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Abstract

Semantic Inpainting on Segmentation Map (SISM) aims
to manipulate segmentation maps by semantics. Providing
structural assistance, segmentation maps have been broadly
used as intermediate interfaces to achieve better image ma-
nipulation. We improve the SISM by considering the unique
characteristics of segmentation maps in the both training
and testing processes.First, to improve SISM training pro-
cess, we reduce the noise pixels, which are pixel artifacts
from the generation. Because each pixel in the segmen-
tation maps has a much smaller value range in compari-
son to pixels in natural images, we propose a novel denoise
activation (DA) by estimating the possible pixel values for
an inpainted area in advance. Second, we improve SISM
testing process by reducing the metric bias. The bias is
caused by the ignore of latent ground truths in the current
metrics in SISM. Based on the analysis of possible latent
ground truths, we then propose a novel metric, Semantic
Similarity (Sem), to quantify the semantic divergence be-
tween the generated and ground-truth target objects. Sem is
calculated by a pre-trained semantic classifier using object
shapes as training data. Since the classifier is pre-trained
on PS-COCO dataset, with a large number of training sam-
ples and relatively general classes, Sem is also applicable
to other datasets. Our experiments show impressive results
of DA and Sem on three datasets.

1. Introduction

Image manipulation, aiming to transform or edit images,
is a popular topic [13, 9, 44, 23]. Though its final out-
puts are usually natural images, many recent works have
showed segmentation maps provide auxiliary information
for better style [24, 48, 44] or structure manipulation. For
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example, recent works use manually-edited [24, 33], pre-
existing [7, 23], or automatically manipulated segmentation
maps [13, 17, 27, 21] as the structures of the objects, fol-
lowed by style manipulation on the edited structure as their
downstream models. Since manual editing on segmenta-
tion map is time-consuming, and pre-existing segmentation
maps are not always adapted to the context, we focus on Se-
mantic Inpainting on Segmentation Maps (SISM) [13, 10],
which automatically manipulates segmentation maps. Con-
cretely, given a bounding box, which provides semantics
and location of a target object, SISM outputs an inpainted
segmentation map respected to the bounding box (inpainted
area), shown as Fig. 1. The SISM results should be consis-
tent with the context and reflect the given semantics, which
is different from image inpainting [3, 38].
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Figure 1. Diagram of SISM and its application in semantic image
inpainting [13]. In SISM (figures in blue circumscribed rectan-
gles), given an original segmentation map, users set a mask area
(red rectangle) defined by a bounding box with a target label, such
as “car”. Then, a SISM model generates an inpainted area (orange
rectangle) with a “car” in the inpainted segmentation map, which
is the SISM result. Then, a downstream model (e.g. a translation
model) transfers its result into a manipulated natural image.

Current SISM models [13, 10] are adapted from mod-
els of natural image generation, replacing the natural image
representations with the segmentation map representations.
But they ignore the unique characteristics of segmentation
maps, which are helpful to SISM. In this work, we exploit
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Figure 2. Panel (a) shows the noise pixels in an inpainted segmen-
tation map, where the mask area and inpainted area are represented
by red and orange rectangles respectively. The noise pixels are
pointed by the white arrow. In (b), we show the binary target ob-
ject maps extracted from inpainted segmentation maps with their
hamm and tIOU scores. The metrics show the object map from re-
sult1 is better, but the object map from result2 looks better, which
is closer to “car”, the required sementic class. This shows that
current metrics of SISM are biased.

the characteristics of segmentation maps to improve SISM
in the both training and testing processes by reducing the
noise pixels and reducing the metric bias respectively.

First, the noise pixels, which are pixel artifacts from the
generation, exist in the SISM results. Since SISM is a gen-
eration task, its generated pixel values are in a full range;
then, the pixels with values out of the range of ground-truth
are noises. An example of noise pixels in a SISM result
is shown in Fig. 2(a). The noise pixels represent incon-
sistent semantics. They can impact downstream models,
which translate SISM results to natural images by seman-
tics. Besides, one pixel can even introduce an adversarial
attack [28, 1]. Thus, the noise pixels should be reduced.

