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Abstract—Drug overdose deaths are a dreadful crisis that leads
to substantial societal impairments. Its harmful impact directly
affects families and communities. To assist policymakers in miti-
gating this crisis, it is crucial to study the societal, economic, and
criminal contributing factors linked to the crisis. Unfortunately,
current data-driven works assume a singular factor, such as
poverty being the cause and disregarding other realistic causes.
Besides, recent works exhibited a lack of explainable models and
spatial analysis of the crisis. Thus, DOD-Explainer links the gap
by developing a realistic framework that predicts highly impacted
counties of drug overdose deaths from crime and socioeconomic
data. DOD-Explainer overcomes the challenge of data scarcity by
proposing three data augmentation methods. Then, an algorithm
is proposed to provide realistic explanations of the leading causes
of the crisis. The results show that our application achieves the
best predictive accuracy from several models, accurately identifies
the most/least impacted counties by the crisis, and reveals the
most contributing factors of drug overdoses.

Index Terms—Drug overdose deaths, crime, socioeconomic,
prediction, spatial analysis, data augmentation, explainability

I. INTRODUCTION

The number of drug overdose deaths in the U.S. was
reported to be more than 100,000 people between 2020 and
2021. According to the Centers for Disease Control and
Prevention (CDC), the overdose crisis is very serious. Every
day, 136 people lose their lives due to only an opioid overdose.
Drug overdose deaths or drug-induced deaths include all
deaths caused by either intentional or unintentional acute poi-
soning by drugs (illicit or street drugs) and medical conditions
resulting from chronic drug use. Further, the deaths involving
illegally manufactured synthetic opioids, for example, fentanyl
and other stimulants, are increasing by an alarming number in
the past few years. For instance, the total number of drug
overdose deaths from 2017 to 2020 in Arizona and California
nearly doubled in four years. As researchers, our mission
lies in providing a better understanding and response to this
crisis by collecting, analyzing, and identifying the regions that
need assistance so they can acquire the needed support from
authorities.

There are many statistical attempts to analyze the drug
overdose crisis in the U.S. Some studies focused their analysis
on race [1], [2], but race is not the actual factor that contributes
to the drug overdose crisis, and there are factors that require
attention, such as socioeconomic factors. For instance, these

studies delved into more specific analyses and showed that
drug overdosing was concentrated in areas of high rates of
unemployment [3], poverty, low income, and low education
[4]. In addition, the demographics of a population in an area,
such as the age group and families in economic distress
[5] have shown to be factors for the crisis. More evidence
explains the relationship between the drug overdose crisis and
the combined socioeconomic factors [6], [7]. Therefore, it is
crucial to include those factors in analyzing the drug overdose
crisis.

Socioeconomic factors are not the only explanation for the
crisis. A report from the U.S. Department of Justice reveals
the association between the drug-using lifestyle and the crime
problem. It shows that a person who uses drugs is more likely
to commit crimes than a nonuser in the general population.
Moreover, a range of 38% to 85% of arrestees tested positive
for any drug use. Additionally, this drug lifestyle often pushes
offenders to commit crimes to support their drug habit [8].
Contrerase et al.’s [9] study concluded that drug activity
increases assaultive violence and crime rates. Certainly, there
is a close relationship between drug prevalence and crime [10].
Subsequently, our study combines the socioeconomic factors
and crime rate data to provide explanations for the crisis and
identify high-risk areas for drug overdose deaths.

Current studies have positively contributed toward under-
standing drug abuse and its prevalence, yet the field exhibited
a lack of work that explains the crisis, provides spatial analysis
and forecasts the high-risk areas of a drug overdose. Most
works focused on analyzing the trends of drug abuse on social
media or through limited samples of questionnaires [11]–
[23]. Few works examined drug abuse behavior and provided
explanations through a small subset of groups and reasons,
for example, adolescents [24], [25] or homeless groups [26].
Consequently, considering the existing works in the field
and the drug overdose crisis, the exigent reasons require an
explainable and spatial analysis of the matter.

To address those challenges, we propose Drug Overdose
Deaths Explainer (DOD-Explainer), a novel (framework that
provides a county-level spatial prediction of drug overdose
deaths from crime and socioeconomic data, solves the scarcity
of data, and offers interpretations to mitigate the crisis). In this
work, we seek to link the gap in the data-driven drug overdose
crisis literature through the following tasks: (T1) Find effec-
tive solutions to the scarce and heterogeneous data. Our
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framework combines six categories of socioeconomic factors
of 7 varying U.S states, their crime data, and drug overdose
mortalities based on the county-level. To create enough data
to train the machine learning and deep learning models,
we propose solutions to augment the heterogeneous data in
three different methods. (T2) Develop spatial prediction
application of high-risk areas of drug overdose deaths.
The framework applies various Machine Learning (ML) and
Deep Learning (DL) methods to identify the impacted counties
by the crisis and demonstrates several case studies. (T3)
Provide an explainable framework for the crisis. There are
many factors that play an important role in the drug overdose
crisis, such as crime rates, age demographics, education levels,
economics (family and individual income), occupation types,
poverty levels, and families receiving Supplemental and Nutri-
tion Assistance Program (SNAP) benefits. This work identifies
the major factors for this crisis, so decisions can be made
by officials in response to the given explanations. The main
contributions of our work are summarized as follows:

