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Abstract
The surveillance and preventions of infectious disease epidemics such as influenza and
Ebola are important and challenging issues. It is therefore crucial to characterize the disease
progress and epidemics process efficiently and accurately. Computational epidemiology
can model the progression of the disease and its underlying contact network, but as yet
lacks the ability to process of real-time and fine-grained surveillance data. Social media,
on the other hand, provides timely and detailed disease surveillance but is insensible to the
underlying contact network and disease model. To address these challenges simultaneously,
this paper proposes a novel semi-supervised neural network framework that integrates the
strengths of computational epidemiology and social media mining techniques for influenza
epidemiological modeling. Specifically, this framework learns social media users’ health
states and intervention actions in real time, regularized by the underlying disease model
and contact network. The learned knowledge from social media can then be fed into the
computational epidemic model to improve the efficiency and accuracy of disease diffusion
modeling. We propose an online optimization algorithm that iteratively processes the above
interactive learning process. The extensive experimental results provided demonstrated that
our approach can not only outperform competing methods by a substantial margin in fore-
casting disease outbreaks, but also characterize the individual-level disease progress and
diffusion effectively and efficiently.
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1 Introduction

Epidemics such as Ebola and seasonal influenza pose a serious threat to global public health.
The recent Ebola outbreak in West Africa led to 27,055 cases and 11,142 deaths [32]; Sea-
sonal influenza is estimated to result in from 3 to 5 million cases of severe illness and about
250,000 up to 500,000 deaths each year [33]. These diseases share two important charac-
teristics: (1) frequent local and global travels often facilitate the spread of epidemic at a
large spatial scale, through close contacts between people; and (2) they spread rapidly. For
example, during the 2009 H1N1 pandemic the initial case occurred in Mexico in March
2009, but by the beginning of November 2009, more than 6,000 people had died from H1N1
influenza [28]. In order to implement effective public health measures to mitigate such
fast-developing epidemics, it is crucial to characterize the disease and the evolution of the
ongoing epidemic efficiently and accurately. To address this issue, recent research in both
computational epidemiology and social media mining have achieved important progress and
demonstrated their usefulness in dealing with different aspects of the problem.

In the field of computational epidemiology, individual-based network epidemiologi-
cal techniques have been developed to study the spatio-temporal dynamics of the spread
of epidemics. These simulate disease transmission at the individual level, including a
consideration of interventions such as vaccinations, school closures, and quarantine. High-
performance simulation systems have been developed that are capable of simulating
epidemics using network-based models. Such simulations focus on the evolution of an
epidemic, enabling planners to: (i) forecast the spatio-temporal spread of the disease;
(ii) estimate important epidemic measures such as the peak time; and (iii) evaluate the
effectiveness of intervention strategies.

Currently, computational epidemiology suffers from the following challenges. 1) The
lack of spatially fine-grained surveillance data for model tuning. Existing work mostly
relies on surveillance data such as that provided by the Centers for Disease Control and
Prevention (CDC) [12] in the United States to estimate the model parameters. However, the
CDC surveillance data only provides state-level spatial information, which is insufficient
for accurate diffusion modeling within a state. 2) Difficulties in tracking the dynamics of
contact networks in real time. Interventions such as school closures and vaccination drives
play an important role in mitigating epidemics by changing people’s infectivity and vulner-
ability and altering the contact network structure. As yet, however, these approaches lack
effective ways to monitor the impact of ongoing interventions during the current season in
real time. 3) High cost and low timeliness of retraining. Although existing approaches gen-
erally rely on batch training based on the CDC surveillance data, the CDC surveillance data
is only updated weekly, with a delay of at least one week, and thus can never catch up with
the real time disease spread.

Social media, on the other hand, can capture timely and ubiquitous disease informa-
tion from social sensors (i.e., social media users) [13]. Social media-based approaches can
be classified into two categories: (i) aggregate-level disease surveillance and (ii) detailed
health-informatics analysis. The first category assumes that self-reported symptoms from
social media users are reliable signals reflecting the aggregate-level trend of a particular
outbreak. Among these, some focus on detecting or tracking current influenza outbreaks
while others aim to forecast the severity of the outbreak. The second category focuses on
detailed modeling of the social media contents as well as their relevance to health informat-
ics, disease geoinformatics, and health behaviors. However, social media mining approaches
suffer from three major drawbacks. First, as a crucial determinant of the disease diffu-
sion pattern, real contact networks are basically unobservable. Estimating social contact
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networks merely based on the location of social media users is neither accurate nor suffi-
cient. Second, they are generally only capable of characterizing the health information of
individual social media users, not the whole demographic population. Third, they typically
only employ the disease information retrieved from social media and do not incorporate
disease model knowledge.

Although computational epidemiology can model the progress of a disease and the
underlying disease contact network among individuals, it suffers from a lack of timely
and fine-grained surveillance data. Social media mining, on the other hand, provides spa-
tiotemporal surveillance with good timeliness and geographical details, but is unable to
observe the underlying contact network and disease progress model. In order to overcome
the above-mentioned challenges, we propose a novel online semi-supervised neural network
framework that integrates the strengths of individual-based epidemic simulation and social
media mining techniques, namely SocIal Media Nested Epidemic SimulaTion (SimNest).
SimNest is a novel bispace framework for influenza epidemics modeling and prediction that
combines computational epidemiology and social media data using an interactive mapping
process, as shown in Fig. 1. Specifically, the health states and interventions actions of social
media users are not only identified via their posts by neural network, but also regularized
in an unsupervised manner by the disease model in computational epidemiology. The user
health states and parameterized disease model learned from social media is then invoked
to provide the computational epidemic model with individual-level surveillance and opti-
mized disease model parameters. This interactive learning process between social media
and computational epidemiology creates a consistent stage between these two spaces. The
main contributions of our study are summarized as follows:

– A novel integrated framework is proposed for computational epidemiology and
social media mining: Existing approaches from computational epidemiology and social

I just realized that I lost my ability to
taste. This flu is just trolling me now

n : infected for n days : isolated : vaccinated

Just got my flu shot
from @rxjude ouch!!

...

I feel like crap!
I’m getting the flu Social Media Space

Maybe i will feel better tomorrow and can
go back to school Thursday!:D hate the flu

Simulated World

I think I got flu

get the flu, in bed for 3 days.

4th day with flu

4

5
2

3

: uninfected

6

5

3

...

...

...

Fig. 1 In SimNest, the simulated world mirrors social media space. The posts of social media users
reflect their health, vaccination, or isolation status. This information is mapped to the corresponding spatial
subregions in the demographics-based contact network in the simulated world
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media mining focus on different but complementary aspects of the problem, with the former
focusing on modeling the underlying mechanisms of disease diffusion while the latter pro-
vides timely and detailed disease surveillance. The new SimNest framework proposed
here utilizes both types of information by integrating their respective strengths.