To reduce them, we use a characteristic of segmenta-
tion maps, smaller value range of each segmentation pixel
value. It means that each pixel in a segmentation map has
a much smaller number of possible values compared with
that of RGB image [25], because each object in a segmen-
tation map has the same pixel value equaling their semantic
classes. As a result, the value range equals the number of
semantic classes. Recognizing this, we propose a novel De-
noise Activation (DA) to reduce noise pixels by estimating
a range of pixel values for an inpainted area in advance. DA
is effective in both training and testing processes.

Second, we find that current metrics of SISM can bring
bias in evaluating SISM, due to ignoring the latent ground
truths. Concretely, current metrics of SISM, such as Ham-
ming Distance (hamm) [10, 22] and Target Intersection-
Over-Union (tIOU) [13, 10, 18], consider the pixel-level
overlapping ratios between the SISM results and the ground
truths. Fig. 2(b) shows an example of a biased evaluation.

These metrics are biased because they are commonly ap-
plied in discriminative tasks with unique ground truths (e.g.
image segmentation [35]), while SISM is a generation task
with latent ground truths such that different object shapes
for the same semantics. Since the metric bias overlooks
SISM models with reasonable results which are different
from the ground truths, the metric bias should be reduced.

We first analyze the appearances of latent ground truths
to reduce the metric bias. The appearances should have tar-
get objects with the same semantics as the ground truths,
due to the task requirement of SISM. Since having the same
semantics is the key factor of latent ground truths, we pro-
pose a new metric, Semantic Similarity (Sem), to quan-
tify semantic divergence between the generated and ground-
truth target objects by a semantic classifier. The semantic
classifier is designed by another characteristic of segmen-
tation maps, more object semantics from object shapes. It
means that object semantics are mainly represented by the
object shapes in the segmentation maps, rather than the tex-
tures (colors). Thus, the semantic classifier should be a
shape classifier, emphasizing on the object shapes and ig-
noring the textures. With Sem, the SISM evaluation con-
siders the latent ground truths. Since the semantic classifier
is pre-trained on PS-COCO [16], which provides 332,310
training samples with relatively general semantic classes,
Sem, like Frechet Inception Distance (FID) [12], is applica-
ble to other datasets. Our main contributions are:
(1) We consider the unique characteristics of segmentation
maps to improve SISM, ignored by current SISM models.
(2) To reduce noise pixels in the SISM results, we propose
a novel DA using a characteristic of segmentation maps,
which allows us to estimate the possible value ranges of
pixels in the inpainted areas in advance. To the best of our
knowledge, we are the first to address noise pixels in SISM.
(3) The current metrics of SISM are biased, due to ignoring
latent ground truths. Thus, we propose Sem to quantify se-
mantic divergence between the generated and ground-truth
target objects. Sem is applicable to other datasets. To the
best of our knowledge, we are the first to address the bias.
(4) The experiments on Cityscapes [6], ADE20K [46] and
PS-COCO [16], achieved impressive results, such as 7.29%
improvement in the tIOU on ADE20K by DA. Sem is more
robust in different image transformations, such as decreas-
ing 50% slower after flipping the objects.

2. Related Work
Segmentation map manipulation has recently been ap-

plied for image manipulation. For examples, [7, 23, 13] all
firstly generate the segmentation maps corresponding to the
target semantics, which are then translated to natural images
for semantic image manipulation. Similar to the framework
in above studies, [17, 27] focus on image inpainting. Plus,
[7] adds new instances automatically in scenes by firstly cal-
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culating their manipulated segmentation maps. Besides the
structure manipulation, [21] transfers object shapes in the
segmentation maps for attribute manipulation in the natural
images. However, these models manipulate segmentation
map ignoring the characteristics of segmentation map and
treat segmentation maps like natural images.

Noise can be input of generative adversarial net
(GAN) [8] for generation [42, 5, 45]. But most noise in
the generated results brings degradation [4] or even adver-
sarial attack [28, 1], which can be achieved by one pixel. To
address the noise in the outputs of the GAN, several meth-
ods are attempted on the natural images. For examples, [20]
applies the cycleGAN [47] to translate high noise images to
low noise images. A wavelet filtering is added to a gen-
erator for high-fidelity generation [41]. And [14] applies
hidden Markov model to denoise the natural images. But
little denoise has been done in SISM.