• Develop a realistic framework that spatially forecasts
highly impacted U.S. counties of drug overdose deaths.
The framework considers realistic factors of the drug
crisis by utilizing real-world contributing factors such
as crime data and socioeconomic statistics to predict the
areas of drug overdose mortalities.

• Propose effective solutions to scarce and heteroge-
neous data. The field of drugs is typically discrete and
sensitive. Therefore, the data is scarce to train ML and
DL models. Therefore, we augment the data with three
different methods. Our framework also combines data
from multiple resources based on each county in the U.S
to simulate realistic factors of the crisis.

• Provide an explainable algorithm of realistic interpre-
tations of the crisis. There are many socioeconomic and
crime factors that contribute to the crisis. DOD-Explainer
interprets its predictions to domain experts to determine
key factors through an algorithm we developed to rank
the most contributing factors to the crisis.

• Conduct extensive experiments to demonstrate the
effectiveness of the proposed framework. The proposed
framework was performed on two tasks (classification
and regression). Then, six experiments and 3 case studies
are conducted. The in-depth experiments demonstrate
the superiority of the work on a wide variety of data
augmentation methods and a comprehensive selection of
realistic factors for the crisis.

II. RELATED WORKS

This section introduces related work in several research
areas.

Drug overdose crisis modeling and forecasting: Despite
the positive contributions that recent studies have made to
understanding drug abuse and its prevalence, the field of drug
abuse research has shown a shortage of work that explains
the issue, provides spatial analysis, and predicts the high-risk
locations of a drug overdose. Most studies analyze drug misuse

trends on social media or use small questionnaire samples.
Some existing works explored drug addiction behavior and
offered explanations and identifying factors, yet some of those
works only highlighted one type of drug user [24], [26]. The
majority only analyzed drug use and abuse patterns [11],
[12], [14], [15], [17]. Further, others have studied social
media platforms, including Instagram, Twitter, and YouTube,
to monitor and identify those patterns [19]–[21], [27]. Even
though those initiatives significantly and positively impacted
important parts of current drug use and misuse problems, yet
they also presented some significant challenges mentioned in
section I.

The relatively static features of the geographic regions that
are crucial to the propagation of addiction are the subject
of very few existing works. As a result, this study forecasts
drug overdoses in a novel way using socioeconomic factors
and crime reports data through county-level spatial analysis.
Socioeconomic status, crime, and addiction have always been
related [28], [29]. People belonging to higher groups in the
social hierarchy often have access to better care than those at
the bottom. Thus, socioeconomic level differences are known
to affect drug usage rates. Moreover, Mukherjee et al. [30]con-
ducted a case study on Connecticut to predict short-term drug
overdose deaths using internet search trends. Since addiction is
under-reported and can be vague to discern, existing addiction
numbers aren’t always accurate [12], but this study proposes
data augmentation solutions to enhance that. Further, Gong
et al. [17] presented a model that effectively predicts the
short-term trend of opioid abuse, but their work does not
identify high-risk areas associated with drug overdoses, and
their model does not provide an explainability component as
we propose in our work.

Explainability for drug overdose crisis: Explainability
techniques are essential to understanding how models operate
and provide insight into whether the results presented by the
model were correct. Explainability techniques are applicable to
various applications and models like classification, prediction,
and image segmentation [31]. Ying et al. [32] proposed GCN
explainer, the first general model-agnostic approach to provide
interpretable explanations for predictions of any GCN-based
model. DeepCOVIDExplainer [33] presented an explainable
deep neural network method for the automatic detection of
COVID-19 symptoms from chest radiography images. Ro-
driguez et al. [34] provided exploratory analysis modules,
enabling interpretation of their COVID-19 forecasts. Providing
model explainability brings more confidence in results from
ML and DL models. Inspired by these works, we include an
explainability module in our work to bring transparency to our
predictive analysis.

III. METHODS

This section describes the methodology in three parts.
The main objective is to forecast the drug overdose deaths
in a county given a combination set of crime reports and
socioeconomic features dataset illustrated in Table I. First, we
use traditional ML models to predict drug overdose deaths on
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Fig. 1: All tasks are illustrated in this figure. T1 shows the four types of datasets: (A) Dataset without augmentation, (B)
County random shuffling, (C) County Feature distance, and (D) County Proximity augmentation. T2 displays the forecasting
approach based on T1. T3 describes the explainability according to section 3

a county-level basis. Second, to solve the issue of data paucity
at the county-level, we enhance the data by proposing three
data augmentation methods. Then, we implement DL mod-
els, including a Graph Convolutional Network (GCN) model
without data augmentation to leverage the spatial correlation
among different counties. Finally, we introduce the explain-
ability method to highlight the categories that contribute the
most/least to the crisis.

