix factorization is common method based on matrix factoriza-
tion, which is widely used in recommendation tasks [27].

Figures 9 and 10 summarize the prediction performance in terms of different measures
on real-world datasets of California and Colorado states. The other algorithms cannot pre-
dict the time of user’ check-in activity, so the measure of the time-dev is only provided by
DGPS. From these figures, we can observe that DGPS achieves the best results. Good per-
formance of DGPS may be due to following reasons: 1) Under DGPS framework, semantic
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Fig.9 Figure a and b compare the performance of other algorithms with DGPS on California dataset. Figure
a is Precision@P performance, P is the predicted length. Figure b is experiment result of the APR, Recall,
F-score and Time-dev. Other algorithms do not provide capacity of forecasting time, so we set results to zero
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Fig. 10 Figure a and b compare the performance of other algorithms with DGPS on Colorado dataset. The

meaning of figure is same as Fig. 9

Table 8 Sensitivity of hidden features parameter k on California dataset

k  Precision@1 Precision@5 Precision@10 Precision@20 Recall Flscore APR  Time-dev
10 0.061 0.117 0.156 0.162 0.173  0.167 0.810 0.115

30 0.067 0.118 0.162 0.166 0.175  0.170 0.810 0.109

50 0.072 0.121 0.167 0.187 0.192  0.189 0.812 0.108

70 0.101 0.130 0.202 0.218 0.223  0.220 0.891 0.091

90 0.102 0.139 0.208 0.237 0.204  0.219 0.897 0.086
Table9 Sensitivity of model parameter y on California dataset

y Precision@1 Precision@5 Precision@10 Precision@20 Recall F1score APR  Time-dev
0.01 0.097 0.127 0.204 0.228 0.202 0.214 0.827 0.093

0.1 0.102 0.139 0.208 0.237 0.204 0.219 0.897 0.086

0.5 0.097 0.131 0.192 0.224 0.204 0.213 0.852  0.091

1 0.093 0.128 0.183 0.190 0.187 0.188 0.831 0.091

10 0.082 0.119 0.141 0.162 0.174 0.168 0.811 0.102
Table 10 Sensitivity of hidden features parameter k on Colorado dataset

k  Precision@1 Precision@5 Precision@10 Precision@20 Recall FI1 score APR  Time-dev
10 0.057 0.091 0.127 0.145 0.158 0.151 0.783 0.111

30 0.061 0.103 0.134 0.157 0.161 0.159 0.790 0.105

50 0.079 0.117 0.161 0.179 0.165 0.172 0.851 0.094

70 0.085 0.128 0.168 0.181 0.169 0.174 0.857 0.094

90 0.087 0.128 0.171 0.187 0.175  0.181 0.862 0.091
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Table 11 Sensitivity of model parameter  on Colorado dataset

y Precision@1 Precision@5 Precision@10 Precision@20 Recall FI score APR Time-dev

0.01 0.074 0.117 0.158 0.167 0.172 0.169 0.851 0.103
0.1  0.081 0.124 0.171 0.181 0.177  0.179 0.855 0.088
0.5 0.087 0.128 0.171 0.187 0.175 0.181 0.862 0.091
1 0.070 0.121 0.169 0.176 0.173  0.175 0.860 0.099
10 0.072 0.114 0.167 0.171 0.165 0.168 0.853 0.101

features, latent features and dynamic features are fused into the geo-aware location fea-
tures. Especially, fusing latent features is the main reason to gain better performance than
GeoMF, RSTE, and PMF. Relying on geo-aware location features, DGPS can well capture
user’s personal preferences and gains better performance than traditional preference learn-
ing model. 2) DGPS integrates social connections and evolving friends’ preference into a
social interaction excitation modeling. Although time-dependent dynamic model face with
overly exacting challenge of data sparsity than traditional static model, the social interaction
excitation modeling in DGPS is helpful to alleviate data sparsity and improve performances.
3) More importantly, we observe DGPS and LSTM always gain better results than other
methods on both datasets. The reason behind this experimental result is that DGPS can cap-
ture the dynamic mobility mechanism of user’s activities on LBSNs, and LSTM can learn
context information in check-in activity. Although LSTM can access approximate results
to DGPS on Colorado dataset, LSTM lacks the interpretation of user’s check-in behaviors
and cannot intuitively reveal the influence factors of dynamic mobility mechanism of user’s
check-in behaviors.

6.6 Sensitivity to parameters

In this section, we perform sensitivity analysis of DGPS by varing the values of different
parameters on the datasets of California and Colorado, including the number of latent factors
k, the coefficient of the £; norm y. We vary k£ from 10 to 90 with stepsize of 20, and y
from 0.01 to 10. Tables 8, 9, 10 and 11 show the DGPS’s performance with varying values
of different parameters.

From these tables, we can see that the model performance grows up with increasing «,
but it will not better when k gets a reasonable value, such as k = 70 on California dataset
and k = 50 on Colorado dataset. The performance of DGPS is quite robust when y not
more than 1 on both two datasets. In general, DGPS is not too sensitive to parameters.

7 Discussion and conclusion

In this paper, we propose a novel dynamic model to learn user’s check-in behaviors on
LBSNSs, in which the dynamic model jointly integrates geo-aware user preferences learning
and social interaction excitation modeling through a proposed conditional intensity func-
tion of temporal point process. In particular, to explore the effect of geographical influence
to user preferences, DGPS extracts the geo-aware features of a location, which include
semantic features, latent features and dynamic features. Meanwhile, we integrate social
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connections, friends’ preferences, and time kernel function for modeling social interac-
tion excitation. Furthermore, DGPS simulates the temporal point process to learn dynamic
mobility mechanism of evolving user behaviors. Another attractive property of DGPS is
that it provides a way to forecast the location as well as time for future check-in activ-
ity. Through comprehensive experiments, we demonstrate that DGPS outperforms many
state-of-art models on LBSNSs, and it also provides an intuitive way to analyze the dynamic
mobility mechanism of user’s check-in behaviors.
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