Though several metrics, introduced from image seg-
mentation or image inpainting, have been applied in the
SISM, most of them do not quantify the SISM results di-
rectly and require additional downstream models. For ex-
amples, [13], as a SOTA of SISM, evaluates SISM perfor-
mance by translating the SISM results into natural images,
followed by a segmentation model on the translated nat-
ural images for new segmentation maps, then calculating
the tIOU between the new segmentation maps and ground
truths. [17, 10, 23] and [13], apply FID [12] and Structural
Similarity Index [34] respectively, for the manipulated im-
ages rather than segmentation maps. Though tIOU [18],
and hamm [22] are applied for the manipulated segmenta-
tion maps directly [13, 10], they ignore the latent ground
truths. Besides, though SISM is a generation task, the met-
rics [37] for GAN, such as 1-NN accuracy [19], Inception
Score (IS) [29], and FID [12], are not applicable. This is
because that they emphasize on the image quality rather
than semantics, and indirect evaluation on natural images
from downstream models can bring new biases (shown in
Sec. 4.3). In comparison, our Sem considers latent ground
truths and is applicable to other datasets.

3. Model
A work flow of SISM is shown in the first row of the

Fig. 3 by black arrows 1. Given a single-channel complete
segmentation map Sc ∈ RH×W×1, where H and W rep-
resent height and width respectively, SISM aims to synthe-
size the inpainted segmentation map Ŝ ∈ RH×W×1 with
semantics defined by a target label lt. The Sc and Ŝ have
each pixel value representing a semantic class.

Concretely, we set an object bounding box B = {b, lt},
as a combination of box corner coordinates b ∈ R4 and

1We apply bold lowercases and bold capitals to represent vectors and
matrices (including tensors) respectively. Examples of the most notations
are drawn in the Fig. 3 for better reading.

a target label lt, where each b provides a mask area and
each lt provides a semantic ID. We then construct an in-
complete segmentation map Su ∈ RH×W×1 by copying Sc

and masking its pixels in the bounding box B as lt, which
informs the model about the location and the semantics to
generate. Then, a learnable structure generator G0 gener-
ates P̃ by P̃ = G0(Su, B). The P̃ ∈ RH×W×k represents
the probabilities that each pixel belongs to each class, where
k is the number of semantic classes. Then, we get a SISM
initial result S̃ ∈ RH×W×1 by S̃ = argmax P̃. We further
fuse the SISM initial result S̃ and Su to derive an inpainted
segmentation map Ŝ. Finally, Ŝ is sent to a downstream
model T to perform a subsequent task such as image trans-
lation [10] or semantic image inpainting [13].

In the next subsections, we introduce a replaceable struc-
ture generator G0. Then, we introduce our novel DA for
SISM based on dilation operation, which can be applied
in both training and testing processes. Finally, we propose
Sem to quantify the semantic divergence of SISM results.

3.1. Structure Generator

A structure generator G0 is designed to inpaint the mask
area M in Su, where M ∈ RH×W is a binary matrix spec-
ified by B = {b, lt}: Mij = 1 for all pixels (i, j) inside
the bounding box B. The S̃, transformed from P̃, should
include an object reflecting semantics defined by lt, and
should also achieve consistency between the inpainted area
and its surrounding context. Since [13] is a state-of-the-
art of SISM that satisfies the two requirements, we apply
its SISM model as an example of structure generator G0,
which outputs a binary object map Õ and a context map
for adding objects in segmentation maps and SISM, respec-
tively. Its two maps are generated by sharing an embedding
module. Since our task is SISM, we only use its context
maps as our initial SISM results S̃ and ignore its binary ob-
ject maps Õ. The loss function of G0 is as below,

LB = λ1Ladv(Õ,Oc) + λ2Lrec(Õ,Oc) + λ3Lrec(P̃,Pc)

(1)

where Oc is the ground-truth binary object map defined by
B. The Pc ∈ RH×W×k is a binary tensor transformed from
Sc, by setting an element in a channel to 1 if the pixel in Sc

belongs to respective semantic class, otherwise to 0. The
Lrec(•, •) is a reconstruction loss. The Ladv(Õ,Oc) is a
conditional adversarial loss defined on Su and Oc to ensure
the perceptual quality of Õ. After deriving P̃ from G0, we
get S̃ by argmax. Finally, we have the SISM result, the
inpainted segmentation map Ŝ, by fusing S̃ and Su as,

