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Abstract—Ever since the COVID-19 outbreak, various works
have focused on using multitude of different static and dynamic
features to aid the prediction of disease forecasting models. How-
ever, in the absence of historical pandemic data these models will
not be able to give any meaningful insight about the areas which
are most likely to be affected based on preexisting conditions.
Furthermore, the black box nature of neural networks often
becomes an impediment for the concerned authorities to derive
any meaning from. In this paper, we propose a novel explainable
Graph Neural Network (GNN) framework called Graph-COVID-
19-Explainer (GC-Explainer) that gives explainable prediction
for the severity of the spread during initial outbreak. We
utilize a comprehensive set of static population characteristics
to use as node features of Graph where each node corresponds
to a geographical region. Unlike post-hoc methods of GNN
explanations, we propose a framework for learning important
features during the training of the model. We further apply our
model on real-world early pandemic data to show the validity
of our approach. Through GC-Explainer, we show that static
features along with spatial dependency among regions can be
used to explain the varied degree of severity in outbreak during
the early part of the pandemic and provide a framework to
identify the at-risk areas for any infectious disease outbreak,
especially when historical data is not available.

Index Terms—Graph, COVID-19, explainable, COVID, GCN,
GNN, forecasting, prediction, deep learning, graph neural net-
work

I. INTRODUCTION

Between 1980 and 2013, there were over 12,000 outbreaks
of human infectious diseases in 219 countries, including Zika,
Ebola, Cholera, MERS, and H1N1, which reached pandemic
thresholds [17], [23]. Studies on epidemic trend forecasting
and epidemic outbreak early detection have become increas-
ingly important due to the significant losses generated by epi-
demics. In the past 30 years, there has been a steady increase
in the frequency and diversity of outbreaks. The outbreak of
COVID-19 virus has also resulted in substantial human and
economic loss. The existing works in COVID-19 modeling
or analysis focus largely on utilizing the historical pandemic
data to make more accurate prediction for cumulative number

of cases or deaths. Most of the work in COVID forecasting
focuses singularly on achieving accurate forecasting for a
period of time in future, either by predicting the number
incidence or death. However, very few works utilize population
level static characteristics to predict the severity of the spread
at different areas and it is difficult to extract sufficient insight
into the affect of these static features during the early outbreak(
[4], [13], [15]). In this paper we focus on modeling this
irregular spreading pattern of the infection across the United
States during the early outbreak of the pandemic.

In the beginning of the outbreak, a disparity in the spread of
the disease were observed across different regions. As a result,
a cursory observation of the situation could definitely draw
conclusions regarding the demography based vulnerability to
the virus and certain conclusions regarding racial suscepti-
bility were made both by mainstream media and academia.
However, further inspection found that the contributing factors
to such observation were often the underlying population
characteristics including but not limited to socioeconomic
status. Furthermore, the affect that neighboring regions might
have on each other was also not explored. While there are
works exploring the effect of socioeconomic features, they
mostly focus on statistical analysis instead of exploring the
viability of predictive model based solely on these features.
Alhamadani et al. [3] on the other hand, did use an exhaustive
collection of socioeconomic features to predict the rate of
infection at zip-code level however while incorporating spatial
dependency, the proposed GCN model does not provide node
level feature explanation. Similarly, other works like Arik et al.
[4], that have tackled the problem of incorporating explanation
into the predictive model, provide explanation on dynamic
features like, mask usage or mobility which are all affected
by the lockdown measures or a population’s behavior post
outbreak. However, they do not focus on spatial dependency
among regions or the static features, and whether or not they
can be used to predict the severity of the outbreak when such
dynamic historical pandemic data, or mobility data are not
available.

