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Abstract. Few-shot semantic segmentation aims at learning to segment
a novel object class with only a few annotated examples. Most exist-
ing methods consider a setting where base classes are sampled from the
same domain as the novel classes. However, in many applications, col-
lecting sufficient training data for meta-learning is infeasible or impossi-
ble. In this paper, we extend few-shot semantic segmentation to a new
task, called Cross-Domain Few-Shot Semantic Segmentation (CD-FSS),
which aims to generalize the meta-knowledge from domains with suffi-
cient training labels to low-resource domains. Moreover, a new bench-
mark for the CD-FSS task is established and characterized by a task
difficulty measurement. We evaluate both representative few-shot seg-
mentation methods and transfer learning based methods on the proposed
benchmark and find that current few-shot segmentation methods fail to
address CD-FSS. To tackle the challenging CD-FSS problem, we propose
a novel Pyramid-Anchor-Transformation based few-shot segmentation
network (PATNet), in which domain-specific features are transformed
into domain-agnostic ones for downstream segmentation modules to fast
adapt to unseen domains. Our model outperforms the state-of-the-art
few-shot segmentation method in CD-FSS by 8.49% and 10.61% aver-
age accuracies in 1-shot and 5-shot, respectively. Code and datasets are
available at https://github.com/sleil09/PATNet.

Keywords: Few-shot learning - Cross-domain transfer learning -
Semantic segmentation

1 Introduction

Deep neural networks for semantic segmentation, such as FCN [26], DeepLab [5]
and PSPNet [52], typically require large-scale annotations for training, which is
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Fig. 1. Differences between the cross-domain few-shot segmentation and existing tasks.
X and X; denote the data distribution in the source and target domain, respectively.
Ys represents the source label space and Y; represents the target label space.

costly to obtain. To reduce such burden on data annotation, Few-Shot Seman-
tic Segmentation (FSS) task has been proposed [33], which aims to learn a
model that can perform segmentation on novel classes with only a few pixel-
level annotated images. Although significant progress has been made in the FSS
task [34,45,46,49,50], it is hard to apply existing methods to cross-domain sce-
narios. Since the methods still require a large number of base class samples
for training, it is infeasible for low-resource domains where few training anno-
tations can be obtained. For instance, it is too expensive to collect sufficient
satellite images for meta-training purposes, remaining a large obstacle to apply-
ing the few-shot segmentation methods directly into the satellite image domain.
To tackle the issue, we extend FSS to a new Cross-Domain Few-Shot Segmenta-
tion (CD-FSS) task that aims at generalizing the meta-knowledge from domains
with sufficient training labels (e.g. PASCAL VOC [13]) to low-resource domains.

The conceptual comparisons between the existing tasks and our CD-FSS task
are shown in Fig. 1. First, most works on cross-domain semantic segmentation
(or domain adaptation for semantic segmentation) focus on the problem setting
where the target domain data can be accessed during training and share the same
label space as the source domain. For example, in the first row of Fig. 1, street
photo-realistic synthetic images are usually used as training data for real-world
urban scene understanding tasks. In contrast, we study the CD-FSS problem,
where the source and target domains have completely disjoint label space and
cannot access target domain data during the training stage. Second, the classic
few-shot semantic segmentation only focuses on segmenting novel classes sam-
pled from the same domain in the training stage. In other words, the input data
distributions from source and target domains are the same while the label spaces
are disjoint in the training and testing stages. In contrast, both data distribu-
tions and label spaces in the testing stage are different from the training stage
in the CD-FSS task.

In this paper, we establish a new benchmark for the CD-FSS task to evaluate
the cross-domain generalization ability of segmentation models under different
domain gaps. It consists of four different domains characterized by domain shifts
of different size: FSS-1000 [23], Deepglobe [11], ISIC2018 [10,42], and Chest X-
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ray datasets [4,21]. These datasets cover daily objects images, satellite images,
dermoscopic images of skin lesions, and X-ray images, respectively. The selected
datasets have class diversity and reflect the real-world scenario for few-shot
semantic segmentation.

Furthermore, both representative few-shot segmentation methods and trans-
fer learning based methods are evaluated on the proposed benchmark. Exper-
iment results show that: 1) the performances of existing few-shot semantic
segmentation methods degrade significantly under large domain shifts. Those
methods even underperform the simple transfer learning baselines when the tar-
get domain is drastically different from the source domain; 2) meta-learning
approaches are more effective than all transfer learning baselines in the setting
of limited domain differences.