Ŝ = S̃ ·M+ Su · (1−M) (2)

where 1 ∈ RH×W is a matrix with all elements as 1, and ·
is dot product. From Eq. 2, Ŝ only replaces the mask area
with the inpainted area in S̃, but keeps the rest same as Su.
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Figure 3. Diagram of work flow of SISM and our DA module, where legends are shown in the red rectangle. The first, second, and third
rows respectively show the work flow of SISM with DA module, the work flow of DA module, and work flow of noise filter fN , which is a
key part in DA. Though S

c, Su and Ŝ are drawn in color for better visualization, they are actually in size of a single-channel, as described
in Sec. 3. Each modules in the diagram are labeled by their names and symbols. Some symbols applied in the paper are not shown.

3.2. Denoise Activation (DA)

Because of no limitation on the value ranges of elements
in P̃, the probabilities for semantic classes that never shown
in the ground truths can be the maximum. Since an initial
segmentation map S̃ is transformed from an probability ten-
sor P̃ by argmax, the SISM initial result S̃ can have noise
pixels, so as Ŝ due to Eq. 2.

To decrease the number of noise pixels, we design a
novel DA by a dilation operation [32] without impacting
the original performance, illustrated in the second and third
rows of Fig. 3. Concretely, we apply a 3× 3 kernel with all
elements as 1 to dilate the binary mask map M, so that we
have the dilated mask map Md. Due to the kernel size as
3×3, the Md is one-pixel dilated compared with M. Then,
we get a dilated binary boundary M1 ∈ RH×W as follow,

M1 = Md −M (3)

we calculate M1, as it is the closest boundary to the mask
area. Then, we assume that the pixel values of the context
nearby the mask area tend to appear in the inpainted area of
Ŝ again, while the pixel values never shown in the context
nearby the mask area tend to be noises. The assumption is
reasonable to segmentation maps, as a bounding box cuts
related objects into two parts, and the pixel values among
one object in segmentation maps are same as the semantic
ID of the object. Then, in the vast cases 2, a set of semantic

2The failure cases for our DA are the pixels with unique semantic

classes (except the target class lt) in the inpainted area is a
subset of the set of semantic classes in the nearby context.
By the assumptions, our noise filter vector fN ∈ Rk is,

fN = min(

H∑
i=1

W∑
j=1

(Pu ·M1) + lt, 1) (4)

where Pu ∈ RH×W×k is transformed from Su like from Sc

to Pc. And
∑H

i=1

∑W
j=1(P

u ×M1) is a vector in k dimen-
sions, which is the sum of the elements in Pu with respect to
dilated binary boundary M1 in each semantic channel. It is
a possible value range (except target label) of pixels in an in-
painted areas. Then, we add it with lt, which is the one-hot
vector of lt and adds the target label into the possible range.
If a vector

∑H
i=1

∑W
j=1(P

u ×M1) + lt has values greater
than 0 in some dimensions, it means the respective classes
tend to appear in the inpainted area of SISM result again;
if the values equal to 0, the respective classes tend to not
appear. Thus, we apply a min operation to indicate whether
these classes appear or not by 1 or 0, respectively. For ex-
ample, if we have a fN = [1, 0, 0, 0, 1, 0], it means the first
and fifth classes are expected to show in the inpainted area
of Ŝ, while the other four classes are not expected.
Apply DA in the training process. After getting fN , we
implement DA in the training shown in the second row of

classes compared to the context and given semantics. Our DA misses them,
as the SISM task setting cannot aware these classes.
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Fig. 3. It calculates a filtered probability tensor P̃f as,

P̃f = σ(P̃) · fN (5)

where σ is leakyReLU [36]. Then, motivated by residual
learning in resNet [11] and SAGAN [42], we derive our de-
noised probability tensor P̃d ∈ RH×W×k as follows,

P̃d = Softmax(P̃f ) + Softmax(P̃) (6)

where we apply the Softmax to boost stability. Then, we
substitute P̃ by P̃d in Eq. 1 to have our loss function as,