To this effect, we have the following research questions: Q1.
In the absence of any historical statistics about pandemic how
do we identify the regions most at risk? Q2) Does modeling
the spatial dependency of the neighborhood improve the
predictive performance? Q3) How do we provide explana-
tions about the static population characteristics affecting
the spread that can be useful for the concerned authorities?
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Through this paper, we show how both population characteris-
tic features and spatial correlation among regions can be used
for predicting the most severely affected regions. We formulate
the problem as binary classification on graph, details of which
are provided in section III. To this effect, we propose an
explainable graph convolution network that gives interpretable
prediction of the most severely effected areas. Most of the
works in explainable COVID-19 forecasting have previously
only focused on post-hoc explanation about the feature impor-
tance based on the drop in accuracy at the iterative exclusion
of select features. Even in works related to explainable GNNs,
the methodology largely consists of generating explanation
for an already trained model. In contrast to these works, our
proposed model incorporates a feature selection pipeline as the
first step to be used for node-level feature aggregation through
adjacency matrix based convolution at the graph convolution
stage. While the connections for the learned adjacency matrix
provide explanation for most important spatial correlation for
each region, the feature selection through the incorporation of
group lasso penalty gives more weight to the most important
node features while penalizing unimportant features to almost
zero. This is used as explanation about the prediction of the
model. However, this is a particular problem setting that hasn’t
been tackled by papers related to ”COVID-19 modeling”
or ”community health outcome prediction” which creates a
lack of benchmark models. Hence, we conduct extensive
experiments with different types of machine learning models
including traditional GNN like GCN which substantiates the
quality of the proposed framework. The contribution of our
work can be summarized as follows:

• Unlike post-hoc methods for GNN explanation we pro-
pose a novel framework Graph-Covid-Explainer that
simultaneously gives prediction for high risk areas as
well as insights about most for important features
during the training of the model.

• We introduce a novel problem setting that tackles the
paucity of historic data to identify high risk areas
during the initial outbreak that can help authorities
in better preparing for future crisis.

• We apply our model Graph-COVID-Explainer(GC-
Explainer) on real-world COVID-19 data to show that
static features about mobility, socioeconomic status
and spatial dependency among regions can be used to
make explainable prediction about the varied degree of
severity during early part of the outbreak without using
historical pandemic data as features.

• We build a county-level dataset containing the most
important static features and the corresponding labels
indicating the rate of infection during the early part of the
outbreak along with the adjacency matrix explaining the
spatial dependency between different regions.

II. RELATED WORK

A. Covid Forecasting and Prediction:
Some of the previous works in this respect are in compart-

mental model-based simulation [7], [8]. Cooper et al. studied

the effectiveness of the modeling approach on pandemic due
to the spread of the novel COVID-19 disease [6]. While
these compartmental models have their advantages in giving
insights by dividing the population into susceptible, exposed,
infected, or recovered states, they are highly dependent on the
surveillance data provided by the Centers for Disease Control
and Prevention (CDC) [2]. Deep learning and other time series
methods have gained popularity [10] as more epidemic-related
data become available, these statistical and deep learning
models become viable options for the forecasting task. Most
of the current studies which model the spread of disease in
deep learning-based approaches are works like [1], [12] and
[5]. However, these methods often fail to provide explanations
about the prediction which is particularly useful at the early
stages of the outbreak when there is a dearth of pandemic data
and an explanation behind prediction is highly desirable for
the policy makers to employ the correct measures. However,
there are few works that tries to explore the underlying disease
dynamics by examining the effect that certain variables have.
For example, Rodriguez et al. [13] proposes purely data driven
approach while also providing a post-hoc explanation module.
While the explanation of the model is based on the evaluation
of the drop in accuracy for each set of features’ exclusion, this
does not provide a feature selection pipeline through which
we can only interact with most pertinent features. This is a
post-hoc explanation module to explain the predictions that
the model has already made. In contrast. Arik et al. [4] which
is a compartmental model, incorporates static and dynamic
features as covariates to account for the transition from one
compartment to the other. While, this is a truly interpretable
model. it only provides insights about dynamic features and
their usefulness. Other works like Roy et al. [14] relied solely
on mobility data for COVID forecasting. Although the paper
provided compelling evidence related to the importance of
mobility data. it once again does’t provide any interpretation
about the static socioeconomic factors. Alhamadani et al. pro-
vided significant insight about the validity of socioeconomic
features in determining the worst affected areas. [3] However,
they do not propose a model that incorporates feature selection
into the predictive model. One of the experiments from this
work also suggests that spatial dependency among nodes can
improve the prediction.