A major challenge in CD-FSS is that the feature space learned from the
source domain cannot be applied to the target domain. Concretely, existing
methods learn a support-query matching/comparing model in a single domain
and their basic assumption is that the pretrained encoder is powerful enough
to embed the image into distinguishable features. However, the backbone only
pretrained in the source domain fails in the target domain due to the different
data distribution. To address this problem, we propose a novel Pyramid Anchor-
based Transformation Module (PATM) to transform the domain-specific features
into domain-agnostic ones. Thus, the downstream model can be well adapted to
the novel domains by matching domain-agnostic features of support and query
sets to make the segmentation. To further refine the predicted mask of the query
image, we also propose a Task-adaptive Fine-tuning Inference (TFI) strategy for
fast adaptation to unseen domain. In the testing phase, only PATM is updated
with the prototype similarity between support images and query predictions to
avoid over-fitting in few-shot scenarios. In this way, the predicted mask is refined
with the calibrated features produced by the fine-tuned PATM.

Our main contributions are summarized as follows:

— We extend few-shot semantic segmentation to a new task, called Cross-
Domain Few-Shot Semantic Segmentation (CD-FSS), which aims to segment
a novel object class in unseen domains with only a few annotated examples.

— A practical evaluation benchmark for CD-FSS is established, consisting of
four different domains. We also measure the task difficulty for each domain
according to 1) domain shift and 2) discrimination between foreground and
background classes.

— We propose a Pyramid Anchor-based Transformation Module (PATM) to
transform the domain-specific features into domain-agnostic ones. Down-
stream segmentation modules can be adapted to unseen domains by learning
with domain-agnostic features. A novel Task-adaptive Fine-tuning Inference
(TFI) strategy is proposed to refine the prediction in unseen domains.

— We investigate a practical evaluation of few-shot segmentation methods and
transfer learning based methods in the proposed benchmark. Results show
that current few-shot segmentation methods fail to address CD-FSS and are
even inferior to the transfer learning baseline methods when a large domain
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gap exists. In contrast, Our model outperforms the state-of-the-art few-shot
segmentation method in CD-FSS by 8.49% and 10.61% average accuracies in
1-shot and 5-shot, respectively.

2 Related Work

The prior works related to this paper are summarized below in domain adap-
tation for semantic segmentation, cross-domain few-shot learning and few-shot
semantic segmentation.

Domain Adaptation for Semantic Segmentation. Recent works in domain
adaptation for semantic segmentation are mainly divided into two directions.
One group of studies aims to learn domain-invariant representations of instances
by domain adversarial training [8,9,12,41]. Hoffman et al. [20] combine global
and local alignment methods with adversarial training. Similar ideas are also
explored using different techniques, such as distillation loss [9], output space
alignment [40], class-balanced self-training [54], conservative loss [53], etc. The
other group is learning from a pre-defined curriculum [31,51].

However, these methods operate in the setting where the target domain data
can be accessed during training to drive the model adaptation and compensate
for the domain shift. In addition, most existing works exploit photo-realistic
synthetic data. Thus, the source and target domain share the same label space
and still retain a high degree of visual similarity. In contrast, we study the cross-
domain few-shot semantic segmentation problem, where the source and target
domains have completely disjoint label space and cannot require target domain
data during the training stage. The goal of this work is to learn a task-adaptive
few-shot semantic segmentation model under large domain shifts.

Few-Shot Learning. Few-shot learning aims to learn a new concept representa-
tion from only a few annotated examples. Most existing works can be categorized
into metric learning methods [35,37,44], gradient-based meta learners [14,29],
and graph neural network [15,24] based methods. Yoon et al. [47] introduce
a reference vector set to construct a linear transformer that performed task-
specific null-space projection for classification, which is the theoretical basis of
our method. In cross-domain few-shot learning [7,39,43], both data distribution
and the label space in the meta-testing stage are different from the meta-training
stage. Tseng et al. [43] propose feature-wise transformation layers to improve
the generalization of metric-based few-shot classification approaches to unseen
domains. Guo et al. [16] propose a harder cross-domain few-shot benchmark
(BSCD-FSL), where there is a large shift between base and novel class domains.
It covers several target domains with varying similarities to natural images. Our
proposed benchmark can be seen as an extension of BSCD-FSL in the few-shot
segmentation task to evaluate the cross-domain generalization ability of few-shot
segmentation models under different domain shifts.