A. Data Augmentation

The dataset collected regarding drug overdose deaths is very
sensitive and highly anonymous to protect the identity of the
users. Obtaining fine-grained information, for example, based
on the zip-code level is not available for many U.S. states
because most of the publicly reported numbers are suppressed
to protect the privacy of individuals and families. Therefore,
we seek to utilize county-level data to provide predictions of
drug overdose mortalities for risk evaluation of spatial areas.
Fortunately, collecting county-level datasets is obtainable but
comes with a cost. The number of counties in some states is
very small, which in return will negatively affect the prediction
results for traditional ML and some DL models. Therefore, we
propose three different data augmentation methods to solve the
paucity of data.

T1. Data augmentation:(fig 1) When insufficient data is
available or suppressed, such as drug overdose deaths, data

TABLE I: Description of the dataset categories, the number
of features/factors for each category, and an example.

Category No. Example
Age Demographics 21 20 to 24 years
Crime Reporting 6 Murder
Drug Overdose 1 Deaths count
Education Attainment 19 Less than high school
Food Stamps SNAP 25 Families getting food stamps
Household Income 11 $15,000 to $24,999
Occupation Types 8 Service occupations
Poverty Status 8 200 percent of poverty level

augmentation makes collecting new data dispensable. Data
augmentation is an approach that expands the diversity and
size of training data from the original data. In addition, it has
proven its ability to enhance models’ forecasting accuracies
and to improve the models’ robustness toward overfitting.
[35]–[37].

1) County-Random-Shuffling Data Augmentation: The first
applied method is permutation [35], [37] and random shuf-
fling [38] data augmentation, which mimics random-county
data. This method showed improvements in inaccuracies of
other models and can be further extended for any level of a
geographical area such as zip code [39]. For example, a new
synthetic data point where the mapping between the features
and label (drug overdose death) is generated when the data of
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two counties are given.
The permutation method for data augmentation was pro-

posed by Um et al. [37], and Eyobu et al, and [38] applied
the shuffling approach. In shuffling, the data(county) points
are randomly rearranged. While in permutation, the dataset is
divided into equal segments, then each segment is permuted.
This work applied both methods (random shuffling and per-
mutation). The following details explain how the full dataset
is augmented. CST

N indicates the full dataset in the shape
of a matrix where T is the number of columns. The matrix
columns CST

i = {x1
i , x

2
i , ...x

T
i , yi}i=1 are the heterogeneous

data of the combination of crime rate data and socioeconomic
features, and the last column is the drug overdose deaths. The
rows denoted as N are all the counties.
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At first, random shuffling is applied, then the rows of the

matrix CST
N are divided into k equal-sized segments for the

permutation. Each segment’s size is determined by n
k , and this

results into the segmented matrix CST
♣
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The rows are permuted for each CST

♣(i) (i ∈ [1, k], k = 10)
and each permutation engages two rows (counties’) features
to augment the data. During permutation, the features of each
county are augmented using the augmentation function.

Augmentation function: Given the row of a county
x1
(i−1)n

k +1 and x1
(i−1)n

k +2, the augmentation is defined as
xi−j = F (xi, xj) where F is the augmentation function (e.g.
average, maximum). Let x be the feature such as burglary. The
augmentation function can be represented as:

F (xi, xj)[burglary] = AV ERAGE(xi, xj) (1)

Along with the county-random-shuffling data augmentation
method, we propose another two data augmentation methods to
conduct the study. County-random-shuffling method examines
if random and unrelated data augmentation can enhance the
prediction of drug overdose deaths ratio.

2) County-Proximity Data Augmentation: This data aug-
mentation method relies on the information of the target

area’s neighboring (surrounding) regions. For example, the
surrounding areas of Fauquier County in Virginia are Clarke,
Culpeper, Loudoun, Prince William, Rappahannock, Stafford,
and Warren counties. Spontaneously, it is questionable to
generate data from similar or neighboring regions because that
will create bias. However, we are investigating the assumption
called “the neighborhood effect” [40]. The concept indicates
that the social science and economic factors that polarize
neighborhoods may directly or indirectly affect an individual’s
behavior. Further, neighboring regions can have direct or indi-
rect effects. In this work, no assumptions are made that there
is a direct effect between a county’s socioeconomic and crime
data on a neighboring one. Instead, we are investigating this
concept in the experiment section through County-Proximity
Data Augmentation.