B. Graph Neural Networks and Explainability:

Hence, we look towards the vast research area of Graph
Neural Network that includes but are not limited to works
like GCN [9], GAT [18] or GIN [21]. Despite using spatial
correlation and node level feature aggregation, all these models
do not provide satisfactory explanation about the data and how
it effects the prediction. Therefore, we have to focus on going
through some of the more popular works in the area of explain-
able graph neural network. Ying et al. proposed GNNExplainer
a method to identify significant graph paths and underline cor-
responding node feature information that is distributed through
the pathway edges by implementing a recursive neighborhood-
aggregation technique [22].Luo et al [11] explained predictions
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Fig. 1: Workflow diagram for the proposed GC-Explainer framework

of GNNs by proposing a generative probabilistic method.
The utilization of generative methods allowed PGExplainer to
obtain the explanations from the explored inherent structures
of the generative models. Furthermore, GraphMask [16] is an-
other post-hoc method similar to PGExplainer where it learns
a classifier for every edge in every layer in a trained GNN
model and predicts if an edge can be dropped. However, the
classifier is differentiable and utilizes stochastic gates and L0
regularization. GNNExplainer, for example, does provide node
level and feature level interpretation of the outcome. Similarly
PG-explainer provides similar explanation about prediction,
despite not giving any interpretation about the node features.
Both these models fall under perturbation-based model that
provides post-hoc explanation that requires a GNN model to
be trained first. That is why we are exploring the possibility
of building a Graph Convolutional network that will learn the
most important features during the training process.

III. PROBLEM STATEMENT:

In this work we are trying to identify areas with higher
severity of COVID-19 spread during the early outbreak, based
solely on static population features that can influence the
intensity of the spread. To treat this as a binary classification
we have to define ”high risk” areas. To standardize the severity
of the spread we consider both the rate of increase of cases
as well as the total number of cases standardized by the
population. For total number of cases we use the New York
Times dataset that reports both official and probable number.
Also,we consider the same time frame for every county. For
example, if a county has it’s first case in March, then for
that county we start collecting the data from March while
for another county where the first incidence happened around

February the data collection starts from February. Thus, for
every county we used the collected data for the first forty
five days of the outbreak to calculate the rate of the spread
in standardized population (per hundred thousand) to label
each county as either high or low-risk area. Based on the
standardized infection rate for each county, we find out that the
mean value for this metrics is 278 however only 729 of 3000
counties have values above that which indicates these counties
as the more disproportionately affected areas. Hence, we label
those counties as high risk areas and others as comparatively
low. Our goal is to not only predict the high risk areas based
solely on population-level static characteristics but also to
provide explanation as to the contributing features and spatial
correlation. For this purpose we formulate the problem as node
classification over spatial graph network of counties.

The mathematical formulation of the problem can be
stated as follows: For a given graph G and a set
of n nodes C={c1, c2...., cn} with corresponding labels
Y={Y1, Y2...Yn}(where Yi is 0 for low-impact area and
1 for high-impact area), each having static features x
=(x1, x2, x3...xf ), we want to find a function f where
fθ(Xs,A)= Y where Xs is a subset of X, and consisting
only of contributing factors, A is the adjacency matrix of
the graph structure, and Θ is the learnable parameter of the
model. We are aiming to learn both Θ and Xs for the set of
nodes C. Hence, essentially it is a node classification problem
with added focus on explainability through feature selection
pipeline.

IV. REVIEWING GRAPH CONVOLUTIONAL NETWORK:

Graph Convolution Network(GCN)s are a specific kind of
Graph Neural Network(GNN) that uses spatial level feature
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aggregation as convolution operation on a given node vector.
It was originally proposed by [9] for semi-supervised classifi-
cation setting. The main idea can be summarized as follows:
Given a graph G with node vector X = (x1,x2 · · ·xn) ∈
Rn×d and an adjacency matrix A∈ Rn×n, the output of the
convolutional layer can be expressed as:

H = ÂXΘ (1)

Here Â denotes a normalized Adjacency matrix that is calcu-
lated as follows: D− 1

2AD− 1
2 + I where D and I are diagonal

node degree and identity matrix respectively. Depending on the
number of hidden layer, a layer i in a GCN can be expressed
as:

Hi = ÂHi−1Θ (2)

while the final layer can be something to the effect of the
effect:

Hfinal = σ(HlΘ) (3)

Here, σ is an activation function that can vary from anything
from a Relu or LeakyRelu to a Sigmoid function. Based on the
loss function employed by the model and choice of optimizer,
the parameters Θ will be updated through back-propagation.