Few-Shot Semantic Segmentation. In contrast to the domain adaptation
for semantic segmentation, few-shot semantic segmentation has no access to
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the target domain during training stage. It aims at segmenting novel semantic
objects in an image with only a few densely annotated examples. Based on the
optimized module in the meta-training process, existing works can be divided
into two groups, metric-based and relation-based methods. Specifically, metric-
based methods (e.g. PANet [45] and AMP [34]) adopt non-parametric decoder
and aim to train the encoder to construct a consistent metric space. In contrast,
relation-based methods (e.g. CaNet [49], RPMM [46], PGNet [48], PFENet [38]
and HSNet [27]) freeze the pre-trained encoder during training process and train
a decoder to compare the support and query samples. In other words, metric-
based methods focus on separating foreground and background classes in each
task, while relation-based methods focus on recognizing the foreground classes
based on the pre-trained features. RePRI [3] foregoes meta-learning and adopts
a transductive inference with a feature extraction trained on the base classes.
However, these methods only focus on segmenting novel classes sampled from the
same domain. They fail to generalize to unseen domains due to large discrepancy
of the feature distribution across domains.

3 Benchmark

The proposed benchmark for CD-FSS consists of four datasets characterized
by domain shifts of different sizes. The proposed benchmark includes images
and pixel-level annotations from FSS-1000 [23], Deepglobe [11], ISIC2018 [10,
42], and Chest X-ray datasets [4,21]. As shown in Fig. 2, These datasets cover
daily objects images, satellite images, dermoscopic images of skin lesions, and
X-ray images, respectively. The selected datasets have class diversity and reflect
the real-world scenario for few-shot semantic segmentation tasks. To provide
a better overview, in Table 1, the task difficulty for each domain is measured
from two aspects: 1) domain shift (cross the datasets) and 2) class distinction
in a single image (within the dataset). Fréchet Inception Distance (FID) [19] is
adopted to measure the domain shift [1] of these four datasets with respect to the
PASCAL [13]. Since the discrimination between classes in a single image has an
important impact on the segmentation task, we measure the similarity between
foreground and background classes using KL-divergence. For more details, please
refer to the supplementary material.

FSS-1000 [23] is a natural image dataset for few-shot segmentation, consist-
ing of 1,000 object classes and each class has 10 samples. The official split for
semantic segmentation is used in our experiment. We report the results on the
official testing set, which contains 240 classes and 2,400 testing images.

Deepglobe [11] is a satellite image dataset. Each image is densely annotated
at pixel-level with 7 categories: areas of urban, agriculture, rangeland, forest,
water, barren, and unknown. As the ground-truth label is only available in the
training set, thus we adopt the official training set to report the results, which
contains 803 images. The images have a fixed spatial resolution of 2448 x 2448
pixels. To increase the number of testing images and reduce the size of images,
we cut each image into 6 pieces. As the categories labeled in this dataset have no
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Table 1. Conceptual difference between PAS-
CAL and the four cross-domain datasets. The
domain shift and class distinction in a single
image is measured by FID and DisFB, respec-
tively.

Deepglobe

Dataset Perspective|Natural|Color |[FID |DisFB
distortion |content |[depth Chest X-ray FS5-1000
Deepglobe | X X 3 213.58(0.143
ISIC X X 3 275.28|0.187 . .
Fig. 2. Example of segmentation
Chest X-ray | X X 1 316.56|0.126 . gh b L p Kk €
FSS-1000  |v v 3 238.41]0.112 0 the benchmark.

regular shape, the cutting operation has little effect on the segmentation. After
filtering the single class images and the ‘unknown’ class, we get 5,666 images to
report the results and each image has 408 x 408 pixels.

ISIC2018 [10,42] is a dataset on lesion images, consisting of skin cancer
screening samples. Every lesion image contains exactly one primary lesion. As
the ground-truth label is only available in the training set, thus we report the
results on the official training set, containing 2,596 images. The images have a
spatial resolution around 1022 x 767. As a common practice we down-size the
images to 512 x 512 pixels.

Chest X-ray [4,21] is an X-ray image dataset for Tuberculosis. It includes
566 images with a resolution of 4020 x 4892, which are collected from 58 cases
with a manifestation of Tuberculosis and 80 normal cases. Due to the large size
of image, we down-size the images to 1024 x 1024 pixels as a common practice.