Lour = λ1Ladv(Õ,Oc) + λ2Lrec(Õ,Oc) + λ3Lrec(P̃
d,Pc)

(7)

finally, we get the denoised initial SISM results S̃d ∈
RH×W×1 by S̃d = argmax(P̃d). Similar to Eq. 2, we
can also get a denoised inpainted segmentation map Ŝd as,

Ŝd = S̃d ·M+ Su · (1−M) (8)

Apply DA in the testing process. We can also apply DA in
the testing process to avoid retraining a SISM model. Con-
cretely, instead of conducting Eq. 2 in the testing process,
we apply the noise filter fN on the probability map P̃ from
original G0 as follows,

Ŝd = argmax(P̃ · fN ) ·M+ Su · (1−M) (9)

where argmax(P̃ · fN ) is a single-channel segmentation
map. Then, the noise pixels are filtered in the SISM results.

3.3. Semantic Similarity (Sem)

The reason of the metric bias is that current SISM eval-
uations [13, 10] ignore the latent ground truths. The latent
ground truths should have target objects with the same se-
mantics as the ground truths, due to the SISM task require-
ment. Therefore, we propose a novel metric Sem to quantify
the semantic divergence between the generated and ground-
truth target objects for SISM.

In the Sem, we provide a semantic classifier F , which is
pre-trained on PS-COCO [16]. For the design of F , since
the semantics of segmentation maps are mainly represented
by object shapes rather than textures, we should emphasize
the object shapes and ignore object textures. Thus, the first-
channel of the two-channel input to F is a binary target ob-
ject map Oc ∈ RH×W . It sets certain pixels to 1 if the
pixels in the ground-truth inpainted area (Sc ·M) have val-
ues as lt, otherwise to 0. Because the sizes and locations
of inpainted areas are various from samples, we design the
second-channel of two-channel input as a positional embed-
ding. It equals to M and informs F where should be classi-
fied. Since PS-COCO has 80 classes, the output of F is an
80-dimension vector. Its elements are classification proba-
bilities. We use cross-entropy loss to train F .

The F is revised from EfficientNet [30], on which state-
of-the-art image classifier [26] is also built. We revise it
by adding a gated convolution [39] at the first layer of Effi-
cientNet. The reasons of adding the gated convolution are
two folds. First, there are many all-zero areas in each chan-
nel of the input, where gated convolution can alleviate their
impact. Second, the object shapes are shown by the ob-
ject boundaries, which are junctions of all-zero and all-one
areas, thus, we expect gated convolution can dynamically
learn optimized weights for the object boundaries.

After training F , given a testing sample Ŝ (or Ŝd) from
any datasets, we extract its target binary object map Ô ∈
RH×W×1 from Ŝ ·M by setting the pixel values to 1 if the
respective pixels in Ŝ ·M have values as lt, or otherwise to
0. Then, Sem calculates semantic divergence as follow,

Sem = 0.5×|Softmax(F−1(Ô))−Softmax(F−1(O
c))|1
(10)

where | • |1 is 1-norm and F−1(•) is output of the last layer
of F . We use the last layer rather than the penultimate
layer, as we expect to normalize Sem into a range from 0
to 1; then, we need Softmax, which has better explana-
tion added on the last layer than the penultimate layer. With
F−1(•), the Sem is explained as the semantic difference be-
tween the ground truths and generated results referred to
PS-COCO classes. By Eq. 10, if Ô shows more similar se-
mantics to Oc, then Sem is smaller. Thus, Sem can quantify
the semantic divergence between target objects.

4. Experiments
4.1. Experiment Setup

Datasets. Our experiments are implemented on street
scenes in Cityscapes [6], indoor scenes in ADE20K [46],
and panoptic segmentations in COCO (PS-COCO) [16].

The Cityscapes and ADE20K are applied for SISM task,
follow the setting as [13]. Specifically, we apply 2975 train-
ing images and 500 testing images from Cityscapes; 1239
training images and 150 testing images on bedroom images
from ADE20K. Based on the rank of object numbers, we
choose 8 movable semantic classes from total 35 semantic
classes of Cityscapes for SISM. For ADE20K, which has
49 semantic classes, we choose 7 classes for SISM.

