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Abstract—Virtual hospitals empower traditional hospitals to
deliver more accessible, affordable, and comprehensive patient-
centered (PC) care services. However, the legacy information
systems of traditional hospitals are ill-equipped to support the
needs of virtual hospitals. We propose a holistic virtual hospital
ecosystem design that addresses these issues. We have developed
two models. The first is a VHealth-CNN model that extracts
PC knowledge from multi-sourced biomedical big data by (1)
extracting disease health-related features; (2) structuring the
relevant health-related features as per the pre-identified factors;
(3) training a convolutional neural network (CNN) double-layer
structure, where we select significant health-related features in
the first layer, and classify the positively and negatively correlated
features in the second one; and (4) generating disease class
outputs representing the PC knowledge. The second model is
a granular VHealth-AC model that seamlessly grants healthcare
practitioners at a hub hospital remote access to PC knowledge at
the right point of care. We have deployed a granular 5-tier PC
information classification scheme to enforce information security
rules across hospitals. In addition, we examined the feasibility of
the proposed design through a tele-monitoring service experimen-
tal case study for predicting obesity, hypertension, and diabetes.
The experimental results show that the proposed model predicts
obesity, hypertension, and diabetes diagnoses with 91.3%, 93.5%,
and 95% accuracy, respectively. Finally, our ecosystem design
should encourage the adoption of virtual hospitals and the
adoption of virtual healthcare services as a new norm.

Index Terms—Virtual Hospital, Virtual Healthcare Services,
Patient-Centered Care, Tele-Monitoring, Access Control, Convo-
lutional Neural Network.

I. INTRODUCTION

Virtual health care is a fundamental care delivery model
that is significantly shaped by eHealth technologies to achieve
patient-centered (PC) care [1]. It refers to the actual provision
of remote care to patients outside of a health setting. Similar to
other healthcare delivery models, virtual healthcare maintains

individualized care at the heart of its services to deliver a PC
model of care [1] [2] [3]. PC care tailors health services around
the patient’s needs and current state and encourages healthcare
practitioners to adapt to these needs by collaborating as a
PC team [1] [4] [5] [6] and using shared decision-making
processes to determine optimal treatment plans for patients
they collaboratively care for [6]. Therefore, to enable this
PC model, PC care seeks to connect healthcare providers,
healthcare practitioners, and patients to allow a seamless flow
of medical data to create a complete virtual electronic patient
record. [1] [3].

Emerging digital technologies have disrupted healthcare and
introduced the notion of virtual hospitals as novel ways to
provide care to patients. Virtual hospitals were first introduced
in 2015 with the establishment of the world’s first healthcare
facility fully dedicated to the provision of virtual healthcare
services [7]. A virtual hospital is a dedicated network of
secondary and/or tertiary care hospitals based on a “hub-
and-spoke” [8] organized to equip specialized care services
remotely in a “provider-to-provider” model (illustrated in
Figure 1). In a virtual hospital setting, practitioners at a
primary hospital (i.e., hub) provide inpatient and outpatient
virtual healthcare services efficiently and effectively to patients
at multiple secondary hospitals (i.e., spokes) [8]. Therefore,
the ultimate goal of virtual hospitals is to empower traditional
hospitals that offer limited healthcare services to deliver more
accessible, affordable, and comprehensive PC care [7] [9].

Since COVID-19 pandemic, the global wave of interest in
virtual healthcare practice has helped realize the potential of
this model of care delivery to become the new norm [9] [10].
With limited medical resources and increasing healthcare
pressure, many countries have rolled out virtual healthcare
centers, programs, and solutions to deliver virtual healthcare
services to assist in decision-making and overcome health-
related challenges. Such countries include but are not limited
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Fig. 1. Virtual hospital conceptual ecosystem.

to the South Pacific region [11], Vietnam [12], Saudi Ara-
bia [13], Rwanda [14], China [15], Uruguay [16], Ghana [17],
Kenya [18], India [19], South Africa [20], US [21], UK [22],
Singapore [23], New Zealand [24], Israel [25], Chile [26],
Korea [27], Japan [28], United Arab Emirates [29], Indone-
sia [30], and Argentina [31]. Consequently, this has pres-
surized regulators and policymakers worldwide to convene
global experts to publish policy recommendations that can
ensure virtual healthcare practice safety and effectiveness,
while mitigating the potential risks of this newly adopted
model of care [32] [33]. Finally, although there have only been
a handful of fully established virtual hospitals since 2015 that
are dedicated to virtual healthcare services, it is anticipated to
be the future of healthcare post-pandemic [9].