– A semi-supervised multilayer perceptron (MLP) has been developed for mining
epidemic features: To achieve a deep integration, we enforce unsupervised pattern
constraints derived from the epidemic disease progress model onto the supervised
classification. Using this semi-supervised strategy, the sparsity of labeled data can be
solved.

– A new designing an online stochastic training algorithm is presented: To mini-
mize the inconsistencies between Twitter space and the simulated world, we iteratively
optimize model parameters via an online algorithm based on the stochastic gradient
descent. This algorithm ingests the social media data streams and updates the model
parameters in real time, thus not only reducing the cost of retraining but also ensuring
the timeliness of the model.

– Extensive experiments have been conducted to evaluate the new algorithm’s per-
formance: The proposed SimNest model was evaluated using four real-world dataset
and the results compared to those obtained by existing models. The proposed algorithm
consistently outperformed the competing methods in multiple metrics. The perfor-
mance for individual-level epidemics modeling and forecasting were also demonstrated
and discussed.

The rest of this paper is organized as follows. Section 2 reviews existing work in this area.
Section 3 presents the problem formulation. Section 4 elaborates the mathematical descrip-
tions of the SimNest model, and Section 5 presents the parameter optimization for SimNest.
Section 6 introduces the extended functions of SimNest. In Section 7, the extensive exper-
imental results are analyzed. This paper concludes by summarizing the study’s important
findings in Section 8.

2 Related work

Computational models for epidemiology are important for a number of reasons. Tradi-
tionally, computational epidemiology has tended to focus on compartmental models where
a population is divided into subgroups (compartments) based on people’s health status
and demographics, with the epidemic dynamics being modeled by ordinary differential
equations [25, 29].

Recently, individual-based computational models have begun to be developed to support
network epidemiology, where an epidemic is modeled as a stochastic propagation over an
explicit interaction network between people. One common approach taken by network epi-
demiology is to model the interactions between people using random graph models [16, 21].
Here, the closed form analytical results obtained can be applied to study epidemic dynam-
ics, but this relies on the inherent symmetries in random graphs. With no explicit location
modeling, it cannot be applied to compute the geographical spread of an epidemic.

Another direction taken by network epidemiology is to develop a realistic represen-
tation of a population by considering members’ social contact networks, and then using
individual-based simulations to study the spread of epidemics within each network [5, 9].
This approach first constructs a synthetic population, where each individual is assigned
demographic, geographic, social, and behavioral attributes so that at various aggregate
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levels the synthetic population is statistically indistiguishable from the real population. The
synthetic individuals are also assigned daily activities and physical locations at any moment,
so by connecting all those located within close proximity to each other one can construct
the corresponding synthetic social contact network for the population [4]. Individual-based
simulations model epidemics as diffusion processes across this network, computing who
infects whom at what time and at which location [9]. In addition to the synthetic network and
disease model, another key component of individual-based epidemic simulations is the asso-
ciated set of public health and individual interventions carried out to control the epidemic,
which can be either pharmaceutical in nature such as vaccination, or non-pharmaceutical
such as social distancing. These interventions affect the epidemic evolution by changing the
node or edge properties of the network.

There have been a number of influenza epidemic knowledge mining techniques proposed
based on the use of social media, and these can be categorized into two threads. The first
thread focuses on aggregate level disease surveillance. For example, Krieck et al. [23] sug-
gested that self-reported symptoms are the most reliable signal in detecting whether a tweet
is relevant to an outbreak or not and then went on to demonstrate that this is because even
though people generally do not identify their specific problem until diagnosed by an expert,
they readily write about how they feel. Using a similar approach to identify flu-related
tweets, researchers have generally concentrated on tracking the overall trend of a particular
disease outbreak, typically influenza, by monitoring social media [2, 22, 35–37].

The second thread focuses on detailed health-informatics semantic analysis. These
approaches typically model the language of the social media messages and their relevance
to public health [27, 30] influenza surveillance [15, 19], disease geoinformatics [18], user
interactions [11], and health behavior [13, 31]. Paul and Dredze [27] proposed a topic model
that captures the symptoms and possible treatments for ailments, and then went on to pro-
pose a way to identify the geographical patterns in the prevalence of such ailments. Specific
to self-reporting on influenza, Collier et al. [15] categorized five sub-classes of tweets that
serve as user behaviour response surveys for influenza outbreaks, while Dredze et al. [18]
focused on achieving accurate geographical location identification for influenza outbreak
detection and Brennan et al. [11] utilized Twitter user interactions to uncover the health
condition of Twitter users. Tackling the problem from a different direction, Chen et al. [13]
concentrated on modelling the disease progression in individuals.

3 Problem setup

This paper aims to characterize the spatiotemporal diffusion of influenza epidemics across
their underlying social contact networks. Specifically, assume the time are split into T dis-
crete time intervals T = {0, · · · , t, · · · , T }. We aim to determine for each time interval
t ∈ T the health states Z of the people in the population of interest, provided the social
media data and demographics of the population as inputs. The occurrence time of each state
transition within a time interval will be rounded to the boundaries of this time interval. To
address this problem, approaches based on computational epidemiology and social media
mining are formulated in turn below.

3.1 Individual-based epidemic simulation

A disease transmits through person-to-person contact. These contacts form a network called
a social contact network G = (V, E,W), which is a directed, edge-weighted network where
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nodes V correspond to individuals in the population. An edge (v1, v2) ∈ E with weight
W(v1, v2) denotes the nodes v1 and v2 ∈ V has a contact of duration W(v1, v2). During
the contact the disease may transmit from node v1 to v2 with probability p(W(v1, v2), τ ),
where τ , the transmissibility, is the probability of transmission per unit of contact time and
is a parameter associated with the disease. We first assume that the contact network G is
constant. In Section 6, we will consider the situation when G changes due to interventions.
To implement such social contact network, we apply the method in EpiFast [9], which fol-
lows the way of Episimdemics [7] consisting of two general steps. In Step 1, a simulated
world with synthetic individuals is created based on the real-world demographics data. So
in such simulated world, the individuals in each household with basic profiles are corre-
sponding to those in each household in the real-world demographics; In Step 2, the social
contact networks are derived from the synthetic population based on physical co-location
of interacting persons, using the method that is proposed and described in [6]. The specific
data and settings we adopted will be introduced in the experiment section.