The PS-COCO is applied for our shape classifier. Con-
cretely, PS-COCO provides panoptic segmentations, in-
cluding both semantic-level and instance-level segmenta-
tions. Among its 118,287 training panoptic segmentations
and 5000 validation panoptic segmentations in 80 object
categories, we extract 332,310 binary instance segmenta-
tions for training and 14,343 binary instance segmentations
for testing. These segmentations are extracted by filtering
out the instances with sizes smaller than 1% of the respec-
tive image sizes, as we find the instances in too small sizes
are too similar to instances in other semantic classes.
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Implementation details. For the SISM task, we set λ1 =
λ2 = λ3 = 1 in Eq. 1 and Eq. 7. Plus, we apply Adam op-
timizer [15] with learning rate of 0.0002 to train the SISM
model for 200 epochs on each dataset. For the downstream
task of SISM, we apply the semantic image inpainting task
with pre-trained model for ADE20K provided by [13]; we
train the model for semantic image inpainting on Cityscapes
by pix2pixHD [33] for 300 epochs 3.

For training the shape classifier described in Sec. 3.3, we
apply EfficientNet-B7 [30] and initialize its parameters as
its pre-trained ones. We then train the EfficientNet-B7 with
gated convolution [39] for 50 epochs and choose the param-
eters resulting in the highest accuracy in the test set, where
early stop also happens. The Adam optimizer with learning
rate of 0.00001 is applied, where the learning rate decays
30% every 10 epochs.
Evaluation metrics. We apply four metrics to evaluate the
overlapping degree, noises and semantics of the SISM re-
sults: (1) Target Intersection-Over-Union (tIOU) [18, 10],
which is the ratio of overlapped area for target objects to
their union area; (2) Hamming Distance (hamm) [22, 10],
which is the ratio of the number of pixels, owning the same
pixel values as the ground truths, to the number of total pix-
els; (3) Noises Number (NN), which calculates the average
number of the noise pixels of the testing samples. (4) Se-
mantic Similarity (Sem), which quantifies the semantic di-
vergence between the generated and ground-truth target ob-
jects, by our shape classifier pre-trained on PS-COCO. We
do not apply FID [12], as the natural images from down-
stream models might bring new bias, shown in the Sec. 4.3.

Baseline and ablation settings. For SISM, our base-
line is the state-of-the-art SISM model applied in [13],
which is also our structure generator introduced in Sec. 3.1.
For simplification, we use Two-Stream Model (TwoSM)
to represent the SISM model in [13]. Then, our DA is
combined with it as TwoSM+DA, which applies the DA
in the training by default. To show the effect of DA,
we apply the TwoSM+DA(Train), TwoSM+DA(Test) and
TwoSM+DA(Both) as our ablation study, to respectively
represent applying DA in the training, in the testing, and in
both the training and testing processes. To verify the effec-
tiveness of DA, we compare our DA with 4 SOTA denoise
methods trained with clean data: ADCNN [31] denoises
images by feature enhancement and attention mechanisms;
DANet [40] uses an UNet-based denoiser; RIDNet [2] uses
a residual structure and feature attention for denoise; FFD-
Net [43] uses sub-images and a noise level map to denoise.
we replace our DA with these baselines by revising their #
channel of the input and output for segmentation maps, and
keeping their input as P̃ , the output of G0.

3More implementation details, metric introduction, data samples, and
source code are provided in our supplementary materials.

Ground-Truth Mask Area TwoSM TwoSM+DA(Train)

Figure 4. Examples of inpainted segmentation maps of TwoSM
and TwoSM+DA(Train) on the ADE20K. The ground-truth seg-
mentation maps and incomplete segmentation maps are shown on
the left, where the red rectangles are mask areas. The right two
columns show the inpainted segmentation maps of the two meth-
ods respectively. The white arrows point to the visible noise pixels.

Ground-Truth Mask Area TwoSM TwoSM+DA(Train)

Figure 5. Examples of inpainted segmentation maps of TwoSM
and TwoSM+DA(Train) on the Cityscapes. The images are orga-
nized in the same way as Fig. 4.