V. METHODOLOGY: GC-EXPLAINER

In this section we will describe the details about our pro-
posed framework Graph-COVID-19-Explainer(GC-Explainer).
This section is divided into three section that describes the
feature selection module, graph convolutional network and loss
function with group lasso penalty.

A. Feature Selector Layer

This is a single hidden layer that takes as input the original
feature vector X ∈ Rn×d where n is the number of instances
in the input and d denotes the number of initial input features.
The hidden layer has p number of nodes which are all fully
connected. This means the weight vector for this layer is of the
dimension (d× p) and the output of the layer can be wriiten
as follows:

Hfeature = XW + bias (4)

The output of this layer is thus a tensor of size n× p. The
main objective of having this layer as a buffer before feeding
it into the convolutional layer is to penalize the less important
features. To further elaborate the, figure 2 shows the idea as
feature sparsification which is essentially applied to penalize
all the weights connected to less important features.

B. Group Lasso Penalty for feature sparsification

To achieve explainability we aim for sparsification of weight
vector by only highlighting the most important feature through
learning the sparisified weight matrix. We do this by means
of group lasso or L(12) regularization term.

penalty =

d∑
i=1

∥Wi∥2 (5)

Fig. 2: Feature Slection through Weight Sparsification

Here, Wi corresponds to each vector of the previously used
tensor in equation 4. The column vectors denote the weight
associated with the corresponding hidden layer node. We
hypothesize that this will mitigate the effect of including noisy
unnecessary features on the original loss function as it is
more prone to achieving a local minima during convergence.
Therefore, this module works rather as a feature learner with
more importance given to most important features which
works as an inherent explanation for our model as depicted
in figure 2.

To alleviate the problem of non differentiable penalty term,
we further add a smoothing function akin to [20] and other
works [19].

C. Graph Convolutional Layers

The inputs for this stage includes the output from the hidden
layer described in equation 4 as Hfeature of the size n × p
where n denotes the number of instances and d denotes the
dimension of the extracted feature vector. Hence, for our
proposed GC-Explainer the instead of using node vector we
are going to use transformed Hfeature vector. We formulate
the graph as G = (H, E ,A) with n nodes. The nodes H
represent the feature transformed instances of n counties.

Adjacency Matrix construction for spatial explanation:
Here the edges are expressed by E indicating spatial de-
pendency.Adjacency matrix is used to represent this spatial
dependency formed by interconnected counties. Hence, the
adjacency matrix is of the form: A = [Aij ] ∈ {0, 1}n×n.
Works in the past have hypothesized that geographically, the
closer a region is to another, the higher the spatial dependency
will be between the pair. However, we hypothesize that within
a certain neighborhood of a region, a county further away
can effect the spread of the virus more than their immediate
adjacent county because of factors varying from job related
inter-county commute, to demographic and other population
characteristics. Hence we compute pairwise distance of a node
within it’s k-nearest neighbor based on havershine distance.
Then we compute connection distance through the following
equation:

Distance (Xi,j) = λHavershine+ (1− λ)Euclidian
(6)

Here, λ is a control parameter that controls the weight
given to geographic havershine distance or euclidian distance
between the features. Then, we connect two vertices only if
the distance is lesser than a threshold. In our experiment for
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3120 vertices we experiment with the threshold to control
sparsity by starting with 5561 edges with k set to 5. In our final
implementation, we finalize on the adjacency matrix with 3328
edges. Hfeature ∈ Rn×p represents the output of the feature
selection task described in subsection V-A.

Node Feature Propagation: After designing the county
graph structure, the GCN model is used for the node-level
information to propagate according to the neighborhood rela-
tionships. One layer of the propagation rule is defined as the
following convolution:

gθ ∗H ≈ (D̃− 1
2 ÃD̃− 1

2 )HfeatureΘ (7)

This forward pass is parameterized with Θ, with Ã = A+ I ,
where I is the identity matrix and D̃ is the diagonal node
degree matrix of Ã. By stacking three layers of the graph
convolutions, our final model is defined as follows:

Y = σ(gθ3 ∗ gθ2 ∗ (gθ1 ∗Hfeature)) (8)

Here, σ is the activation function.