A. Challenges in Incorporating Traditional Hospitals

Building virtual hospital ecosystems that incorporate tradi-
tional hospitals is challenging. This is because of key issues
with the latter hospitals’ legacy information systems that can
interrupt patient treatment continuity in a virtual hospital
setting. The term “biomedical big data” is used by the World
Health Organization (WHO) to refer to data qualified as health
data in today’s evolving health data ecosystems [34]. This
includes massive quantities of personal data about individuals
from primary (e.g., health services, public health, and research)
and secondary sources (e.g., environmental, lifestyle, socioeco-
nomic, behavioral, and social) [35]. Such biomedical big data
mostly contain a mixture of unstructured and lengthy free text,
which can make it challenging and overwhelming to identify
key and relevant information needed at a point of care to make
speedy informed decisions that support virtual hospitals’ PC
model needs.

The WHO classifies health data as sensitive personal data or
personally identifiable information. This emphasizes the need
to attain the right balance between confidentiality, availability,

and integrity of personal health data using information security
mechanisms [6] [36] [37] [38]. Access Control (AC) is one of
the most widely used security mechanisms deployed to control
user actions in an information system to achieve information
security goals [6] [39] [40]. However, many hospitals’ legacy
information systems were designed as autonomous discrete
information systems at a time when disease-centered care
was dominant [41]. Therefore, AC models deployed in such
systems enforce an organization-driven information security
policy that protects only local information resources [1].
Therefore, the physical perimeter restriction will only allow
a single local point of control to meet information-sharing
and security contexts of disease-centered care. Consequently,
such legacy systems cannot comply with the emerging in-
formation security needs of PC care to allow information
to flow beyond a specific information system [1]. Moreover,
biomedical big data are also naturally disease-centered because
they are collected to reflect the needs of the disease diagnosis,
where care focuses mainly on the needs of the healthcare
practitioner treating the disease [1] [6]. Ultimately, the above
limitations in hospital legacy information systems demonstrate
their inadequacies in extracting relevant medical data for PC
care and sharing data securely with remote practitioners to
support virtual hospital needs.

B. Our Objective and Contribution

This study aims to propose a novel holistic virtual hospital
ecosystem design that addresses issues in legacy hospital infor-
mation systems. The proposed solution comprises two models.
The first is an intelligent VHealth-CNN model for extracting
PC knowledge from biomedical big data. The second is a
secure VHealth-AC model that allows granular cross-hospital
sharing of PC knowledge. We conducted an experimental
case study to evaluate the feasibility of our proposed models
for enhancing disease prediction in a telemonitoring service.
This virtual hospital ecosystem design should facilitate the
adoption of virtual healthcare services in general and lay the
foundation for the development of scalable, intelligent, and
secure virtual hospitals. The technical contributions of this
study are summarized as follows:

1) We have developed a holistic virtual hospital ecosystem
design that incorporates hospitals’ legacy information
systems in harmony without interruption through two
models: the VHealth-CNN model for PC knowledge
extraction, storage, and classification, and the VHealth-
AC model for PC knowledge access control.

2) In VHealth-CNN, we propose a new CNN-based learn-
ing model for knowledge extraction of correlated health-
related features to reveal common co-occurring disease
and symptom relationships.

3) We classify biomedical big data in the VHealth-CNN
model using a double-layer CNN structure. In the first
layer, we select significant health-related features to
extract potential features. The selected data is structured
and stored before being classified based on the degree
of common correlated patterns in the second layer.
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4) In VHealth-AC, we propose a new AC model based
on a granular 5-tier information classification scheme
designed to allow secure cross-hospital sharing with
remote practitioners.

5) We create a neutral security domain in VHealth-AC
that defines and enforces a neutral policy as long as
the information resides across spoke hospitals’ legacy
systems for sharing; we enforce local policies as long as
the information reside locally within the legacy systems.