4 Problem Setting

The cross-domain few-shot semantic segmentation (CD-FSS) problem can be
formalized as follows. We have a source domain (X, Ys) and a target domain
(X, V1), where X, is the input data distribution and Y, is the label space. In
CD-FSS, the input data distribution in source domains X; is different from
target domains and the label space in source domains has no overlap with target
domains X}, i.e., Xy # X, Vs N Yy = 0.

Suppose that the model is trained on the source domain, CD-FSS aims to
use the trained model to perform segmentation on the novel classes in the target
domain with only a few annotated images per class. The training set Dyyqin is
constructed from (X, )s) and the testing set Dyes: is constructed from (X, V).
We align training and testing with the episodic paradigm [44] to handle the
few-shot scenario. Specifically, given a N-way K-shot learning task, both the
training set Dyyqin and testing set Dyeq; consist of several episodes. Each episode
is constructed by 1) a support set S = {(I7, M) file and 2) a query set
Q= {(17, M?)}inl, where I is an image, M is a corresponding mask and Q is
the number of query samples. Note that the model is trained on Dy,.q;,, from the
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Fig. 3. Overview of our method in a 1-way 1-shot example. After obtaining the pyramid
features of support and query images, PATM is introduced to transform the domain-
specific hypercorrelations into domain-agnostic ones by producing linear transforma-
tion matrices. Then, the transformed features are fed into Domain-agnostic Correlation
Learning part for the final query segmentation mask prediction. In the testing phase,
the anchor layers are fine-tuned with the foreground prototype similarity between sup-
port and query predictions. Yellow parts are trainable and blue parts are frozen. (Color
figure online)

source domain and has no access to the target domain data. During the testing
(or meta-testing) process, the model is presented with a support set and a query
set from the target domain is used to evaluate the model performance.

5 Model

The main challenge in CD-FSS is to reduce the performance degradation brought
by domain shifts. Previous works focus on learning a support-query matching
model and their basic assumption is that the pretrained encoder is powerful
enough to embed the image into distinguishable features for the downstream
matching model. However, the backbone only pretrained in the source domain
fails in the target domain, especially under the large domain gap, like daily life
object images to X-ray images. To address the problem, our model learns to
transform the domain-specific features into domain-agnostic ones. In this way,
the downstream model can be well adapted to the novel domain by matching
domain-agnostic features of support and query sets to make the segmentation.
As shown in Fig. 3, our method consists of three major parts, feature extrac-
tion backbone, domain-adaptive hypercorrelation construction and domain-
agnostic correlation learning. Given support and query images, we first extract
all the intermediate features with feature extractor. Then, we introduce a partic-
ularly novel module in the Domain-adaptive Hypercorrelation Construction part,
dubbed Pyramid Anchor-based Transformation Module (PATM), to transform
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the domain-specific features into domain-agnostic ones. Next, we compute multi-
level correlation maps with all transformed feature maps to feed into Domain-
agnostic Correlation Learning part. Two off-the-shelf modules, 4D convolutional
pyramid encoder and 2D convolutional context decoder [27], are adopted to
produce the prediction mask in a coarse-to-fine manner with efficient 4D convo-
lutions. In the testing phase, we also propose a Task-adaptive Fine-tuning Infer-
ence (TFI) strategy to encourage the model to fast adapt to the target domain
by fine-tuning PATM with Ly; loss, which measures the foreground prototype
similarity between support and query predictions.

5.1 Pyramid Anchor-Based Transformation Module

The core idea of Pyramid Anchor-based Transformation Module (PATM) aims
at learning pyramid anchor layers to transform the domain-specific features into
domain-agnostic ones. Intuitively, if we can find a transformer to transform the
domain-specific features into a domain-agnostic metric space, it will reduce the
detrimental effects brought by the domain drift. Since the domain-agnostic met-
ric space is constant, it will be much easier for the downstream segmentation
modules to make predictions in such a stable space.

Ideally, features belonging to the same class will produce similar results when
they are transformed in the same way. Thus, if we transform the support features
to the corresponding anchor points in the domain-agnostic space, then by using
the same transformation, we can also make query features belonging to the
same class transform close to the anchor points in the domain-agnostic space.
Inspired by TAFT module [32], we adopt a linear transformation matrix as the
transformation mapper since it introduces fewer learnable parameters. As shown
in Fig. 3, we use the anchor layer and the prototype set of the support image
to compute the transformation matrix. Let A represent the weight matrix of
the anchor layer and P denote the prototype matrix of the support image. We
construct the transformation matrix W by finding a matrix such that WP = A.