D. Computing Overall Loss Function:

Computing the overall loss function in each epoch includes
computing both the binary cross entropy loss, as well as the
group lasso penalty function. Backpropagation is used for for
updating the weights at each layer based on the computed
gradients. The overall loss function for the model will look
something like this:

Eloss = (1− β)×EBCELoss(Ŷ , Y ) + β ×
d∑

i=1

∥Wi∥2 (9)

Our objective is to minimize the loss while also updating the
parameters of the model until convergence.

E. Training Algorithm:

In this section we explain the overall training process for
the model through Algo 1. .

Algorithm 1 Model
Input: X ∈ RN×D, A ∈ RN×N ,Y ∈ RN×1;
Output: Ŷ ∈ RN×1

Parameters:Wfeature,Θ;
Initialize parameters;
for each epoch do

Hfeature = X.Wfeature + bias;
Ã = D̃− 1

2 ˜(A+ I)D̃− 1
2 ;

gθ ∗H ≈ (D̃− 1
2 ÃD̃− 1

2 )HfeatureΘ;
Ŷ = σ(gθ3 ∗ gθ2 ∗ (gθ1 ∗Hfeature));
Loss = EBCELoss(Ŷ , Y ) +

∑d
i=1∥Wi∥2

Loss.backward()
Update Wfeature,Θ;

end for

VI. EXPERIMENTS

In this section we talk about data collection, baseline
comparisons and experimental settings and discuss the results.

A. Data Collection

Our predictive analysis is based on two separate kind of
data.

COVID-19 cases Dataset: For each of the counties, the
number of cumulative and probable cases has been collected,
for each day starting from the outbreak to next fourty five
days individually, from the New York Times COVID-dataset.
We use the population of each county to obtain a weighted rate
confirmed COVID cases based on which we label counties as
high severity or low.

Census and Mobility Data Collection: For each coun-
ties we also collect census and mobility features. American
Census Surveys (ACS)1 are a rich source for socioecomic
features, for mobility however, we collect data from Safe-
graph for the days preceeding the first incident. SafeGraph
(https://www.safegraph.com) uses device location to build a
dataset that details the number of visits to a POI from all other
Census Block Groups (CBGs) on every single day based on a
number of devices. The dataset is used to calculate the static
average of ”mean distance traveled from home” in each county
prior to the outbreak.

B. Experiment Settings

As explained before, we are tasked with the problem of
predicting high regions based solely on static population level
characteristics. Our procedure to label high risk areas is
described in Section III. There is a significant lack of work that
focuses on predicting such high risk areas in the absence of any
historical data based purely on static population characteristics.
Due to the unque nature of the task, we are faced with
lack of benchmark in the literature of covid modeling to
compare our framework to. However, it is our understanding
that given significant number of works discovering the effect
of socioeconomic and population factors on the spread of the
virus, it is important to explore how we can use these static
preexisting features to predict the at-risk areas. To ensure that
our proposed methodology is effective, we have to compare
this with different machine learning and deep learning models
that are known to perform well for classification task using
structured data such as ours (as opposed to image or text).
The baselines are as follows:

• Logistic: We implement a logistic regression model as
they generally gives good performance for classification
tasks.

• SVM: SVM is a powerful model for the classification
task with data of our size.

• XGBoost: Extreme Gradient Boostingis a variation of
Gradient Boosting Decision Trees (GBDT), which we
use to see if our feature selector module can improve
the performance of decision tree based methods.

• MLP: To study the efficiency of neural networks we use
a standard Feed Forward Neural Network that can poten-
tially capture nonlinear interaction among the features.

1https://data.census.gov/cedsci/table
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TABLE I: Experimental Results

Model Accuracy F1 Precision Recall
Logistic 0.6311 0.6159 0.5933 0.6402
SVM 0.6255 0.6091 0.5965 0.6223
XGBoost 0.6188 0.6200 0.6087 0.6214
MLP 0.6380 0.6318 0.6271 0.6366
GCN 0.7033 0.7053 0.7005 0.7102
GC-Explainer 0.7256 0.7252 0.7192 0.7315

• GCN:To examine if incorporating spatial dependency
affects the performance in a positive or negative way
and to do comparison with our own model, we employ
a standard GCN model with two convolutional layer
stacked on top of each other.