Algorithm 1 County-Proximity Data Augmentation
Input: Crime-socioeconomic CSN , County-Adjacency-Map
CAMM

Output: Augmented County-Proximity Set CD
Initialize: County-Adjacency Matrix AMN×N

Build AMN×N from CAMM

for each row ami ∈ AMN×N do
for each column amj ∈ AMN×N do

if (ami, amj) = True then ▷ They are neighbors
tempCS1 = Find ami from CSN

tempCS2 = Find amj from CSN

Augment(tempCS1, tempCS2) equation 1
update CD

end if
end for

end for
Return CD

In the exhibited pseudo-code 1, the input comprises of
two parts. The first is the crime data combined with the
socioeconomic factors CS for all the available counties N .
The second input is the list of county adjacency data CAMM

obtained from the U.S. Census Bureau1 where M is the
number of all U.S. counties. The output is the set of County-
Proximity augmented data notated as CD. At first, we filter the
counties of only the states we collected data from to match
the number of counties from M to N . Then, the counties
adjacency matrix AMN×N is built based on CAMM , and of
size N ×N where N is the number of all available counties
in CSN . The algorithm searches AMN×N to find if there is
a relationship between one county and another. If they are
neighbors, then both counties will have their data augmented
to generate a new synthetic county. Each time a new one is
generated, CD is updated. Once the search is complete, CD
is employed in the experiment for all the models except for the
GCN model because the graph already connects the spatially
related counties.

1https://www.census.gov/geographies/reference-files/2010/geo/county-
adjacency.html
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3) Feature-distance Data Augmentation: This method is
different from the previous two because it aims to create
synthetic county data from the tails of the distribution, either
the highest or the lowest. The previous methods could be either
generating random data, closely related data, or disparate data.
Therefore, we propose feature-distance data augmentation.
This method calculates the distance among all counties and
finds the top-C counties with the greatest distance. Then, it
generates synthetic data. This method does not only consider
the top-C because relying only on the top will create an
imbalance in the augmented dataset, which may subsequently
impact the performance of the prediction. Thus, the method
also calculates the bottom-C counties with the least distance
to create balanced data and includes the distribution’s middle
and tails.

Algorithm 2 Feature-distance Data Augmentation
Input: Crime-Socioeconomic CSN

Output: Augmented Feature-Distance Set FD
Initialize: h = 0, j = 0, Temp-copy Crime-Socioeconomic
cCSZ = CSN ,Top-counties TC , Bottom-counties BC

while h < N do
h = h+ 1
while j < Z do

j = j + 1
if h ̸= j then

▷ calculate cosine similarity
temp = CosineSimilarity(CSi, cCSj)
if temp > any element in TC then

update TC

else if temp < any element in BC then
update BC

end if
end if

end while
end while
For each element in CSN not in TC or BC:
FD ←Augment each element from CSN with each
element in TC and BC 1
Return FD

The details of this method are exhibited in pseudo-code 2.
The input of this algorithm is only the same unaugmented data
which is the crime and socioeconomic data CNN . The output
is the augmented set of feature-distance FD. Then, two sets
of data are initialized to store the counties with the greatest
distance TC and the bottom counties with the least distance
BC . C stands for the number of top or bottom counties. The
variable C relies on the number of counties in each state; for
example, the state of Georgia has more than 150 counties, and
C in this case will be 15. Therefore, C varies from 3, 5, 10
to 15 depending on the number of counties within a state.
At first, the algorithm calculates the distance between each
data point ∈ CSN and all the other points ∈ cCSZ (which
is a copy of the same table of the same size). For example,
the data of a county in Virginia CSv

i = {avi , bvi , ..., zvi }Ni=1 is

measured by the cosine similarity against all the other counties
in cCSZ such as cCSv

j = {avj , bvj , ..., zvj }Zj=2 (see equation 2).
The sets TC and BC are updated whenever the temp value
satisfies either condition. Once all the distances are calculated,
the augmentation process starts.

cos(CSi, cCSj) =
CSi · cCSj

∥CSi∥∥cCSj∥
(2)

For each element in CSN and also not available in either
TC nor BC , the algorithm augments each element with all
elements in TC and BC based on equation 1. Each time two
data points are augmented, FD is updated, and FD will return
the full feature-distance augmented set for the experiment. The
three methods of data augmentation in this paper offer more
training data to the models and enhance the models’ abilities
to predict drug overdose deaths. Following are the models
used on both unaugmented and augmented data to predict drug
overdose deaths.