To verify that Sem can quantify semantic divergence for
latent ground truths, we compare Sem with tIOU and hamm
in various transformations on target objects like [12].

Methods Cityscapes
tIOU↑ hamm↑ NN↓ Sem↓

TwoSM 0.8285 0.8428 5.519 0.2756
TwoSM+DANet 0.7683 0.7734 11.61 0.4049
TwoSM+ADCNN 0.8235 0.8332 5.088 0.2920
TwoSM+RIDNet 0.7830 0.7877 6.648 0.3466
TwoSM+FFDNet 0.8328 0.8424 7.352 0.2911
TwoSM+DA(Train) 0.8330 0.8477 4.832 0.2850

Table 1. The tIOU, hamm, NN and Sem on Cityscapes for SISM
results in respond to the inpainted areas.
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Methods ADE20K
tIOU↑ hamm↑ NN↓ Sem↓

TwoSM 0.6505 0.6750 501.16 0.4762
TwoSM+DANet 0.6338 0.6645 103.64 0.4640
TwoSM+ADCNN 0.6861 0.6996 39.04 0.4892
TwoSM+RIDNet 0.6376 0.6612 91.67 0.4677
TwoSM+FFDNet 0.6271 0.6456 262.41 0.5067
TwoSM+DA(Test) 0.6632 0.6843 413.71 0.4767
TwoSM+DA(Train) 0.6979 0.7116 33.54 0.4891
TwoSM+DA(Both) 0.6967 0.7098 25.64 0.4889

Table 2. The tIOU, hamm, NN and Sem on ADE20K for SISM
results in respond to the inpainted areas.

4.2. Quantitative Results Of SISM

Tab. 1 and Tab. 2 report the quantitative results of SISM
by tIOU, hamm, NN and Sem. We can conclude as below,

(1) Our DA model achieves the best results on tIOU,
hamm and NN in two datasets compared to the baselines.
The reasons are twofold. Firstly, DA is an activation func-
tion, requiring much less parameters compared to the four
baselines, then, the overfitting has less impact. Secondly,
the four baselines are designed for images, where it is hard
to guess the noise pixels, so the baselines learn the distribu-
tion of noise pixels only by the DNN. But DA guesses the
noise pixel values besides the distribution of noise pixels.

(2) The DA module is effective in either training or
testing process, For example, TwoSM+DA(Train) improves
7.29% in tIOU and decreases 0.687 noise pixels per SISM
result on the Cityscapes. Plus, TwoSM+DA(Test) improves
tIOU by 1.95% and hamm by 1.38% on ADE20K.

(3) The Sem is effective to quantify the semantics. In
each dataset, the decreases of noise pixels do not obviously
improve the semantics of target objects, shown in Fig. 4
and 5. And the Sem in each dataset also negligibly changes,
confirming the ability of Sem in quantifying the semantics.

4.3. Qualitative Results Of SISM

Fig. 4 and Fig. 5 show the inpainted segmentation maps
by TwoSM+DA on the ADE20K and Cityscapes, respec-
tively. To show the application of SISM and the bias of eval-
uating SISM by its downstream natural images, the SISM
results and their downstream natural images from seman-
tic image inpainting [13] are both shown in the Fig. 7 and
Fig. 8. From these figures, we conclude as below,

(1) The TwoSM+DA(Train) can effectively remove the
noise pixels without disrupting the semantics. For exam-
ples, the noise pixels generated by TwoSM shown in the first
row of Fig. 4 and Fig. 5 are removed in TwoSM+DA(Train).

(2) TwoSM+DA(Train) performs better than
TwoSM+DA(Test). The Fig. 7 shows that more noises are
removed by TwoSM+DA(Train).

(3) Some images from the downstream models cannot
show the improvements of SISM results. From the respec-
tive fourth rows of Fig. 7 and Fig. 8, we cannot clearly see
the effects of noise pixels in the natural images. The reason
is that, the current downstream models do not perform op-
timally on the image inpainting, even when the noise pixels
are removed. Thus, evaluating the SISM results by down-
stream results brings new bias caused by their limitation.

(4) Some noise pixels lead to obvious disturbances to
downstream model performance, such as the noise pixels
in the second row of Fig. 7, which represent “wall” seman-
tics, and are translated into a wall attached to the corner of
the bed in TwoSM and TwoSM+DA(Test).