These models work as base model comparison described in
Table I and are discussed in detail later. To account for the
disproportionate distribution of labels in the problem, we split
the data through each label in train and test set (80:20 split)
and then combine it to train the model on training dataset
before validating on test set to check for the performance. The
data is standardized by following the min max standardization.
We use pytorch library of python to implement all the models.
Hyperparameters are set by standard grid-search method. For
GC-Explainer, the learning rate is set for 0.0001 and we train
the model for 10000 epochs. We further discuss the insights
explanation provided by our proposed model about the selected
features from the exhaustive list of socioeconomic features. It
is important to note that in this section while working with
GCN models we use the optimal adjacency matrix that we
discovered in our ablation study, which is described in a later
subsection. As we are predicting the label of each county in
terms its outbreak severity, we use accuracy, F1, precision and
recall score to make comparison.

C. Experimental Results

In Table I we can see the performance of each of the
baseline models compared with the proposed GC-Explainer.
If we look at the performance of MLP model compared to
the Logistic regression model, no significant improvement
in performance is observed. This may indicate the general
assumption about neural network model outperforming tradi-
tional machine learning approach may not apply to a setting
such as this where the training data is of limited size. However,
our assumption about spatial correlation playing a part in
successfully identifying high risk areas is vindicated by a
significant change in the accuracy score which is over 70 per-
cent. Furthermore, our proposed model with feature selection
pipeline is the best performing model even though the im-
provement is not astonishingly significant. More importantly,
this means that GC-Explainer provides explainable prediction
while not having to compromise on model performance. This
is specifically encouraging given its application in community
health outcome prediction could be further utilized. In addi-
tion, this also showcases the feasibility of self explaianable

Fig. 3: Feature Importance

Fig. 4: Actual (top) and predicted (bottom) maps of VA
counties indicating the severity of infection. The darker shades
indicate testing data while the orange colors indicate high risk
areas.

Graph Neural Network for node classification problem where
may not always need to rely on post-hoc explanation of trained
models.

D. Model Level Explanation

Now, let us take a look at the explanation provided for the
trained model using the weight associated with Wfeature as
explained in subsection V-A. What are the most important
features? What are the set of features retained by the model
where the weights associated to them were not reduced to
approximately zero? Interestingly. we are left with the follow-
ing features that was not affected my the sparsification of the
weight matrix which is also displayed Fig 3:

Uninsured Population: This feature indicates the percent-
age of population medically uninsured. While having no
insurance often means that people are less likely to do tests,
in case of COVID, the availability of free testings and lack of
medical cost may not deter people from getting tested. To the
contrary, lack of medical insurance may be indicative of the
socioeconomic status of the individual or the nature of their
job which may play significant role in deciding vulnerability
of a population.
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Occupation in healthcare and service industry: This
is an expected but significant observation. There has been
observations of significant correlation between susceptibity to
covid and any job requiring physical proximity which makes
the community of healthcare workers and service employees
more at risk during the early outbreak.

Unemployment rate of the population: Intuitively it
makes a lot of sense given socioeconomic status associated
with such population often leads to the inability to take all the
preventive measures to avoid getting infected.

Percentages of population over the age of 62: It has
already been known that older population are more vulnerable
towards this disease than the comparatively younger one which
makes sense for the early onset of COVID as observed in our
findings.

Percentage of population without high school diploma:
Education often plays an important role in deciding the nature
of the job or overall financial strength indicating higher
socioeconomic status. This could explain how this could be
negatively correlated to the spread of the virus. Population
below poverty level:This may once again indicate the so-
cioeconomic status of a region and the nature of the jobs or
lack there of, resulting in an inability to work from home or
maintain social distancing.