Each person is assumed to be in one of the following four health states at any time: sus-
ceptible (S), exposed (E), infectious (I), and recovered (R), which is known as the SEIR
disease model and is widely used in the mathematical epidemiology literature [3, 25]. Asso-
ciated with each person v is an incubation period pE(v) and an infectious period pI (v), each
from a distribution. We assume that both are normally distributed, i.e., pE(v) ∼ N (μE, σE)

and pI (v) ∼ N (μI , σI ). A person is in the susceptible state until he becomes exposed.
If a person v becomes exposed, he remains so for pE(v) days, during which he is not
infectious. Then he becomes infectious and remains so for pI (v) days. Finally he recovers
and remains so. The transition S �→ E is probabilistic, but we assume that once person v

becomes exposed, pE(v) and pI (v) are sampled from the two normal distributions respec-
tively so their values are determined. Hence, given the parameters, let Zv,t (pE(v), pI (v)) ∈
{S,E, I, R} denote the health state of person v ∈ V for the time interval t ∈ T . We then
have Z = {Zv,t (pE(v), pI (v))}v∈V,t∈T , where Z stands for peoples’ inferred health status
based on individual-based epidemic simulations.

3.2 Social media based user health state inference

Social media is a popular way for people to post messages about their everyday feelings,
and is commonly treated as a surrogate for the physical world [2]. Taking Twitter as an
example, suppose the set of Twitter users who have ever mentioned their flu infectiousness
is denoted as U ⊆ V , which can increase with Twitter data streams. Each user u ∈ U posts
nu,t tweets in each time interval t (e.g., hour, day), t = 1, 2, · · · , T . Suppose we have a
predefined set of keywordsK related to flu. Define Xu,t ∈ Z

|K|×1 as the vector of keywords
frequencies from the tweet postings of user u at time t . Hence, Xu = {Xu,t }Tt denotes the
keyword vectors of user u, while X = {Xu}u∈U denotes the set of all keyword vectors. We
are interested in learning a classifier fW that maps the social media user textual content Xu,t

to their corresponding health state Yu,t :

fW (Xu,t ) : Xu,t → Yu,t (1)

where Yu,t = 1[Zu,t = I ], I stands for “Infectious”, and 1[·] stands for the indicator
function. Thus, Yu,t = 1 signifies that user u’s health state Zu,t at time t is infectious (I);
and Yu,t = 0 that it is not. Yu = {Yu,t }Tt denotes all the health states of user u. W denotes
the parameter set of the classifier.

There are three main challenges when using either individual-based epidemic simulation
or social media mining techniques individually: (1) There is as yet no surveillance data that
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is sufficiently real-time and fine-grained to permit the detailed progress of the epidemic sim-
ulation to be linked consistently with the physical world. (2) The person-to-person disease
contact network and disease model is opaque to social media data. (3) The fast-streaming
and time-evolving nature of huge social media data requires efficient updating of the trained
model. Traditional batch-based training suffer from high expense and poor timeliness.

In order to overcome the above-mentioned challenges in each of the above threads when
used individually, we propose simultaneously using both types of information by deeply
integrating the strengths of individual-based epidemic simulation and social media mining
techniques in our new framework, SocIal Media Nested Epidemic SimulaTion (SimNest),
which is elaborated in the following section.

4 SimNest model

As shown in Fig. 2a, SimNest learns the users’ health status from social media posts based on
a multilayer feature representation. In addition to considering each time point individually,
SimNest utilizes a disease progress model from computational epidemiology to constrain
the temporal pattern of two aspects of health status: (1) constraining the infectious period to

Date t t+5t+1 t+2 t+4t+3

: Healthy
: Infectious

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

(b) Bispace Inconsistency Loss (d) Temporal Pattern Loss

(a) Supervised Loss

(c) Infectious Period LossInfectious period distributionLegend
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Fig. 2 The illustration of the SimNest model
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follow a probability distribution, as depicted in Fig. 2c, and (2) resisting temporally discon-
tinuous health states, as shown in Fig. 2d. Figure 2b illustrates how mapping social media
users’ health states into a demographics-based synthetic contact network can be used to
implement interactive learning between these two spaces. Simulation model parameters are
thus adjusted by the social media surveillance data while the weights of the multilayer-based
health state model are regularized by the underlying synthetic disease contact network.

To ensure the underlying health states in the contact network G are consistent with those
gathered from social media data D, SimNest simultaneously optimizes the contact network,
disease progress model parameters pI and pE , and the social media-based health state
inference fW (·). Among all the keyword vectors X , we are given a set of labeled samples
X1 = {Xu,t }u∈U1,t∈T with corresponding class label Y1 = {Yu,t }u∈U1,T , and unlabeled
samples X2 = {Xu,t }u∈U2,t∈T , where U2 = U − U1 is the set of all the unlabeled users.
Mathematically, the SimNest model is formulated as jointly minimizing four loss functions:
(A) Supervised loss, (B) Bispace consistency loss, (C) Infectious duration loss, and (D)
Temporal proximity loss, as illustrated below.

L = L1(Y1,X1,W) + L2(X2,G, pE, pI ,W)

+L3(X2, pI ,W) + L4(X2,W) (2)

These different loss functions are illustrated in Fig. 2. In the following subsections, we
will discuss each in turn.

4.1 Supervised loss

To build an effective mapping fW (·) between tweet texts and user health states, which is
an abstract concept, we substantialize it by applying a deep data representation, namely
multilayer perception:

fW (x) = s(h(1)) = s
(∑m

j=1
W

(2)
j s

(
h

(2)
j

)
+ W

(2)
0

)
,

h
(2)
j =

∑|K|
i=1

W
(1)
j,i xi + W

(1)
j,0 (3)

Here, apart from the input layer that is the tweet text and the output layer that is the user
health state, another hidden layer represents the abstract semantics, where m represents the
number of hidden layer features. W = W(1) ∪ W(2), where W(1) ∈ R

|K|×m is the weight
matrix for the mapping from the text layer to the abstract semantics layer, W(2) ∈ R

m×1 is
the weight vector for the mapping from the abstract semantics layer to the user health status
layer and s (·) is the sigmoid function. h(1) = ∑m

j=1 W
(2)
j s(h

(2)
j ) + W

(2)
0 .

A common way to learn W is to define a loss function over the training data, and then
obtain the best W by minimizing the loss of misclassification towards labels:

L1 = min
W

U1∑
u

T∑
t

∥∥fW (Xu,t ) − Yu,t

∥∥2 (4)

4.2 Bispace consistency loss

To sufficiently benefit from the complementary advantages of individual-based epidemic
simulation and social media data, the inner inconsistency of the integrated model must be
minimized. The hidden health states in the individual-based epidemic simulation need to
be consistent with the observations from social media. On the other hand, the intelligence
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gleaned from the social media data also needs to correspond to the hidden disease pro-
gression across the hidden contact network. Expressing this more formally, our goal can be
formulated in terms of the following loss function:

L2 = min
Θ,W

V∑
v

T∑
t

∥∥Qv,t (G, pE, pI ) − fW (Xv,t )
∥∥2 (5)

where Qv,t (G, pE, pI ) = 1[Zv,t (pE(v), pI (v)) = I ], and I stands for the “infectious”
state, as noted in Section 3. Θ = {G, pE, pI } are the parameters of the individual-based
epidemic simulation and pE(v) ∼ N (μE, σE) and pI (v) ∼ N (μI , σI ) are the incubation
and infectious duration distributions for person v, respectively.