B. Machine Learning and Deep Learning Models

T2. Spatial prediction of high-risk areas of drug over-
dose deaths: The problem of predicting drug overdose deaths
is considered in two approaches. The first approach teaches the
models how to predict drug overdose death ratios per 100,000,
then ranks the high-risk counties within each state. The second
approach considers the problem as a binary classification
where the threshold is the national opioid overdose mortality
rate of 12.5 in 2017 [41]. The models used for both approaches
are as follows:

a) Ridge Regression: Ridge is a linear model with L2
regularization, ideally enhancing the basic linear regression
model. L2 regularization improves in providing a larger coef-
ficient to the most significant features.

b) Lasso Regression: It is a regularization method used
for prediction as Ridge regression, but Lasso differs by shrink-
ing the coefficients to zero for normalization.

c) SVR: This is a form of SVM proposed for regression
evaluation. In our work, we used SVR for prediction and
SVM for classification. For the binary classification, the SVM
classifier learns to build a decision boundary for lower and
linear data and high dimensional and non-linear ones. For
prediction, one needs to consider SVR for a solution to the
regression problem.

d) LightGBM: It is a sub-form of Gradient Boosting
Decision Tree, and works with efficiency and robustness for a
large dataset. In our case, the augmented datasets ranged from
17000-24000 data points, making lightGBM an ideal candidate
for the prediction problem.

e) XGBoost: Extreme Gradient Boostingis a scalable
application of Gradient Boosting Decision Trees (GBDT),
which enhances the performance and accuracy of prediction
of decision trees such as Random Forest.

f) KNN: This paper utilizes k-Nearest Neighbors algo-
rithm for the second problem, which is the binary classi-
fication. SVM is considered a parametric method and can
deal with linear or nonlinear boundaries based on the Kernel
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function. On the contrary, KNN is a nonparameteric algorithm
and can adjust to nonlinear boundaries as the training data
increases.

g) MLP: Multi-Layer Perceptron is one of the DL meth-
ods we applied for the two problems: binary classification and
prediction. For the former problem, MLP can create a better
boundary for classification, and for the latter, we adapted the
algorithm to perform regression depending on the activation
function.

h) Graph Convolutional Network Model: The spatial
dependency has a strong effect on the degree of risk [42]
when employed, and could improve the estimations accuracy
of the risk associated with the counties. Graph Convolutional
Network (GCN) is an emerging method that combines node
attributes and graph structure. GCN has demonstrated its
efficiency in handling spatial dependencies [43].

The problem is formulated as an transductive semi-
supervised regression problem on an undirected graph of the
unaugmented data. We annotate the graph G = (V, E ,A) with
n nodes. The nodes V represent the counties, and the edges
E represent the spatial dependency relationships. The edges
can be represented in the adjacency matrix: A = [Aij ] ∈
{0, 1}n×M . We hypothesize that the closer a county is to
another, the higher the spatial dependency will be. Thus, edges
are assigned based on the distance between two counties. The
distance is calculated based on haversine. we construct the
graph by connecting each node to its closest ”n” nodes. We
attempt to learn the value of n by initializing it at 10 and
then decreasing it to achieve sparsity. Finally, we fix the value
of n at 5 X ∈ Rn×M represents the T features described in
Table I.

Once the graph is constructed, the node-level information
is enabled to propagate based on the neighborhood. The
propagation rule of one layer is defined as the following:

gθ ∗X ≈ (D̃− 1
2 ÃD̃− 1

2 )XΘ (3)

This is parameterized with Θ, with Ã = A + I , where I is
the identity matrix and D̃ is the diagonal node degree matrix
of Ã. By stacking two layers of the graph convolutions, our
final model is defined as follows:

Y = F (gθ2 ∗ σ(gθ1 ∗X)) (4)

Here, F is the linear layer for the regression task, and σ is
the activation function.

C. Drug Overdose mortalities Explainability

T3. Provide an explainable framework for the crisis.
Offering predictions of the drug overdose deaths and identi-
fying high-risk areas are very useful to authorities, yet there
are no interpretations provided to help them identify what the
actual causes for the crisis are. The combination of crime and
socioeconomic data makes the mission challenging because
there are various factors for each category. In total, there are
seven categories (crime rates, age demographics, education
levels, economics (family and individual income), occupation
types, poverty levels, and families receiving Supplemental and

Nutrition Assistance Program (SNAP) benefits). Finding the
category that contributes the most toward the crisis is crucial
but challenging.

Algorithm 3 Drug Overdose mortalities explainability
Input: Crime-Socioeconomic CST

N

Output: Matrix of only one category Ranks WM×T , Matrix
of without one category Ranks OM×T

Initialize: t = {1, ..., 7}, Intervals VT , Models Mm

1: for the whole dataset of all categories CST
N do

2: for each index t get interval Vt = i to k do
3: Category = Extract subset from CSi..k

N

4: Rest =The remaining set CNT−Category
N

5: for each Model m ∈M do
6: r1← Train m on Category
7: r2← Train m on Rest
8: Add Results r1 to W t

m

9: Add Results r2 to Ot
m

10: end for
11: end for
12: end for
13: Sort WM×T and OM×T based on rank
14: Return WM×T and OM×T

The method proposed for explainability is displayed in
algorithm 3. The main concept of the method is to train the
models with only one category out of the seven categories
and also train the models with all the categories except for
the previously selected category. On one hand, training the
models with only one category can underline the category’s
contribution toward the prediction and help intensify how each
category performs among the rest of the categories. On the
other hand, training the models by removing only one category
each time can show the significance of the removed category
when the models perform worse without the removed one.
Finally, the two analyses will be sorted individually to find
which category performed best across all models, the results
are averaged to find which category has the most positive or
negative impact on the models’ prediction.