II. RELATED WORK

In this section, we shed light on state-of-the-art related work
that addresses the two issues discussed above.

A. Knowledge Mining from Unstructured Big Data

There have been many significant artificial intelligence (AI)
clinical applications for diagnosis and treatment decision mak-
ing [42]. Although machine-learning models have been highly
effective in healthcare and other fields, they still have limited
applications in clinical decision support systems [43]. How-
ever, there are many effective deep learning models proposed
in the literature on health data for personalized prediction
of risks and abnormal health status [43]. Furthermore, deep
neural networks have shown the same or better performance
than clinicians for many tasks. CNN specifically has recently
begun to penetrate various applications and has proven its ef-
fectiveness in unstructured biomedical big data [44]. CNN is a
deep learning method that relies on nonlinear modules to learn
multiple levels of representation from highly dimensional data
without explicit feature engineering by humans [45] [46]. This
renders CNN a potential method for knowledge mining from
biomedical big data that can assist in disease prediction [44].
Handels et al. [47] proposed a new approach for computer-
assisted analysis of skin cancers. This study looked at skin
surface photos to identify “nevocytic,” “nevi,” and “malignant”
melanomas. Genetic and greedy algorithms were used for
feature selection to enhance the classification performance of
the recognition system, and feature selection was viewed as
an optimization problem. An accuracy of almost 98% was
achieved through the optimization of the recognition system.
Recently, a variety of methods have been proposed for opti-
mizing the system performance. Karim et al.. [48] presented
a novel, deep autoencoder (DA)-based architecture that aims
to optimize the data processing capabilities of DAs. A DA-
based architecture utilizes the Taguchi method for parameter
optimization with this DL architecture. Using this architecture,
various parameters are successfully optimized. Essentially, this
increases the amount of measurable information and values
extracted from a few experiments.

In addition, CNN has been successfully utilized in a variety
of healthcare services. Tariq et al. [49] used a CNN-based
model for heart-sound classification. They proposed a classifier
group combining the outputs of AdaBoost and a CNN for clas-
sifying normal and abnormal heart sounds. A time-frequency
heat map indication was combined with a CNN by Rubin et

al. [50] to create an automatic heart-sound classification algo-
rithm. Deperlioglu [51] [52] used a CNN to classify segments
and non-segments in phonocardiograms. Miotto et al. [53]
developed a CNN model to automate diabetes detection using a
combined network of a CNN-LSTM for abnormality detection
in diabetes. Ebadollahi et al. [54] proposed a CNN-based
brain tumor classification system for automatic learning of
tumor regions. The system efficiently solves the problem of
insufficient data availability using MRI images by learning and
classifying tumor regions from such images. Ayala Solares
et al. [43] proposed a deep generative learning model with
87.26% accuracy for detecting the use of traditional Chinese
medicine from electronic health records. This model uses
a CNN architecture to predict unplanned readmissions after
discharge. The model directly maps the electronic health
records of each patient’s history to the predicted risk. Baek
and Chung [44] proposed a CNN model for the prediction
of chronic diseases. The model uses a CNN double-layer
structure for factors classifications. In the first layer, the model
selects significant health factors; however, in the second layer,
the selected factor is analyzed. Using Pearson’s correlation
coefficient (PCF), factors with a positive correlation above
0.5 are selected as positive significant factors; factors with a
correlation of less than 0.5 are classified as negative correlated
factors. Associated rules are defined to classify and identify
frequently occurring rules that may identify new knowledge
from the classified dataset parameters.

The complex mix of methods and additional layers demon-
strated the incredible ability of CNN’s profound learning
effectiveness with chronic disease diagnosis; however, it si-
multaneously; raised the complexity of analysis. Therefore,
there is a need for a new CNN-based model that targets
and detects based on the PCF and common behavior. The
term ‘common’ refers to objects appearing in similar contexts.
This would overcome the limitations and allow for detecting
any abnormalities in the data for a PC knowledge extraction,
turning big biomedical data into valuable insights that assist
practitioners in making informed decisions without being
overwhelmed.