4.4. Metrics Comparison

To further show the performance of Sem, we compare
Sem with tIOU and hamm by the transformed target objects
on the PS-COCO testing set. The comparison is similar to
FID [12]. Here, we design 6 various image transformations
with 4 different levels (levels 0-3). The results are shown in
Fig. 6. Then, we conclude as below,

(1) From (a) and (b), Gaussian noise in the binary in-
put obviously impacts Sem, as the noisy binary inputs have
large semantic divergence to the ground truths. In the prac-
tical testing process, the inputs to Sem are binary with no
noise due to the extraction method described in Sec. 3.3.

(2) From (c) and (d), all three metrics are sensitive to
both the erode and dilate. But Sem is more sensitive than
the hamm and tIOU, because the erode and dilate can mask
details of the shape and alter the semantics.

(3) From (e), the flip transformation should keep the
most original semantics of ground truths among the six
transformations. Though all three metrics are sensitive to
the flip, which changes the orientation of target objects, 1-
Sem decreases around 50% slower than hamm and tIOU.
It shows Sem quantifies semantic divergence for the latent
ground truths better than hamm and tIOU.

(4) From (f), the semantic divergence to the ground
truths should increase when the level enlarges, as the
shapes, sizes, and orientations of target objects change more
in higher levels. Though the tIOU and hamm do not con-
sistently decrease at level-2, 1-Sem decreases consistently.
This again verifies the superiority of Sem.

5. Conclusion

We improve the current SISM models by considering the
unique characteristics of segmentation maps in both testing
and training processes. First, we improve SISM training
process by reducing the noise pixels in the SISM results. We
propose DA to estimate a reasonable range of the pixel val-
ues in an inpanted area. The estimation is conducted based
on the characteristic of segmentation maps, smaller value
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Figure 6. Results of metrics comparisons on the PS-COCO testing set with various transformations on target objects, where the transfor-
mations are only conducted on the bounding-box areas of objects. The titles of the sub-figures are descriptions of the transformations, and
the inserted images are examples of each transformation at different levels. Concretely, we set all level-0 as no transformation. For (a), we
fix the means and standard deviations of Gaussian noise both as 0.5, and set its appearing frequencies to 0.125, 0.25 and 0.5 for the levels
1-3. For (b), we fix standard deviations of Gaussian noise as 0.25, fix its appearing frequencies as 0.125, and set its means as 0.25, 0.5, and
0.75 for the levels 1-3. For (c) and (d), we set the kernel sizes of erosion or dilation as 3, 5, and 7 for the levels 1-3. For (e), we set the
flip frequencies as 0.25, 0.5, and 0.75 for levels 1-3. For (f), we set the rotate degrees as 45, 90 and 135 for levels 1-3. To better compare
the curves, we use 1-Sem, rather than Sem. In this case, higher 1-Sem refers to higher semantic similarity of the generated target objects
compared with the respective ground truths.

Ground-Truth Mask Area TwoSM TwoSM+DA(Test) TwoSM+DA(Train) TwoSM+DA(Both)

Figure 7. Examples of SISM and downstream model results on
the ADE20K. The ground-truth segmentation maps, incomplete
segmentation maps and ones for natural images are shown on the
left, where the red rectangles are mask areas. The white arrows
indicate the visible noise pixels or their respective regions in the
natural images. Please zoom in for better visualization.

range of each segmentation pixel value. Our DA is effec-
tive on reducing noise pixels in the both training and testing
processes. Second, we improve SISM testing process by re-
ducing the metric bias, because current metrics ignore the
latent ground truths. We propose Sem to quantify semantic

Ground-Truth Mask Area TwoSM TwoSM+DA(Train)

Figure 8. Examples of SISM and downstream model results on the
Cityscapes. The images are organized in a similar way as Fig. 7.
Please zoom in for better visualization.

divergence between the generated and ground-truth target
objects. The framework and training data of the pre-trained
semantic classifier in Sem is designed by the characteristics
of segmentation maps, more object semantics from object
shapes. Sem is applicable to other datasets. Experiments
on three datasets show impressive results of DA and Sem.
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