Specifically, the exhibited pseudo-code 3 takes as input
the whole dataset CST

N where N indicates the number of
counties and T is the number of categories. The output will
be the two matrices WM×T and OM×T which include the
sorted results from training the models where M annotates
the number of models, and T is the number of categories.
At the start, the algorithm initializes the intervals VT . Each
interval has the index of columns for each category in CST

N .
For example to get the first category, the interval Vi...k can be
the first column i to column k. Lines 1− 2 start by including
the whole dataset CST

N , then specifically going through each
category of the dataset. In each interval, the data is divided
into two subsets: Category is only the subset of the chosen
category, while Rest is the subset of the remaining categories.
In lines 5 − 9, each model m ∈ M trains the two subsets
Category and Rest, then stores the performance results in
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r1 and r2 respectively. Further, r1 and r2 are added to the
matrices WM×T and OM×T for later to be sorted. In line
13, each matrix is sorted by category across all the models.
For instance, in WM×T , the LinearRegression model has
the results from each category trained individually. The best
performing category obtains a rank of 1, the second performing
category obtains 2, and so on. Once both matrices are returned
from Alg 3, interpretations can be offered based on calculating
the average of best-performing categories across all models in
both matrices. Consequently, the analysis can conclude which
of those categories (crime rates, age demographics, education
levels, economics (family and individual income), occupation
types, poverty levels, and families receiving (SNAP) benefits
are the main driving factors for the drug overdose deaths crisis.

IV. EXPERIMENT

This section describes data collection, experimental settings,
the subsequent results, and three case studies. The analysis
of the results incorporates the effect of data augmentation
on the accuracy of the prediction, the high-risk counties of
drug overdose deaths ranked, and an explanation of the most
contributing categories to the crisis.

A. Data Collection

The analysis in this research is based on three types of data
collection for four years, 2017-2020: cumulative drug overdose
deaths, crime reports data, and compiled socioeconomic statis-
tics. The data has been collected for seven states, AZ, CA, FL,
GA, NJ, NY, and VA, because of their data availability based
on the county-level. Here are brief details about the datasets:

Drug overdosing death cases Dataset: For each state, the
number of deaths has been collected, individually, from their
official sources, which are the Department of Health of each
state, except for California, where the data was collected from
its official Overdose Surveillance Dashboard.

Crime Dataset: The collection varies from one state to
another. The sources were from the AZ Department of Public
Safety, Uniform Crime Reporting (UCR), Florida Department
of Law Enforcement, NY Division of Criminal Justice, and
states police departments.

Socioeconomic Dataset: As discussed in section II, other
works studied specific subsets of socioeconomic factors that
contribute the most to drug overdose, but we attempt to be
comprehensive in our study by including all previous studies’
categories and include more related categories based on recent
drug reports. Table I briefly indicates the six socioeconomic
categories collected from the U.S. Census Bureau.

B. Experiment Settings

In this research, there are three tasks (see sec III), and to
evaluate those tasks, several experiments are implemented. For
T1, four experiments are conducted for each type of data
augmentation: (1) Dataset without augmentation (baseline)
except for GCN, (2) County random shuffling, (3) County
Feature distance, and (4) County Proximity. For T2, since
the task is considered in two approaches (prediction and

binary classification), we experiment with the widely used
ML and DL models by utilizing the un-augmented dataset
(as baselines) except for GCN, then comparing them with
our results. Lastly, T3 is also evaluated by comparing our
method’s baselines suggested for T1 and T2. For experiments
without augmentation, a random selection of 75-25 partitions
is allocated between training-testing for all the models. A
Grid-Search method is employed to fine-tune the model hyper-
parameters. For the three augmented techniques experiments,
the initial 500 original data points are used as the holdout
for validation, and the rest of the augmented data are used
for training. The GCN experiment has not been employed
in a similar task before (according to our knowledge) and is
only conducted on a non-augmented dataset as that is the only
dataset based on which we can curate a spatial graph structure.