Although it is not possible to link the corresponding person to a specific user in Twitter,
and not everybody posts tweets, the specific spatial subregion (e.g., blocks, counties, etc.)
of Twitter user u ∈ U and simulated individual v ∈ V can be known. Hence, the above loss
function can be transformed to a fine-grained spatial subregion:

L2 = min
Θ,W,λ1

L,T∑
l,t

∥∥∥∥∥∥
λ1

Vl∑
v

Qv,t (G, pE, pI ) −
U2,l∑
u

fW (Xu, t)

∥∥∥∥∥∥

2

(6)

where U2,l denotes the Twitter users in location l, Vl denotes the people in location l, and λ1
is the parameter scaling the person count in the individual-based epidemic simulation down
to the count of social media users in that location.

4.3 Infectious period loss

Existing social media mining techniques typically do not assume a specific disease progres-
sion model and hence cannot take advantage of important knowledge patterns. In contrast,
SimNest borrows the appropriate disease progression model from the epidemic simulation
to regularize the patterns in the huge unlabeled social media data. This not only greatly
mitigates the problem of label data sparsity, but also improves the timeliness and general-
ization of the modeling. In particular, the infectious duration du for a Twitter user u ∈ U
will depend on the flu outbreak’s specific characteristics as well as his or her general state
of physical health, which is denoted as normal distribution here as it is one of the com-
monly used distributions for infection duration [14, 20]. Moreover, the maximum likelihood
of normal distribution can be equivalent to a squared loss which is consistent with other
loss terms in our objective terms and hence easier for optimization. However, the user
could customize appropriate distribution freely according to the disease type and SimNest
widely accommodates exponential family distributions. The normal distribution-based is as
follows: [∑T

t
fW (Xu,t )

]
= du ∼ pI (u) = N (u|μI , σI ) (7)

where the infectious duration du is calculated as
∑T

t fW (Xu,t ) because fW (Xu,t ) = 1 when
infectious and fW (Xu,t ) = 0, otherwise. du is sampled from pI (u), the probability distribu-
tion of the infectious duration of the user u, which is a Gaussian distribution N (u|μI , σI )

with the mean μI and standard deviation σI . By maximizing the likelihood function for the
observations, we can obtain the following objective function:

max
U2∏
u

N(du|μI , σI ) = max
U2∑
u

logN

( T∑
t

fW (Xu,t )|μI , σI

)
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which can be transformed to the following formulation by considering Eq. 1:

L3 = min
W,pI

1

2σ 2
I

U2∑
u

∥∥∥∥∥
T∑
t

fW (Xu,t ) − μI

∥∥∥∥∥
2

+ |U2|
(2πσ 2

I )
1/2

(8)

4.4 Temporal proximity loss

Another important intrinsic pattern in the health status modeling is that the states in the
neighboring time points should be similar. Moreover, a person who is recovering from the
flu typically cannot get the flu again in the same flu season, as illustrated in Figure 2(D).
Thus, the infectious dates are temporally consecutive, leading to the following loss function
for the proximity of the neighbor states:

L4 = min
W

U2∑
u

T∑
t

∥∥fW (Xu,t ) − fW (Xu,t+1)
∥∥2 (9)

This loss function discourages repeated transition between “healthy” and “infectious” like
shown in Section D in Fig. 2, which is unreasonable in real world. And it encourages a
continuous status of infectiousness.

5 Online training algorithm

To efficiently solve the optimization problem presented in Eq. 2, we propose an online
parameter optimization framework. The new framework adopts an alternating minimization
approach [8], where all the variables are fixed except for the one being updated.

5.1 Solving for W

The process of solving W is based on stochastic gradient descent (SGD) [8]. Training with
SGD makes it possible to handle very large databases since every update involves one (or a
pair) of examples, and grows linearly in time with the size of the dataset. The convergence
of the algorithm is also ensured for low enough values of threshold error. We elaborate the
partial derivatives of the loss function in Eq. 2 with respect to the weight matrix W . This
can be decomposed into the partial derivatives of each of the sub-loss functions L1, L2, L3,
and L4 in Equations 4, 6, 8, and 9, respectively.

∂L1,u,t

∂W
(1)
j,k

= (fW (Xu,t ) − Yu,t )s
′ (h(1)

)
W

(2)
j s′ (h

(2)
j

)
X

(l)
i,k (10)

where s′(x) = s(x) · (1 − s(x)).

∂L1,u,t

∂W
(2)
j

= (fW (Xu,t ) − Yu,t ) · s′(h(1)) · s
(
h

(2)
j

)
(11)

where L1,u,t = L1(fW (Xu,t ), Yu,t ).

∂L4,u

∂W
(1)
j,k

=
(
fW (Xu,t ) − fW (Xu,t+1)) · (s′ (h(1)

)
W

(2)
j s′ (h

(2)
j

)
X

(n)
u,t,k

−s′(h̃(1))W
(2)
j s′ (h̃

(2)
j

)
X

(n)
u,t+1,k

)
(12)
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where L4,u = ∑T
t L4(Xu,t , Xu,t+1,W).

∂L4,u

∂W
(2)
j

= (fW (Xu,t ) − fW (Xu,t+1)) ·
(
s′ (h(1)

)
s
(
h

(2)
j

)
− s′ (h̃(1)

)
s
(
h̃

(2)
j

))
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The derivative of L3 with respect to W is calculated as follows:
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where L3,u = ∑T
t L3,u,t , and L3,u,t = L3(Xu,t ,W, pI ).
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Similarly, the derivative of L2 is as follows:
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where L2,l,t = L2(Xl,t ,W,Z).
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5.2 Solving forΘ

Solving for Θ = {G, pE, pI } with respect to the loss function L2 is a nonconvex and non-
differentiable problem, so a numerical optimization algorithm such as the Nelder-Mead
method [8] can be adopted to solve it.

5.3 Solving for pI ,λ1

The sufficient statistics μI and σI of the infectious period distribution pI have the following
analytical solution:

μI = 1

|U2|
∑U2

u
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t
fW (Xu,t ) (18)

σI =
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(19)

Solving for λ1 according to the loss function L2 in Eq. 6 yields the following analytical
solution:

λ1 =
∑L,T

l,t
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u
fW (Xu, t)/
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l,t

∑Vl

v
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Utilizing the above alternating optimization process, SimNest is trained and utilized to
forecast the spatiotemporal epidemic diffusion progress online as illustrated in Algorithm 1.
Specifically, the unlabeled data set X is continually updated by the social media data
streams, with the most out-dated information (which can be as much as three months old)
being replaced by the newly-arriving data. Then, the weight matrix W is optimized via SGD
until convergence. Utilizing the optimized infectious period distribution as the input for the
simulation process, the epidemic simulation parameter pE is optimized by minimizing the
inconsistencies with social media data. Finally, the population’s health statusZ is predicted.
The optimized parameter pE is then utilized for the next-step optimization of weight matrix
W with the updated unlabeled data. Therefore, as the data is streaming, the parameters are
being optimized with the newest data and the predicted health status Z streams out.