Specifically, for an 1-way 1-shot task, once the intermediate feature maps
in L layers of the support image, {F;}%,, are obtained, we can calculate the
foreground prototype of each feature map Fj € REHXWi with the support

mask M* € {0,1}#*W via masked average pooling, i.e. P}, = %,

where Py, € RS and ¢ is 2D spatial positions of the feature map. i)
denotes a function that bilinearly interpolates input tensor to the spatial size
of the feature map Fj at intermediate layer [ by expanding along channel
dimension, ¢ : RTXW . REOXHXW:i GQimilarly, the background prototype
o for Fj can be obtained in the same way and the prototype matrix Pj is

defined as [l‘gf””, Hggll\}' Accordingly, the anchor weight matrix A; is defined
Fil bl
as [Ia“ 2.1 where a,; € RE. In general, Pj is a non-square matrix and

lagill” las,|l
we can calculate its generalized inverse [2] with P;T = {P;TP;}~1P;T. Thus,
the transformation matrix at intermediate layer [ is computed as W; = AlPlS+,
where W, € R <€,
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Fig. 4. Visual comparison results of several 1-shot tasks. For each task, the first three
columns show the ground truth of support and query sets. The next two columns
represent the prediction mask without anchor layers and the prediction mask without
fine-tuning, respectively. The last column shows the final predicted segmentation after
fine-tuning with Lx;. Best viewed in colors.

For the subsequent hypercorrelation construction, a pair of transformed query
and masked support features F] at each layer forms a 4D correlation tensor
C; € REXWixXHixWi yging cosine similarity:

WF](i) - WiF; (j) )
| WFZG) || WiF; () |

Ci(i, ) = ReLU ( (1)

where ¢ and j denote 2D spatial positions of F} and f‘f , respectively.

To avoid adding too many learnable parameters, we set three anchor layers
for low-, medium- and high-level feature maps respectively. Note that only three
anchor layers are introduced for different feature dimensions. Even though fea-
ture maps with the same dimension share one anchor layer, each of them still
can obtain its unique transformation matrix with its own prototype set.

5.2 Task-Adaptive Fine-Tuning Inference

To further refine the prediction mask of query images, we propose a Task-
adaptive Fine-tuning Inference (TFI) strategy for fast adaptation to unseen
domains in the testing phase. The motivation is that if the model can predict a
good segmentation mask for the query image, the foreground class prototype of
the segmented query image should be similar to that of the support set. Differ-
ent from optimizing all parameters in the model, we only fine-tune the anchor
layers to avoid overfitting in few-shot scenarios. Figure 3 shows the pipeline of
the strategy. In the testing phase, during step 1, only anchor layers are updated
accordingly using the proposed Ly;, which measures the similarity between the
foreground class prototype of support and query sets. In step 2, all layers in the
model are frozen and make the final prediction for query images. In this way,
the model is encouraged to fast adapt to the target domain and the predicted
mask is refined with calibrated features produced by fine-tuned anchor layers.
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Formally, given a sequence of L intermediate feature maps of the query image
{F?}le and its predicted probability map M, we compute the foreground class
prototype of the query image at layer [ with the probability map M, = Q(M)
by applying the soft masked average pooling method. Thus, the loss function
Ly for fine-tuning the model can be computed as follows:

L > FE MM, > 7]
. . it i VG Z

Ly =Y Dicr(pyallpg,), where pf, = =— 5 My
=1 7; )

Here, D 1,(+) denotes the Kullback-Leibler divergence loss function and ¢ denotes
2D spatial positions of the feature map. 1(-) is an indicator function to extract

(2)

the binary predicted mask from M, outputting value 1 if the argument is true
or 0 otherwise. Pixels will be predicted as the foreground class if their values are
larger than threshold 7. We set 7 = 0.5 in our experiments.

6 Experiment

6.1 Evaluation Setup

Datasets. We use PASCAL VOC 2012 [13] with SBD [17] augmentation as
training domain and then evaluate the trained models on the proposed bench-
mark introduced in Sect. 3.