B. Disease-Centered AC Models in Legacy Information Sys-
tems

An AC model rationalizes access decisions and enforces
them based on predefined access rules stored in an information
security policy [55] based on a deployed information classifi-
cation scheme. This is achieved using three basic elements that
are accountable for the decision, storage, and enforcement of
these rules in a controlled environment (called the security
domain). This is achieved through a policy decision point
(PDP), a policy storage point (PSP), and a policy enforcement
point (PEP). It ensures that an authenticated user only accesses
what they should and determines if authorization should be
granted or rejected [56] [57]. There are many proposals in the
literature regarding approaches for cross-hospital information
protection that range from unenforced and partially enforced
to fully enforced protection approaches.
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Traditional AC models [58] are not designed to share infor-
mation across local AC model elements; thus, they surrender
the security policy once the information is shared outside the
original organization. Because the security policy cannot be
enforced outside the organization, the result is the complete
loss of control over its information when it leaves. Conse-
quently, it is too risky to share information lest it contain even
a small range of sensitive content; thus, the effectiveness of
collaboration is hindered. Autonomous clinical portals deploy
traditional AC models. They are web-based healthcare support
systems that provide test results and letters to healthcare
professionals at different National Health Service trusts or
hospitals. Each hospital has its own separate implementation
of clinical portal for viewing local clinical information within
the hospital’s perimeter, and although all the portals have
similarities in fundamental concepts, look, and feel, each is
a local implementation.

Pearson and Mont [59] and Sicari and Rizzardi [60] pro-
pose a “sticky policy” solution to help govern its sensitive
information using its local rules, and thus a policy that reflects
needs is passed to be enforced remotely. However, this system
still does not have much control over its information because
according to this proposal, it is left with no option but to
rely on being a trusted authority. There is no guarantee that
information will be protected in the same way or at the same
level once it is located, because the AC model deployed
may not be compatible with all rules [59] [60]. Yau and
Chen [61] and Begum et al. [61] propose policy integration
and conflict reconciliation solutions to enforce one and only
one sufficient neutral policy in both security domains through
integration [61]. This new policy aims to fully consider the
local information security needs of both domains [61] while
fulfilling the new sharing context essentials developed by
collaboration to govern any future information [61]. Therefore,
both domains must accept the resulting policy to govern all
information resources used in the collaboration [61], which
can be used locally without conflict. However, this might lead
to misinterpretation due to the need to interpret inconsistent
policies.

Other proposals “stick” not only the policy with the infor-
mation but also the AC elements. This maintains the same level
of protection as the original rules over information remotely,
even after it moves to the policy enforcement model. Digital
Rights Management (DRM) in [62] is a well-known AC
technology that remains applied to information after it has
been copied, transferred, and stored on another organization’s
information system [62]. It is mainly used in the commer-
cial sector because it is largely focused on payment-based
dissemination controls by delivering licensed digital content,
such as music, to the end user to reside on their machine
and protect it using the original rules of the AC model even
after dissemination [58] [62] [63]. However, this solution is
limited to the machine that it resides on and the number of
users having access to it. This is because this technology does
not allow for policy update once the information leaves the
physical perimeter [63] [64].

The Welsh Clinical Portal [65] solution helps maintain the
information protection level even after information has been
shared and can be changed remotely at any time. This solution
is an electronic front door to various local autonomous clinical
portals that creates a virtual electronic health record for the
patient [65]. This solution allows it to move along with the
information so that the unified AC can enforce it at any
time and make it locally accessible for any later modification.
This allows each domain to maintain its local policy such
that users can only view information. Moreover, Park and
Sandhu [58] proposed the usage control AC model to address
the static policy issue by having two policy enforcement points
in each domain that are linked together. This technique uses
the concept of a “reference monitor” [58], which is an abstract
Concept of controlling the rights and usage of rights on
digital objects [58]. Usage control suggests having a reference
monitor in the service provider named “server-side reference
monitor,” and another reference monitor named “client-side
reference monitor” [58]. This provides s more flexibility by
enabling both policy enforcement points to make access rights
decisions for any number of access requests and enforce
them equally in both domains to ensure consistency. However,
like DRM, this technology cannot be used in collaborative
environments of a heterogeneous nature, as it requires a piece
of software to be used remotely and all systems must be
compatible with this software.