6 Extensions

6.1 Dynamics of contact network

Interventions are typically the most common and effective ways for both the government and
individuals to reduce the potential impact of a disease outbreak, influencing the epidemic
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diffusion largely by changing the people-people contact network. These can be categorized
into two types: (1) Pharmaceutical (PI) and (2) Non-pharmaceutical (NPI). PI interventions,
such as administering antivirals and vaccines, can change the characteristics (e.g., disease
transmissibility) of the person nodes in the social contact network, while NPI interventions
are those actions that effectively change the contact network structure, including school
closures, quarantine and sequestration. Therefore, both types of interventions can result in
changes in the social contact network.

The SimNest framework accommodates these heterogeneous dynamics of contact net-
works effectively via two aspects: (1) Timely intervention action monitoring based on social
media data; and (2) Intervention substantialization through the epidemic simulation pro-
cess. Take vaccination as an example. First, tweets like “I just got flu shot, it still hurts.”
that mention their user Ul’s vaccinations from each subregion l ∈ L are identified by the
text classifiers. In our experiments, we achieved a 78% identification accuracy based on
the cross-validation results. For example, Fig. 3 shows the users who got the flu shots that
were identified through their Twitter postings during Jan 2011 and Jan 2013 in Virginia.
It clearly demonstrates both yearly and weekly periodicity, with a peak around November
each year. The relative vaccination ratio in different subregions can then be estimated as
rl = |Ul |/λ1|Vl |, where |Vl | is the size of the population in subregion l and λ1 is the popula-
tion size scaling factor from the physical world to the Twittersphere, as calculated by Eq. 20.
Next, in the epidemic simulation SimNest substantializes the vaccinations by reducing the
transmissibility p(W(v1, v2)), (v1 ∈ Vl or v2 ∈ Vl) for rl · |Vl | random individuals in region
l by some ratio, which can either be set by domain knowledge or from the literature.

6.2 Heterogeneous surveillance data

The SimNest framework is also sufficiently flexible to incorporate multiple surveillance data
sources. In our basic problem definition, we only utilized social media data as a fine-grained
surveillance data. However, SimNest also allows the addition of heterogeneous surveillance
data sources such as the CDC [12] surveillance data for the United States, and the paral-
lel PAHO [26] surveillance data for Latin America. Taking the CDC surveillance data as
an example, which reports state-level weekly aggregate data, in order to be comparable,

Fig. 3 Counts of Twitter users in Virginia who got flu shot
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SimNest aggregates the predicted user health states into state-level weekly data and inserts
the following loss function into Eq. 2, yielding the following:

Lc = min
W,λ2

T ′∑
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L,ae∑
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u
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where C(i) denotes the additional surveillance data for the ith time interval. Assume τ ′
denotes the time interval between two consecutive data points of C, and τ is the interval of
time step of the discrete simulation system. T ′ is defined as the number of timepoints of the
surveillance data such that T ′ = 
T · τ ′/τ�, as = 
i · τ ′/τ�, ae = 
(i + 1) · τ ′/τ� − 1. λ2
is the scaling parameter.
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where α = (ae − as + 1).
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In addition, the analytical solution of the scaling factor λ2 is as follows:

λ2 =
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i (23)

where Mi = (ae − as + 1)
∑L,ae
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∑U2,l,t
u fW (Xu,t ).

7 Experiments

In this section, the performance of the proposed SimNest model is evaluated using real
world data. After describing the experimental setup, the effectiveness of the SimNest model
on state-level influenza epidemic forecasting is demonstrated by comparing its performance
with those of 7 comparison methods. The new model’s ability to forecast events in fine-
grained geographical subregions is also evaluated. This section concludes by presenting a
case study on the dataset for Connecticut.

7.1 Experiment setup

This subsection presents the data preparation, label set and performance metrics.

7.1.1 Dataset

Twitter data The input Twitter data in this paper was preprocessed by the following process
to retain the flu-related tweets. First, we queried the Twitter API using flu-related keywords
and retrieved the data for the period Jan 1, 2011 to Apr 15, 2015 for the entire United States.
The flu-related keywords were extracted by domain expert on epidemiology based on the
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Table 1 Real-world census data and Twitter datasets

Demographics Twitter

state population size #connections #tweets #users

CT 3,518,288 175,866,264 9,513,741 10,257

MA 6,593,587 332,194,314 19,785,147 15,005

MD 5,699,478 285,159,648 20,754,218 19,758

VA 7,882,590 407,976,012 15,899,713 14,302

glossary of influenza1 which included terms such as “flu”, “influenza”, and “h1n1”, among
others. Then the retrieved tweets were classified according to whether or not they were
flu-related. Those tweets unrelated to flu or did not talk about the status of the author him-
self/herself will be filtered out by the classifier. For the classifier, we adopted LibShortText
[34], a logistic regression model specially designed for classifying short text like tweets.
The classifier was trained on an existing labeled training set provided by Lamb et al. [24].
This training set formed our labeled tweets set, consisting of the tweets X1 and their labels
Y1 as discussed in Section 4. The input featuresK of this model were the disease keywords
provided by Paul and Dredze [27]. The preprocessed Twitter dataset is denoted as D.

The authors U2 of the preprocessed tweets set D were extracted and the tweets they
posted during the two weeks before and after their tweets in D were retrieved via Twit-
ter API. After removing retweets, this Twitter data set was geocoded and only those tweets
sent from within the location of interest retained to form the unlabeled Twitter data set X2
defined in Section 4. Four states, namely Connecticut (CT), Massachusetts (MA), Mary-
land (MD), and Virginia (VA) were utilized for this performance evaluation. The Carmen
geocoder [18] was utilized to resolve the location of each tweet into a tuple containing infor-
mation at the country, state, county, and city level. About 70% of the tweets in our dataset
were assigned with a location by Carmen.

U.S. census data The household structure and demographics utilized in the construction
of our social contact network are derived from U.S. Census data.2 In these datasets, each
person has attributes including age, income, gender, and household size, while each location
has attributes including coordinates, land use, and business type. To generate the contact
network, we utilized the actual demographic data for each region. In this paper, we focus on
four regions, Connecticut (CT), Massachusetts (MA), Maryland (MD), and Virginia (VA).
Information about the Twitter data and demographics for the four regions are shown in
Table 1.