Baseline. To evaluate the performance of existing few-shot semantic segmen-
tation models on CD-FSS, we adopt eight representative few-shot segmenta-
tion models: AMP [34], CaNet [49], PANet [45], RPMMs [46], PGNet [48],
PFENet [38], RePRI [3] and HSNet [27]. We use the publicly available codes
and follow the default training configuration of these models. For CaNet [49]
method, we iteratively optimize the predicted results for 4 times after the ini-
tial prediction at inference time, which is same as their recommended settings.
For a fair comparison, we also adopt ResNet-50 [18] as a feature extractor in
PANet [45] to be our baseline model, denoted as PANet*. An alternative way to
tackle CD-FSS is based on transfer learning, where an initial model is trained
on the source dataset in a standard supervised learning way and reused on the
novel datasets. We adapt the FCN [26] and DeeplabV3 [6] to serve as baselines
by fine-tuning their last k layers on the support set, denoted as “Ft-last-k.”. For
example, “Ft-last-lpcn” represents the performance of fine-tuning the last-1
(fc-8) fully connected layers of FCN-32s pretrained on PASCAL VOC. In addi-
tion, the trained segmentation networks followed by the base classifier are also
evaluated on the benchmark. The base classifier is trained to map dense features
from the support set to their corresponding labels and uses it to generate the pre-
dicted mask in the query set. We experimented with various classifiers including
1-NN and logistic regression. For more details, please refer to the supplementary
materials.

Training and Testing Strategy. We meta-train all methods on all the classes
of PASCAL VOC with SBD augmentation and meta-test the trained models on
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each dataset of the proposed benchmark. For each evaluation, we average the
mean-ToU of 5 runs [44] with different random seeds. Each run contains 1200
tasks for all datasets except FSS-1000. FSS-1000 has 2400 tasks in each run,
which is the same as the setting in [23,27].

6.2 Evaluation Metric

Mean intersection over-union (mloU), which is defined as the mean IoUs of
all image categories, was employed as the metric for performance evaluation.
For each category, the IoU is calculated by IoU = %, where TP, FP
and FN respectively denote the number of true positive, false positive and false

negative pixels of the predicted segmentation masks.

6.3 Implementation Details

We adopt VGG-16 [36] and ResNet-50 [18] as feature extractors, which are ini-
tialized with weights pre-trained on ILSVRC [30] and kept frozen during training,
following previous works [25,27,45,49]. For the VGG backbone, we use feature
maps from conv4_x to convh_x, and after the last max-pooling layer. The channel
dimensions of the three anchor layers are set to 512. For the ResNet backbone,
we use feature maps from conv3_x, conv4_x and convb_x. The channel dimen-
sions of the three anchor layers are set to 512, 1024 and 2048, respectively. To
reduce the memory consumption and speed up training process, we set spatial
sizes of both support and query images to 400 x 400. We implement the model
in PyTorch [28] and utilize the Adam [22] optimizer with a learning rate of 1le-3.
At inference, all images are resized to a fixed 400 x 400 resolution. An Adam
optimizer is used to fine-tune PATM, with a learning rate of le—3 for Deep-
globe and ISIC, 5e—5 for Chest X-ray and FSS-1000. For each task, a total of
50 iterations are performed. More details can be found in the supplementary
material.

6.4 Baseline Performance Analysis

Meta-learning Based Results. Table 2 shows the results using mloU, in terms
of different datasets, methods, and shot levels in the benchmark. The results
reveal that the performance of existing few-shot semantic segmentation methods
degrades significantly under domain shifts, especially under large domain gaps.
The main reason is that the frozen pretrained encoder cannot generate distin-
guishable features for the downstream decoder when a large domain gap exists.
Furthermore, when the target domain is similar to the source domain, like on
FSS-1000, the relation-based methods generally perform better than the metric-
based methods. But when the domain gap becomes larger (e.g. Deepglobe and
Chest X-ray), the metric-based methods are more effective than the relation-
based methods. For instance, PANet surpasses HSNet by 5.87% (1-shot) and
14.95% (5-shot) on Chest X-ray, but underperforms HSNet by 8.38% (1-shot)
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Table 2. Mean-IoU of 1-way 1-shot and 5-shot results of meta-learning and transfer
learning methods on the CD-FSS benchmark. Note that all methods are trained
on PASCAL VOC and tested on CD-FSS. Bold denotes the best performance
among all methods and underlined shows the best performance in each method group.
* denotes the model implemented by ourselves.