Burnap and Hilton [66] proposed SPIDER, Self-protecting
Information for De-perimeterized Electronic Relationships,
and its extension for healthcare applications in [67] are ex-
amples of such holistic approaches. For SPIDER to meet the
common information protection needs for the collaboration
information security context, it uses a unified information
classification scheme for collaboration. This scheme aims to
classify information resources in collaboration based on their
sensitivity level and assign the right protection level for each
category. It provides guidance on what needs to be done to
protect information resources. It is based on the widely used
Traffic Light Information Classification Scheme [63]. SPIDER
enforces this unified classification scheme and its protection
levels to avoid the need for any organization to interpret the
policy. Thus, it addresses the problem of misinterpretation
of information security policies. It enforces the policy using
a unified neutral AC model that allows users to label the
information they want to share with the right class. Then,
appropriate information security controls are placed to meet
the protection level of classified information only around
labeled content within the information resource, which then
creates the proper access rules for this labeled information
before sharing takes place. Once the information is shared,
only the appropriate range of information is accessed by the
user. The three AC elements are linked flexibly to ensure that
rules are enforced remotely, anywhere the information may be
accessed.

In summary, this section highlights a clear gap in the related
work in the literature, where existing CNN and AC models
cannot address the issues in traditional hospitals’ legacy sys-
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Fig. 2. Generic design of PC virtual hospital components and data flow.

tems to be incorporated into virtual hospital ecosystems.

III. PROPOSED GENERIC PC VIRTUAL HOSPITAL

The proposed novel PC virtual hospital ecosystem design for
virtual hospital healthcare services comprises two components:
one for PC knowledge mining and extraction from a medical
dataset, and the second for access control to this knowledge
through a novel granular AC model. On the one hand, PC
knowledge is extracted from a large volume of biomedical
big data collected from various sources using a VHealth-CNN
model. This model uses multivariate analysis as a reduction
technique on the collected unstructured biomedical big data to
extract only the health-related features relevant to the virtual
healthcare service provided and store the predefined features
in a structured tabular format. This is intended to reduce the
computational complexity and decrease the number of features
efficiently without missing any important values. The VHealth-
CNN model trains a CNN double layer structure; in the first
layer, the significant health- related features to the virtual
healthcare services from the collected data gets selected by
the model and stores the collected features in a database.
In the second layer, PCF analysis is conducted to classify
the positively and negatively correlated features, and the final
classification results are classified into three main categories:
obesity, diabetes, and hypertension. This output represents the
PC knowledge data for the tele-monitoring service. On the
other hand, a developed fine-grained VHealth-AC model, based
on a granular 5-tier information classification scheme, grants
the health practitioner at a hub hospital this PC knowledge
data seamlessly across hospitals at the point of care. Figure
2 illustrates the overview of the design components and data
flow, which are further explained in the following subsections.

After the details of the proposed generic ecosystem design
for virtual hospitals’ healthcare services, we use a case study
as a specific service (namely, tele-monitoring service) to vali-
date the design concepts and implementation in a real medical
dataset relevant to the chosen virtual healthcare service.

IV. EXPERIMENTAL CASE STUDY: TELE-MONITORING
HEALTHCARE SERVICE

The designed tele-monitoring case study is mainly used
for chronic disease prediction to assist in validating design
concepts and evaluating their feasibility. For our case study,
we used real-world biomedical big data from the Korean
National Health Nutrition Examination Survey [69], which
contains the lifestyle and health-related features of 10,806
Korean patients. This dataset was collected from the Korean
Centers for Disease Control and Prevention to resemble the
unstructured biomedical dataset for our tele-monitoring service
case study experiment.

A. Design Component 1: VHealth-CNN Model

TheVHealth-CNN model targets a detection and recognition
model based on the PCF and common recording behavior. This
model comprises three correlated steps, as shown in Figure 2:

1) Multivariate analysis for chronic disease and symptom
concepts extraction: Raw patient medical data were collected
from multiple resources and then preprocessed using multivari-
ate analysis. This was done to extract potential features related
to health conditions and lifestyle parameters and select the
most important features as inputs and disease classes as out-
puts. Such features can detect the relationships among specific
diseases relevant to the tele-monitoring service provided in our
case study. As a first step in data preprocessing, we reduced
the high dimension (49 features) of the collected dataset to
20 health condition and lifestyle features as input (listed in
TableI) and three disease prediction classes as output (listed
in TableII).