7.1.2 Labels andmetrics

For the proposed model and all the competing methods, the data between Aug 1, 2011 and
Jul 31, 2012 was utilized as the training season, while the data between Aug 1 2012 and Jul
31 2014 was used for predicting. The forecasting results for the flu outbreaks were validated
against the corresponding influenza statistics reported by the Centers for Disease Control

1https://www.cdc.gov/flu/glossary/index.htm
2https://www.census.gov/data.html
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and Prevention (CDC). The CDC publishes the percentage of the number of physician visits
related to influenza-like illness (ILI) weekly for each major region in the United States.

In the experiment, four metrics were adopted, namely mean squared error (MSE), Pear-
son correlation, p-value, and peak time error. MSE represents the mean value of the squared
errors between all the predicted data points and corresponding label points. The Pearson
correlation is the covariance of the predicted and label data points divided by the product of
their standard deviations. This varies from -1 to 1 and the larger the value, the stronger the
positive correlation between the two sets of data points. The p-value indicates how likely
the hypothesis of no correlation between the predicted and label data points is to be true; the
smaller the p-value, the more statistically significant the Pearson correlation. Lastly, peak
time error represents the time interval between the predicted peak time (i.e., the week with
the highest number of infected people) and the actual peak time reflected by the CDC label
data.

7.1.3 Comparisonmethods

The performance of the new SimNest model proposed here was compared with those of 8
other methods. Of these, 5 methods originated from social media mining: Linear Autore-
gressive Exogenous model (LinARX) [1], Logistic Autoregressive Exogenous model (Log-
ARX) [2], Multi-variable linear regression model (multiLinReg) [17], Linear Regression
model (LinReg) [22], and our two baselines Semi-supervised MLP+LinARX (semiLinARX),
and Semi-supervised MLP+LogARX (semiLogARX). The remaining 2 methods came from
computational epidemiology: SEIR [25] and EpiFast [9].

(1) Linear Autoregressive Exogenous model (LinARX) [1]: This standard ARXmodel built
the dependence of future visit percentage on the historical time series for the CDC’s
ILI visit percentage data [12] and the volume of influenza tweet dataD(+). The orders
of LinARX for the Twitter data time series and CDC time series were set as 2 and 3,
respectively, based on cross-validation.

(2) ) Logistic Autoregressive Exogenous model (LogARX) [2]: Building on their earlier
LinARX model, this method added a logit function transformation to the historical
time series to enforce the boundary 0-1 of the value of the ILI visit percentage. The
orders of LogARX for the two time series were both set as 2 based on cross-validation.

(3) Simple Linear Regression model (LinReg) [22]: This method assumed a linear mapping
between the input, the volume of infectious tweetsD(+), the output, and the future ILI
visit percentages.

(4) Multi-variable linear regression model (multiLinReg) [17]: This method treats a com-
bination of keywords K’s volumes as a multivariate input of the simple regression
model.

(5) EpiFast [9]: This model followed the definition in Section 3.1, and mainly utilized two
parameters to tune, pE and pI . These were optimized by minimizing the error of the
predicted and the actual ILI visit percentage via the Nelder Mead method [9].

(6) Semi-supervised MLP+LinARX (semiLinARX): This method built the classifier fW (·)
by simultaneously minimizing the loss functions L1, L3, and L4 in Eqs. 3, 8, and 9. It
used both labeled set X1 ∪ Y1 and unlabeled set X2, as well as input feature K.

(7) SEIR [25]: This model divided the population into four health states, namely suscep-
tible (S), exposed (E), infectious (I), and recovered (R). The epidemic dynamics were
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modeled using ordinary differential equations and visit percentage calculated by multi-
plying the volume of the state “I” by a ratio, which was optimized by cross-validation.
The volume of the positive tweets classified was fed into LinARX. The orders of the
LinARX model for both time series (Twitter data CDC and surveillance data) were set
as 2 based on cross-validation.

(8) Semi-supervised MLP+LogARX (semiLogARX): Using the same semi-supervised
MLP as semiLinARX, the volume of the positive tweets classified is fed into LogARX.
The orders of LogARX for both time series of Twitter data and CDC surveillance data
were again set as 2 based on cross-validation.

7.2 State-level performance evaluation of influenza epidemics modeling

The performance of each model for forecasting the percentage of ILI visits for each state
with different lead times was evaluated. The lead times were varied from 1 week to 20
weeks, so every method was asked to forecast the data from 1 week out to 20 weeks in
the future. The performance was evaluated in terms of the 4 different metrics introduced
above for all 4 datasets for three seasons, utilizing the training set and test set for each. For
the purposes of this research, every season was deemed to start on August 1st and ends on
July 31 the following year. In this experiment, our SimNest model included the extensions
described above in Section 6.

7.2.1 Performance on the Pearson correlation and p-value

Figures 4 and 5 show the forecasting performance achieved by all 9 of the models in
terms of the Pearson correlation and p-value. Overall, the social media-based methods (i.e.,
LinARX, LogARX, multiLinReg, semiMLPLinARX, semi-MLPLogARX, and LinReg)
typically achieved high Pearson correlations of between 0.6-0.95 for short lead times of less
than 2 weeks, but the Pearson correlation decreased to below 0 as the lead time increased to
20 weeks. multiLinReg achieved the best performance on training set, but performed poorly
on test set, which shows it has over-fitting. The p-values confirmed the statistical signif-
icance of the high Pearson correlation for lead times below 2 weeks. The computational
epidemiology-based methods (i.e., SEIR and EpiFast) did not perform as well as the social
media-based methods for short lead times, but the Pearson correlations did not drop signifi-
cantly as the lead times increased. For example, SEIR still achieved a Pearson correlation of
around 0.6 for lead times as long as 20 weeks. The reasons for this are two-fold. First, social
media-based methods benefit from the availability of real-time surveillance data, while com-
putational epidemiology-based methods use CDC data with its inherent 1-2 week time lag.
This important difference means that the former enjoy a significant advantage when pre-
dicting data points in the very near future. Second, social media-based methods are purely
data-driven, while computational epidemiology methods make use of a long-term disease
progression mechanism. This makes computational epidemiology less sensitive to current
data and more robust in terms of the overall performance.