Percentage of the population renting : one of the inter-
esting observation is how this feature is deemed to be more
important than other socioeconomic indicators like mean in-
come or median household income. One possible explanation
is that the living situation can often contribute to a population’s
ability to adhere to COVID guidelines as a lot of families and
professionals in urban neighborhood have to live in crammed
up densely populated apartments to afford high living cost.

mean distance traveled from home: Another important
finding is how the mobility characteristics of certain regions
can affect the spread of the virus as in our experiment this
feature is given more weight than many other important
features like ”population over 62” or ”total employed worker”.
This could be a unique observation to a disease like COVID
which is airborne and relies on avoiding human contact to
stop the spread. Hence, the preexisting mobility characteristics
during the early onset of the disease plays an important role
in its eventual severity.

All these observations are particularly useful to understand
the importance of giving interpretation about the prediction
that can be understandable to authority for them to implement
preemptive measure at the earliest.

E. Ablation Study

In this section, we experiment with different parts of the
architecture of the proposed model. In one of the experimental
settings the classification result is observed while slowly
increasing the percentage of node being trained.The result of
this is depicted in Table II GCα) is used for GC-Explainer
model with α percent of the nodes as training set. For example,
GC(80%) is used for the model with 80% of the nodes in
training , 10% in validation (which remains fixed), and the

Fig. 5: Actual (left) and predicted (right) maps of Texas
counties indicating the severity of infection. The darker shades
indicate testing data while the orange colors indicate high risk
areas

rest 10% in testing set. As already discussed in experimental
results GC(80%) is the model GC-Explainer showed in Table I.
As we already know it can achieve more than 70% accuracy.

TABLE II: Experiment:
percentage of nodes

Model Acc
GC(1%) 0.2455
GC(10%) 0.4013
GC(50%) 0.6729
GC(80%) 0.7256

TABLE III: Experiment:
adjacency matrix

No of Edges Acc
6365 0.6521
5527 0.6407
4219 0.7019
3229 0.7256

Furthermore, we conduct experiment with different thresh-
old on the inter node distance as formulated in equation 6,
each resulting in different number of edges. In Table III, we
depict the effect that number of edges has on the performance
of the model. From the observation it is clear that reducing the
number of edges in a densely connected graph of this nature
can result in better performance. One possible explanation
in this particular case could be that propagation of node
features from nodes that are too far could negatively effect
the performance by introducing noise in the prediction.

F. Case Studies:

Here we will talk about two case studies we did on counties
in the state of Virginia and Texas. The counties in the lighter
shades of green and orange were the low and high risk areas in
training dataset while the darker shade indicates the counties
in test dataset as explained in the figure.

Virginia:(Fig 4) We can see from the map that our model is
resoundilngly successful at predicting high risk counties like
Floovana and Goochland. We can also see that the neighbor-
hood of these two counties also includes high risk counties like
Buckinghan and Cumberland which supports our hypothesis
to incorporate spatial correlation through neighborhood aggre-
gation. However, in one case for the county of Westmoreland
on the eastern border of the state, a misclassifcation takes
place. This can be due to the county being an outlier among
its neighbor in terms of the assigned class.
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Texas:(Fig 5) For Texas we can see similar results in terms
of accuracy of the classifcation. Especially encouraging obser-
vation was the successful classifcation of counties like Kenedy
and Houston who despite being an outlier in their immediate
neighborhood the model was able to predict correctly. This
suggests that our framework is not overtly dependent on the
immediate neighbors of the county but also considers the
static characteristics of the county and how these features also
inform decision making.

VII. CONCLUSION:

In this paper we propose a self explainable novel GCN
framework GC-Explainer for predicting high risk areas of
COVID infection based solely on static population level fea-
tures in the absence of historical pandemic data which is
useful especially during the early part of the pandemic. We
classify counties of United States as either high or low based
on the predicted severity. Our model shows how incorporating
spatial dependency through node level feature propagation
largely benefits the performance of the model. Furthermore,
through our proposed feature selection process we manage to
penalize weights connected to negatively affecting features,
only selecting the most contributing one which makes the
prediction interpretable without the need of an expensive post-
hoc method. The insights we get from the explanation of GC-
Explainer can potentially help us in identifying high risk areas
in advance and will be helpful towards avoiding or minimizing
any potential damage. The problem that we posed, can also
be tackled in future for different diseases that can hopefully
spawn more easily understandable prediction of community
heath outcome.
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