2) PCF analysis for input data classification: PCF analysis
presented in [70] to determine the significant relationships
between the selected features to identify the positively and
negatively correlated features. This prevents overfitting when
recognizing the selected health features. If the significance
level of an item is greater than 0.1, the item is considered a
significant enough feature. This ensures that the selected item
is correlated, thereby eliminating the problem of overfitting.
To test the degree of correlation between features F1 and F2,
the PCF can be calculated as follows:

ρF1,F2
=

Cov(F1, F2)

σF1σF2
=

∑
| (F1 − µF1)(F2 − µF2) |

σF1σF2

where the coverage of F1 and F2 is defined as Cov(F1;F2).F1

and F2 represent the deviations of σF1 and σF2 , respectively,
whereas µF1, and µF2 are the respective means. In our
experiment, factors with PCF levels of 0.5 are extracted to
test the relationship between input features and output classes.
Furthermore, if PCF < 0.1, then we say that F1 and F2 do
not have a strong negative correlation with each other. Under-
standing the behavior of the collected medical data features
should greatly enrich the monitoring and analysis of patients’
chronic disease status. For example, if some symptoms related
to a specific disease are recorded repeatedly for a period of
time (common pattern), then it can be expected to have a
serious effect; Alternatively, if a specific health-related feature
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TABLE I
CNN MODEL INPUT FEATURE LIST WITH CORRESPONDING RANGE OF

VALUES

Factor Range
V EG: Energy intake (g) [Num]
V FT: Fat intake (g) [Num]
V WT: Water intake (g) [Num]
V PT: Protein intake (g) [Num]
V CHK: Cholesterol intake (mg) [Num]
V CB: Carbohydrate intake (g) [Num]
B SEX: Sex [Male, Female]
B PL: 60-s pulse [Regular, irregular]
B CH: Family history chronic disease [Yes, no, no-response]
B TSS: Time to sit and spend (h) [Num, N/A, non-response]
B PHC: Physical activity time (min) [Num, N/A, non-response]
B WD: Walk duration (min) [Num, N/A, non-response]
B SM: Average smoking per day [Num, N/A, non-response]
B ASLD: Average sleep time/weekend (min) [Num, N/A, non-response]
B ASLW: Average sleep time/weekday (min) [Num, N/A, non-response]

R DBP: Diastolic blood pressure (mmHg)
Low ≤ 80
Normal 80 - 90
Above ≤ 90

R SBP: Systolic blood pressure (mmHg)
Low ≤ 120
Normal 120 - 140
Above ≤ 140

R BMI: Body mass index (kg/m2)
Low ≤ 18.5
Normal 18.5 - 25
Above ≤ 25

R FSUG: Fasting blood sugar (mg/dL)
Low ≤ 100
Normal 100 - 126
Above ≤ 126

B DR: Drinking [1-10, N/A, non-response]

TABLE II
CNN MODEL DISEASE CLASSIFICATION OUTPUT

Factor Range
Presence of hypertension [Normal, pre, high]
Presence of obesity [Low, normal, obesity]
Presence of diabetes [Normal, moderate, diabetes]

changes over a specific time frame (daily, weekly, or monthly),
this may provide important insight into an individual’s health
status. Therefore, analyzing health records involves examining
common behavioral features; for instance, a patient with
disease x may have a temperature and heart rate increase three
times in one month. Tracking and analyzing such unusual
events may help identify cardiovascular risk and prevent
a heart attack related to a diabetic patient. Therefore, we
incorporated a common-pattern analysis module in the second
layer of the VHealth-CNN model by searching for the common
pattern among the selected features based on the user-defined
normality threshold value defined by healthcare givers. Using
a normality threshold, we can detect relationships between
health features and understand the characteristics that are
consistent with the data collected, which would help explore
more possibilities.