According to Fig. 4, the proposed new SimNest model achieved the best overall per-
formance in the terms of Pearson correlation, achieving the highest correlation score in
two states: Virginia and Connecticut. It also performed second best overall on the training
datasets for Massachusetts and Maryland, and was consistent among the top 2 methods in
the test datasets for these states. Compared to social media-based methods such as LinARX,
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(a) 2011-2012, CT (b) 2012-2013, CT

(d) 2012-2013, MAc) 2011-2012,MA(

(e) 2011-2012, MD (f) 2012-2013, MD

(g) 2011-2012, VA (h) 2012-2013, VA

Fig. 4 ILI visits percentage forecasting performance: Pearson correlation

SimNest outperformed them all by a large margin (over 0.3 in most cases) for lead times
over 10 weeks. Furthermore, SimNest consistently performed far better than the computa-
tional epidemiology-based methods for lead times shorter than 10 weeks and also did better
for lead times longer than 10 weeks. Overall, by combining the complementary strengths
from social media-based and computational epidemiology-based methods, SimNest consis-
tently achieved the best overall performance for both short and longer lead times. Figure 5
shows the p-values corresponding to the Pearson correlation scores in Fig. 4, which con-
firms that SimNest generally achieved the lowest p-values for all the different lead times.
In all 4 datasets, the p-values for SimNest were generally below 0.05 for almost all the
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(a) 2011-2012, CT (b) 2012-2013, CT

(e) 2011-2012, MD (f) 2012-2013, MD

(d) 2012-2013, MAc) 2011-2012,MA(

(g) 2011-2012, VA (h) 2012-2013, VA

Fig. 5 ILI visits percentage forecasting performance: p-value

different lead times. These consistently low p-values indicate the strong statistical signifi-
cance of SimNest’s advantageous Pearson correlation results.

7.2.2 Performance onmean squared error (MSE)

Figure 6 illustrates the performance on MSE and peak time error for all the methods. The
social media-based methods again outperformed the computational epidemiology-based
methods for short lead times as demonstrated by their achieving lower MSEs, which was
also reflected by the Pearson correlations shown in Fig. 4. As the lead times increased,
however, the MSEs for the social media-based methods typically increased by 5-10 times.
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(a) 2011-2012, CT (b) 2012-2013, CT

(d) 2012-2013, MAc) 2011-2012,MA(

(e) 2011-2012, MD (f) 2012-2013, MD

(g) 2011-2012, VA (h) 2012-2013, VA

Fig. 6 ILI visits percentage forecasting performance: mean squared error (MSE)

Compared to these methods, the MSEs for the computational epidemiology-based meth-
ods such as SEIR generally started with larger MSEs but these did not consistently increase
as the lead times became larger. Among all the methods, SimNest generally achieved the
smallest MSEs of less than 5× 10−4 in both the training and testing sets of all the datasets.
Specifically, SimNest started with low MSEs and exhibited no obvious increase in MSEs
as the lead times became longer. When the lead time was short, it obtained better perfor-
mances than the computational epidemiology-based methods and as the lead time grew
it became increasingly advantageous compared to the social media-based methods. These
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results again demonstrate the advantage of combining the complementary strengths from
social media-based and computational epidemiology-based methods.

7.2.3 Performance on peak time error

Figure 7 illustrates the performance in terms of the peak time error for all the methods. In
general, the computational epidemiology-based methods achieved better performances than
the social media-based methods. This is reasonable because the prediction of the peak time
of epidemic outbreaks typically requires strong prior knowledge. For example, the seasonal
flu A outbreaks typically occur between December and February in the US. Computational
epidemiology-based methods model the mechanism of disease and intervention and thus

(a) 2011-2012, CT (b) 2012-2013, CT

(d) 2012-2013, MAc) 2011-2012,MA(

(e) 2011-2012, MD (f) 2012-2013, MD

(g) 2011-2012, VA (h) 2012-2013, VA

Fig. 7 ILI visits percentage forecasting performance: peak time error
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can take into account this prior knowledge. For lead times shorter than 5 weeks, the social
media-based methods are very competitive, which is similar to the results shown in Figs. 4
and 6. However, for lead times longer than 5 weeks, the computational epidemiology-based
methods start to dominate the social media-based methods when the performance is assessed
in terms of the peak time error. For example, EpiFast achieved a peak time error of less
than 3 weeks when the lead time was over 10 weeks for the Massachusetts, Maryland, and
Connecticut datasets. In contrast, LinARX exhibited 5-10 weeks peak time errors for lead
times of below 10 weeks, and around 15 weeks when the lead time was over 10 weeks.
SimNest had a clear advantage over computational epidemiology-based methods, not only
achieving the peak time errors as small as the computational epidemiology-based methods
for lead times of over 10 weeks, but also outperforming them by a significant margin for
lead times below 10 weeks.

7.2.4 Efficiency

As shown in Table 2, the total runtime for our SimNest on four datasets ranges from 2 - 4
hours in order to get the simulation results for the future epidemic situations. Notice that
such runtime is achieved on each dataset containing large networks with at least millions
of nodes and almost billions of edges, which is superior to most of the individual-based
simulation methods, thanks to the high efficiency of EpiFast [10]. The efficiency of our
simulation-data-driven hybrid system is definitely lower than simplest machine learning
models such as autoregressive and linear regression, but its advantages in accuracy, espe-
cially in longer-term forecasting is very important to epidemics modeling and intervention.
In addition, we observe that the runtime increases almost linearly with the size of the net-
work, which indicates good scalability. Finally, our method could be able to be further
accelerated by adding more CPU cores for the parallel computing in our simulation model
component based on EpiFast framework, according to the scalability analysis of EpiFast
method [10].

7.3 Inner-state performance evaluation of influenza epidemics modeling

Because of the way it models the demographics, disease mechanism, and disease contact
networks, the new model proposed here, SimNest can perform individual-level epidemic
modeling and forecasting. Traditional social media-based methods are unable to achieve
acceptable individual-level results when the surveillance data is coarse-grained in spatial
resolution. For example, the ILI visits percentage surveillance data reported by CDC is
state-wide and covers a week at a time, which seriously limits its utility for individual-level
research.

In this section, a detailed performance evaluation of influenza epidemic modeling is
presented and discussed. The dataset for Connecticut is used here as an example because

Table 2 Runtime of SimNest on different datasets

VA CT MD MA

#Nodes 7,882,590 3,518,288 5,699,478 6,593,587

#Edges 407,976,012 175,866,264 285,159,648 332,194,314

Runtime (sec) 14,566 6,950 12,391 13,260
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DEMHS Planning and Preparedness Regions in Connecticut

Fig. 8 DEMHS regions of the state Connecticut

Connecticut provides within-state flu activity reports that we can use to validate the perfor-
mance of our model against. The performance of our proposed SimNest method is compared
against that of the EpiFast method [9]. After conducting a quantitative evaluation of the
influenza outbreak forecasting performance for spatial sub-regions within a state, an epi-
demic’s diffusion across a real world disease contact network is illustrated and discussed.
Not only can the predicted distributions of age, gender, infection distance, and flu dura-
tion be shown and analyzed, but individual-level influenza epidemic simulation results can
also be provided. Finally, the spatial and temporal mining of influenza vaccination based on
social media streams are considered (Fig. 8).