C. Experimental Results

A total of 6 experiments are illustrated in Tables II, III,
and IV to validate the proposed framework (T1 and T2).
Table II displays the results of predicting drug overdose
death rates approach and comparing them to the baselines
in terms of R-squared (R2), Mean Absolute Error (MAE),
and Mean Absolute Percent Error (MAPE). The baselines
in this approach are the most widely applied ML and DL
models using the unaugmented dataset. It is noticeable that
the performance of the unaugmented dataset is not satisfactory
across all the models in terms of R2 and MAE except for
GCN. This can be explained not only by the considerably
small dataset of 500 but is exacerbated by the fact that it also
has over 100 features which invariably affects the performance
of the models. However, MLP gives an R2 score of 0.63 and
MAPE of 2.99, but if compared to the other best-performing
augmentation methods in ML, the no augmentation method is
still not superior except for GCN. GCN demonstrated compet-
itive results over ML models even with augmentation methods.
The transductive learning setting of the GCN allows there to
be an aggregation of feature knowledge of the entire graph
even though only a certain percentage of the nodes’ labels
are known during training. Furthermore, it also proves that
the spatial aggregation method of GNN through neighborhood
feature aggregation is particularly useful for this task which, to
some extent, can overcome the problems faced by the paucity
of data.

Random-Shuffling presents the least improvement on our
base experimental settings for the augmentation methods. This
can be attributed to the fact that the algorithm does not
account for any spatial or feature vector-based correlation
while creating new data points, which may result in instances
that are the result of one or more noisy or outlying data,
resulting in unreliable results. Nevertheless, as expected, both
County Feature distance and County Proximity-based methods
perform much better and are comparable to each other for
certain models like MLP, LightGBM, or SVR. These two
methods outperform other experimental methods because of
the algorithm’s choice of data points to be combined. Among
the ML models, County Feature distance-based LightGBM
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TABLE II: Experiment results

Model No Augmentation County Random Shuffling County Feature Distance County Proximity
R2 MAE MAPE R2 MAE MAPE R2 MAE MAPE R2 MAE MAPE

Ridge 0.0481 0.6621 1.781 0.0981 0.6862 2.5593 0.3195 0.6028 1.9781 0.2541 0.6091 4.0246
Lasso 0.0510 0.6825 4.245 0.02619 0.7316 1.2010 0.1474 0.7709 1.511 0.1028 0.7493 1.9608

LightGBM 0.1314 0.7858 1.553 0.1129 0.7495 1.9972 0.8039 0.4419 1.8412 0.4672 0.7870 1.9624
SVR 0.0656 0.8202 1.8527 0.0918 0.7736 2.5740 0.4030 0.8039 2.1170 0.3719 0.8262 4.0246

XGBoost 0.0569 0.8402 1.984 0.0963 0.7642 1.9667 0.4813 0.8068 2.0252 0.6821 0.8689 2.3603
MLP 0.6356 1.0434 2.9892 0.0865 0.9039 4.0246 0.6388 0.9815 2.6573 0.8389 0.8132 1.8293
GCN 0.8072 0.8131 2.2364 — — — — — — — — —

TABLE III: Binary classification results based on unaug-
mented data (baselines)

Model Accuracy Percision Recall F1 AUC
Logistic 0.6120 0.6144 0.6035 0.5947 0.6580
KNN 0.6217 0.6197 0.5941 0.5910 0.6521
SVM 0.5984 0.5812 0.5984 0.5541 0.6570
MLP 0.5992 0.5885 0.6012 0.5847 0.6610
GCN 0.6082 0.5991 0.6201 0.6118 0.6629

TABLE IV: Binary classification results based on best per-
forming augmentation method

Model Accuracy Percision Recall F1 AUC
Logistic 0.6916 0.6922 0.6916 0.6884 0.7642
KNN 0.8737 0.8728 0.8734 0.8731 0.9319
SVM 0.7047 0.7016 0.6947 0.7089 0.7874
MLP 0.7875 0.7873 0.7875 0.7873 0.8778

demonstrates its superiority over the rest. Meanwhile, County
Proximity based MLP is the best performing DL approach
for forecasting drug overdose death rates. Feature distance
augmentation considers the farthest and closest County Fea-
ture distance to make new data, while the realistic spatial
correlation between neighboring counties is also accounted
for through the ‘County Proximity’ augmentation method.
Therefore, we conclude that both methods are effective over
the baselines, but each method has its own strengths and
weaknesses.

Tables( III, IV) show the results of the classification ap-
proach. The baselines are considered in Table( III). We can
see that the highest accuracy that any model achieves without
augmentation is 0.6217, while the highest AUC was for GCN
with a score of 0.6629. However, when we apply our best-
performing augmentation method, we experience an increase
ranging from 13% to 42% in all the metrics across the
models. KNN outperforms both SVM and MLP, which were
comparable for the non-augmented settings. We believe that it
is strictly because of the County Feature distance algorithm’s
nature based on inter-county cosine feature distance. KNN also
employs a similar distance measure to assign the nearest data
points to the same label, which could be the reason for the
significantly superior result for KNN compared to others. In
summary, in both approaches (classification and prediction),
our results outperformed the baselines to identify the highly
impacted counties of drug overdose deaths.