Methods Backbone | Deepglobe ISIC Chest X-ray | FSS-1000 Average
1-shot | 5-shot | 1-shot | 5-shot | 1-shot | 5-shot | 1-shot | 5-shot | 1-shot | 5-shot

Transfer learning methods
Ft-last-1rcn Vgg-16 29.80 |32.25 |15.17 19.75 |33.63 | 48.08 |32.51 |53.62 |27.78 | 38.43
Ft-last-2pcn Vgg-16 32.90 3534 [17.52 121.65 |36.35 |53.85 |32.15 |57.44 |29.82 | 42.07
Ft-last-3ron Vgg-16 32,91 | 35.54 1791 |25.58 |45.61 |56.05 | 33.32 |60.86 |32.34 |44.51
INNrcN Vgg-16 32.42 | 38.63 | 15.68 |23.66 |46.26 |52.70 |41.51 |46.64 |33.97  40.41
Linearren Vgg-16 33.56 |38.75 15.51 30.65 |37.69 |50.07 |41.09 49.16 |31.96 | 42.16
Ft-last-1peeplab | Res-50 28.11 128.65 | 11.08 |16.57 1 30.43 | 35.54 |25.14 | 35.86 |23.69 | 29.41
Ft-last-2peeplan | Res-50 24.09 36.74 |10.22 ' 17.56 |31.16 |51.57 |20.68 |'42.50 |21.29 |37.10
INNpeeplab Res-50 32.28 1 35.96 | 21.44 |26.04 |47.76 |57.93 145.81 | 55.95 |36.82 43.97
Linearpeeplab | Res-50 32.95 1 39.69 19.42 |30.04 |43.52 |60.29 140.50 |58.36 |34.10 |47.10

Few-shot segmentation methods

AMP [34] Vgg-16 37.61 140.61 28.42 30.41 |51.23 |53.04 |57.18 |59.24 |43.61 '45.83
PGNet [48] Res-50 10.73 [12.36 | 21.86 |21.25 |33.95 |27.96 | 62.42 | 62.74 |32.24 |31.08
PANet* [45] Res-50 36.55 | 45.43 25.29 |33.99 |57.75 |69.31 1 69.15 |71.68 | 47.19 | 55.10
CaNet [49] Res-50 22.32 1 23.07 | 25.16 |28.22 |28.35 |28.62 | 70.67 |72.03 |36.63 | 37.99

RPMMs [46] Res-50 12.99 | 13.47 |18.02 |20.04 30.11 ' 30.82 |65.12 |67.06 |31.56 |32.85
PFENet [38] Res-50 16.88 | 18.01 |23.50 |23.83 27.22 | 27.57 |70.87 |70.52 |34.62 |34.98

RePRI [3] Res-50 25.03 |27.41 |23.27 126.23 |65.08 |65.48 |70.96 |74.23 46.09 | 48.34
HSNet [27] Res-50 29.65 | 35.08 | 31.20 |35.10 |51.88 |54.36 | 77.53 | 80.99 |47.57 | 51.38
PATNet Vgg-16 28.74 | 34.83 | 33.07 |45.83 |57.83 |60.55 | 71.60 |76.17 |47.81 |54.35
PATNet Res-50 37.89 1 42.97 41.16 53.58 |66.61 | 70.20 78.59 81.23 56.06 61.99

and 9.31% (5-shot) on FSS-1000. This indicates that if the target domain is dras-
tically different from the source domain, it may be more effective to make the
encoder obtain the meta-transfer ability than the decoder. Finally, we observed
that all the methods achieved the best performance on the FSS-1000 dataset
among the four selected datasets because the data distribution of the FSS-1000
is most similar to the source dataset (PASCAL VOC) compared to the other
datasets.

Transfer Learning Based Results. We observe that the base classifier meth-
ods significantly outperform simple fine-tuning methods on CD-FSS. The main
reason is that limited samples in support set are insufficient for the deep seg-
mentation networks to be adapted to a novel distribution. Furthermore, when
the target domain is similar to the source domain (e.g. FSS-1000), those meta-
learning based methods outperform transfer learning based methods with a large
margin. In contrast, the base classifier methods surprisingly achieve compara-
ble performance when a large domain shift gap exists. For example, the pre-
trained Deeplab with a simple linear classifier achieves 39.69% on Deepglobe for
5-shot, outperforming most few-shot segmentation methods. It is worth noting
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Fig. 5. Qualitative results of our model in 1-way 1-shot segmentation on CD-FSS. Note
that the model is trained with PASCAL. Support labels are overlaid in blue. Prediction
and ground truth of query images are in plum. Best view in color and zoom in.

that RePRI [3] is also a kind of transfer learning method designed for few-shot
segmentation tasks. It performs well on Chest X-ray and FSS-1000, but fails on
Deepglobe and ISIC. This indicates that it is inefficient only to fine-tune the clas-
sifier during inference. Generating distinguishable features for the downstream
segmentation modules is a key to reducing the performance degradation brought
by domain shifts.