7.3.1 Influenza epidemics outbreaks forecasting performance for inner-state
subregions

The models used to leverage individual-based network epidemiology techniques can be used
to generate individual-level information even when the surveillance data is highly spatially
coarse-grained. The spatial distribution of the individual outbreaks for a predicted influenza
epidemic is shown in Fig. 9, where each green point denotes an infected person. To evaluate
the accuracy of it, the counts of infected person first were aggregated into the five DEMHS3

regions shown in Fig. 8, divided by the respective population bases of these regions, and

3 DEMHS regions are defined by the Division of Emergency Management and Homeland Security.
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Fig. 9 Individual-level influenza infections simulated by SimNest based on demographics of Connecticut

then validated against the corresponding infected ratios reported by the Department of Pub-
lic Health of Connecticut.4 Figure 10 depicts the average forecasting performance of the
infected ratios for these DEMHS regions.

According to Fig. 10a and b, the SimNest model outperformed EpiFast in the Pearson
correlation for Season 2011-2012, Season 2013-2014, and half of Season 2012-2013. The
p-values for both methods were less than 0.01 for all three seasons, showing a statistically
significant result for their Pearson correlations. Finally, our new SimNest model again out-
performed EpiFast in terms of MSE for Season 2011-2012, Season 2013-2014, and half
of Season 2012-2013. This is because SimNest is utilizing the social media as a source of
individual-level surveillance data, effectively allowing it to monitor people’s flu infection
status in real time.

7.3.2 Qualitative evaluation of epidemics diffusion across disease contact networks

SimNest can not only predict influenza outbreaks in fine-grained spatial subregions, but also
model the epidemic’s diffusion, along with the types of diffusion paths. Figure 11 shows
the epidemic’s spatial diffusion as predicted by SimNest within a subregion of Connecticut
that contains two major towns, Torrington and Winchester. The red nodes denote the infec-
tors while the black nodes denote the infectees. The position of these nodes represent their
residence locations. The lines between the infectors and infectees denote the “infection”
relationship between them; the lines’ colors represent the different types of infection routes.

4Influenza report for Connecticut: http://www.ct.gov/dph/cwp/view.asp?a=3136&q=410788. Accessed Apr
2016.
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Fig. 10 Forecasting performance for 5 DEMHS regions in Connecticut for three flu seasons

For example, the majority of the lines consist of “school” , “home”, and “work”, while the
minority of the lines fall under the “shop” type. The lengths of the lines under the types of
“school” and “work” can extend several miles, which indicates that people who do not live
in close proximity to one another or attend the same school can still infect each other. The
typical lengths of the “shop” lines are noticeably shorter. This could be because people pre-
fer to use shops that are not too far away from their residences. The “home”-type infections
typically happen within the residence, hence there is almost no distance between the infec-
tors and infectees; a green circle is therefore utilized to signify an infector and an infectee
within the same location. Interestingly, those residences with multiple infection lines to
other locations typically also have a “home” infection (denoted as green circles). This is
because the influenza is often spread across different family members who are involved in

Fig. 11 Epidemic diffusion across a disease contact network
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Fig. 12 Distribution of distance between infectors for the simulated influenza population

the infection process within their respective workplaces or schools in the downtowns. The
infection type of “other” includes all the infection ways other than the above four, such as
disease contacts that occur when eating, entertaining, and traveling.

Figure 12 shows the statistics for the residence distance between infectors and infectees
during the influenza diffusion process depicted in Fig. 11. The data in both figures demon-
strate that infections that occur within the same residence represents one of the major
pathways by which influenza infections spread.

7.3.3 Qualitative evaluation of epidemic modeling in the demographics

SimNest leverages the demographics model and mines the influenza infectious status of
individuals from social media data. This capability enables SimNest to forecast not only

Fig. 13 Age and gender distribution of infectors in the simulated influenza population
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Fig. 14 Distribution of flu duration of the simulated influenza population

the age and gender distribution of the infected population, but also monitor the infectious
duration in real time.

As Fig. 13 shows, the majority of influenza infectors consist of 1) children and ado-
lescents (< 20 years old) and 2) middle-aged and older people (> 35 years old). The
percentages of male and female infectors are roughly the same.

Figure 14 illustrates the distribution of the influenza infectious duration predicted by
SimNest. Influenza infectious duration is the time span from the initial date of infection to
the date of recovery (or death). As shown in Fig. 14, the mean infectious duration is around

Fig. 15 Flu vaccination temporal patterns detected by SimNest
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Fig. 16 Spatial patterns for flu vaccination detected by SimNest

6 days. The majority of the cases last between 5 and 7 days, which matches the CDC’s Flu
Symptoms & Severity report,5 which was updated in August 2015.

7.3.4 Analysis of disease vaccination surveillance from social media

Based on the online text classification in social media streams, SimNest can identify the
postings whose authors have just been vaccinated as they happen. The identified postings
are then leveraged to estimate the spatiotemporal flu vaccination rate in near real time. The
temporal and spatial patterns for the flu vaccination in the US are shown in Figs. 15 and 16,
respectively.

As the green bars in Fig. 15 reveal, the temporal pattern of flu vaccination identified
from social media follows a yearly periodicity, with people typically being vaccinated in
the months from September to December in each year. These patterns were verified by
comparing the results with the official reports on flu vaccination coverage provided by CDC,
shown by the blue line in Fig. 15. Note that these CDC reports only become available at the
end of each flu season, while the flu vaccination coverage identified from social media is in
real time.

SimNest not only discovers the temporal patterns for flu vaccination, but also its spa-
tiotemporal distribution in real time by leveraging the location of the social media postings.
Figure 16 illustrates the spatial distribution for flu vaccinations in the US during the flu sea-
son 2013-2014. As the figure shows, the flu vaccinations are typically concentrated in the
larger cities, with more being administered. The volume of flu vaccination in the eastern
part of the country than the western part.

5CDC Flu Symptoms & Severity: http://www.cdc.gov/flu/professionals/acip/clinical.htm
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8 Conclusions

To achieve timely and accurate epidemic diffusion modeling, the computational epidemiol-
ogy and social media mining communities have achieved important progress in recent years,
although both still suffer from a number of different drawbacks. This paper seeks to combine
the advantages of both in the new model proposed here, SimNest, which is a novel bispace
co-evolving framework that integrates the complementary strengths of computational epi-
demiology and social media mining. The new model is capable of learning social media
users’ health states and behaviors in real time using both anMLP classifier and unsupervised
pattern constraints based on the underlying disease model and contact network. The knowl-
edge learned from social media can be fed back into the computational epidemic model to
improve the efficiency and accuracy of the disease diffusion modeling. By utilizing our new
online optimization algorithm, the above interactive learning process iteratively achieves
a consistent stage between these two spaces. Extensive experiments based on the data for
multiple states in the US and over several flu seasons demonstrated the advantages of inte-
grating the respective strengths of computational epidemiology and social media mining.
The detailed geographical subregion outbreak forecasting performance was also improved
by using social media that provides individual-level surveillance data. Although this paper
focuses on influenza epidemics, SimNest has good potential of being extended and utilized
for modeling and predicting other epidemic disease such as Ebola, and we leave this as
future work.
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