Fig. 2: 2017 Actual (left) and predicted (right) maps of GA
counties indicating the severity of drug overdose deaths. The
darker red color indicates more severity.

D. Qualitative Analysis

The evaluation is also corroborated by three case studies
for the states of GA, FL, and NY. Predicting the areas of high
drug overdose death rates is accurately identified through our
method when given a set of counties of any state, its crime
reports data, and a set of socioeconomic features. The case
studies are the following:

Case study 1 (Georgia): Figure 2 shows the ground truth
map along with the predicted map of all the (154) counties
in GA. The colors on the map indicate the gravity of drug
overdose deaths. Our work not only predicted the most affected
counties from the crisis in the same order of the ground truth
map, such as Gwinnett, Lumpkin, Henry, Banks, Oglethorpe,
Echols, and Dawson but also predicted the least affected
counties, such as Chattooga and Colquitt.

Case study 2 (Florida):
In the case study of FL shown in figure 3 , the predicted

map on the right and the left ground truth map barely show
a few differences. The predicted drug overdose deaths most
impacted counties in FL are Palm Beach, Duval, Brevard,
Marion, Manatee, Lee, Sarasota, Gilchrist, and Nassau, in this
order. The least impacted counties were Suwannee, DeSoto,
and Charlotte. Gadsden county is one of the least impacted by
the crisis, but our method did not identify it.

Case study 3 (New York): For the state of NY, there
were more challenges than the rest of the states, as displayed
in the comparison between the ground truth and predicted
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Fig. 3: 2017 Actual (left) and predicted (right) maps of FL
counties indicating the severity of drug overdose deaths. The
darker red color indicates more severity.

Fig. 4: 2017 Actual (left) and predicted (right) maps of NY
counties indicating the severity of drug overdose deaths. The
darker red color indicates more severity.

map (see figure 4). The most challenging counties that
were not supposed to be identified as highly impacted were
Columbia, Yates, and Genesee. On the other hand, Saratoga
and Schoharie were misidentified among the least impacted
counties. However, most of the high drug overdose death
counties were predicted, such as Richmond, Lewis, Bronx,
Sullivan, Monroe, Suffolk, and Cortland. Further, most of
the least impacted counties were identified as well, such as
Schuyler, Hamilton, Madison, Essex, and Seneca.

E. Explanations

Identifying the drug overdose deaths of the counties that
are most and least affected with help from crime data and
socioeconomic features is important, but at this point, there
is not much clarity on what the most or least contributing
categories are. Explainability can provide authorities feedback
on which sector needs more reinforcement to mitigate the
crisis.

The goal of T3 is to rank which of the six categories
accomplishes the best accuracy scores across all the models
according to algorithm 3 in section III. The algorithm ranks
the categories in each matrix WM×T and OM×T based on
their accuracy scores by assigning a rank from 1 to 7 (1
is the highest rank). The top contributing features are in
the Food Stamps/SNAP category, which achieved the best
scores. The category includes features, e.g., “households not
receiving food stamps at or above the poverty level,” and
features that measure the households that are in or out of the

program. The second top contributing category is Education.
This category’s most correlated features are ”high school
graduate” or ”bachelor’s degree graduate.” This category is
followed by the crime rate category. The features of this
category arranged according to their Pearson correlation are
robbery, murder, aggravated assault, rape, motor vehicle thefts,
larceny, and burglary. Then, the occupation category performs
worse than the Crime category by a small margin but slightly
better than the rest. The performance occupation category in
OM×T was the leverage over the last three categories.

Age demographics and Income categories were close in
their ranks from one model to another. However, the Age
demographics category contributes better in WM×T but does
not contribute as much as the Income category in OM×T .
Finally, the Poverty category was expected to be the most
contributing factor, but surprisingly, it was ranked last in both
matrices. In summary, the application does not only provide
predictions of high-risk counties of drug overdose deaths but
also provides interpretable results for authorities to effectively
mitigate the crisis in the short and long term.

V. CONCLUSION

This paper presents DOD-Explainer, an application that
identifies the most and least drug overdosing impacted counties
by utilizing an amalgamation of spatial crime reports and
socioeconomic factors. It is challenging to work with drug
mortality rate data to protect the privacy of families, but the
study proposed solutions to data scarcity by implementing
three augmentation methods. The application demonstrates its
ability to forecast drug overdose mortality rates based on
the data and classify the highly impacted areas based on
the national threshold. The results show that the framework
surpasses the baselines in both approaches, and the results are
corroborated by three case studies. Finally, the paper proposes
a method that provides explanations of the main contributing
categories so authorities can have the clarity to take necessary
actions on mitigating the crisis.
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