6.5 Experimental Results of PATNet

As shown in Table 2, across all the datasets, our model outperforms both meta-
learning methods and transfer learning based methods with a sizable mar-
gin. Specifically, our 1-shot and 5-shot results respectively achieve 8.49% and
10.61% of mean-IoU improvements over HSNet (achieves the best performance
among meta-learning methods on CD-FSS), 21.96% and 14.89% of mean-ToU
improvements over DeeplabV3 combined with a linear classifier (achieves the
best performance among transfer learning based methods on CD-FSS), verifying
its superiority on the CD-FSS task. In particular, our model outperforms recent
methods with a sizable margin under large domain gaps, surpassing HSNet by
14.73% (1-shot) and 15.84% (5-shot) on Chest X-ray, and 9.96% (1-shot) and
18.48% (5-shot) on ISIC. In addition, we present some of the qualitative results
of the proposed model for 1-way 1-shot segmentation in Fig.5. These results
validate that the proposed method can significantly improve the generalization
ability under large domain gaps while achieving a comparable accuracy in a
similar domain shift.
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Table 3. Ablation study on PATM on CD-
FSS. Results are averaged over 4 datasets
for 1-shot and 5-shot.

Table 4. Ablation study on the choice of
fine-tuning anchor layers on Deepglobe.

Method CD-FSS #params Fthigh | Ftmed | Ftiow | 1-shot | 5-shot

1-shot | 5-shot | to train X X X 35.10 40.72
w/o PAT  |47.57 |51.38 |2.574M v |x |x 3752 42.03
Explicit PAT 54.16 59.38 |2.602M x v x |34.56 39.74
PATNet 56.06 61.99 2.581M x X v |37.8942.97

6.6 Ablation Study

We conduct extensive ablation studies to investigate the impacts of PATM and
TFT strategy. All ablation study experiments are performed with ResNet-50.

Effect of Pyramid Anchor Layers. To study the effect of the number of
pyramid anchor layers in PATM, we compare our method with and without the
anchor layers. We also form an explicit transformation module using a unique
anchor layer for each intermediate feature map. From Table 3 we can observe that
introducing the anchor layers for feature transformation improves the segmenta-
tion performance with 8.25% and 7.64% gain in 1-shot and 5-shot, respectively.
This suggests that our proposed PATM is able to enhance the generalization
ability by transforming the domain-specific features into domain-agnostic ones.
One may ask why not make each feature map have its own anchor layer. We
compare the results with the explicit transformation module, introducing the
anchor layer for each intermediate feature map (denoted as ‘explicit PAT’ in
Table 3). Performance degradation from PATNet to explicit PAT indicates that
the light-weight anchor layers are more reliable to construct the domain transfor-
mation matrices in few-shot scenarios. Thus, we only introduce one anchor layer
for each feature dimension and feature maps with the same dimension share one
anchor layer to compute their corresponding transformation matrices.

Choice of Fine-Tuning Anchor Layers. Table 4 provides a quantitative eval-
uation of the TFT strategy. We present the results of fine-tuning each anchor
layer: low-, medium- and high-level feature dimensions, respectively. We observe
that fine-tuning the anchor layer of the low feature map achieves the best per-
formance, indicating that the correlation patterns from low intermediate CNN
layers are crucial in effective domain transfer. Qualitative results on how TFI
affects the final prediction are provided in Fig. 4. We adopt fine-tuning the anchor
layer for low dimensions to report all the experiment results.

7 Conclusion

In this paper, we extend few-shot semantic segmentation to a new task, called
Cross-Domain Few-Shot Semantic Segmentation (CD-FSS), which aims to learn
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a model that can segment the novel classes in unseen domains with only a
few pixel-level annotated images. Moreover, a new benchmark for CD-FSS is
established to evaluate the cross-domain generalization ability of few-shot seg-
mentation models under different domain shifts. Experiments show that SOTA
few-shot segmentation models do not generalize well to categories from differ-
ent domains, due to the large discrepancy of the feature distribution across
domains. In addition, we propose a novel model, PATNet, to tackle the CD-FSS
problem by transforming domain-specific features into domain-agnostic ones for
downstream segmentation modules to fast adapt to unseen domains. Extensive
experimental results show that our method outperforms the prior art with a siz-
able margin under domain shifts. We believe this work will help the community
understand existing methods in a practical way and dive into further advances
for real-world applications.
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