3) CNN-Based Model For PC Knowledge Mining: The
common concurring features are selected in this final step,
and the final results are classified into three main categories:
obesity, hypertension, and diabetes, which derive the required
PC knowledge needed for informed decision making at the
point of care. The VHealth-CNN model trains a CNN double-

Fig. 3. PC-CNN-VHealth Model for Tele-Monitoring Services.

layer structure, as illustrated in Figure 3.

B. Design Component 2: Fine-Grained VHealth-AC Model

We consider the following scenario for a virtual hospital
service collaboration between a spoke and hub hospital secu-
rity domain, DS , and DH , respectively, to deliver a virtual
healthcare service to an outpatient in a spoke hospital. Each
hospital has its own local information security policy that
protects its local information and is enforced by an AC
model in a single local point-of-control, ACS , and ACH ,
respectively. The AC models of both hospitals were inde-
pendent and may be inconsistent. If DS shares the patient’s
medical information, IS , with DH , then this information must
be protected when it leaves DS’s local point-of-control to
reside in DH . To bridge this gap in the literature, there is a
need for a fully enforced AC model ACV that incorporates
heterogeneous disease-centered legacy information systems.
This ACV model should enforce a neutral virtual hospital-
driven (i.e., collaboration-driven) policy PV that takes control
of the information IS wherever it resides within the collab-
orative environment (i.e., virtual hospital ecosystem) security
domain DV . In addition, this ACV model should not interrupt
traditional hospital-driven (i.e., organization-driven) policies of
disease-centered ACS models in legacy information systems
governing such information with local policiesPS as long as
it is used locally withinDS . This guarantees that all spoke
hospitals’ information systems enforce the neutral policy PV

defined by VHealth-AC through the ACV model as long as
the information resides in DV , whereas it enforces PS through
the ACS model as long as it resides in DS (Figure 4). This
allows the VHealth-CNN model to attain the right balance
of IS information security in its targeted security domains
without interruption.

Defining this collaboration-driven context should require
access to information strictly on a “need-to-know” basis,
which complies with healthcare regulations and data protection
laws [71] [72]. Therefore, in order to provide the right set
of data to the right care team member at the right time
of treatment on a “need-to-know” basis, we propose a fine-
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grained VHealth-AC model that achieves this goal. Therefore,
we define access rules for the VHealth-AC model based on
the following five key interrelated elements (as illustrated in
Figure 5): patient, PC care team assigned to this patient, PC
care team’s member role, treatment plan, and virtual healthcare
point of care. These elements define an information classifi-
cation scheme suitable for the VHealth-AC model, where

1) Each patient is looked after by at least one specialized
PC care team that includes all specialized healthcare
practitioners caring for that particular patient to treat
their disease or condition. This means that if a patient
has comorbidities (that is, they suffer from more than
one condition or disease and are therefore following
more than one treatment path), they may have more than
one PC care team.

2) Each authorized PC care team member (i.e., healthcare
practitioner) should access PC knowledge only for pa-
tients they cares for and in whose treatment plan they
play a role.

3) Ultimately, at a virtual healthcare service point of care,
PC knowledge should be accessible to each PC care team
member who needs to access it to play their role in the
current treatment plan for the provided service.

C. Putting All Components Together in a Secure and Intelli-
gent Virtual Hospital Ecosystem Implementation

To implement both VHealth-CNN and VHealth-AC, in a
unified ecosystem design, a technical wrapper is designed
on top of traditional hospital legacy information systems to
represent the neutral collaboration context security domain
(i.e., virtual hospital ecosystemDV ) where the points of care
are held following a patient’s treatment plan. In this technical
wrapper, the VHealth-AC creates the PSPV , PDPV , and

Fig. 4. VHealth-AC Model

Fig. 5. 5-Tier Information Classification Scheme for VHealth-AC Model.

PEPV elements for this security domain and enforces access
decisions in PV for any PC care team member requesting
access to a PC knowledge IS . This knowledge is formed by
VHealth-CNN from legacy spoke hospital information systems
that deploy the security domain DS locally. Through this
wrapper, the VHealth-AC model controls what may be viewed
by the PC care team member ensure the availability of patient
knowledge while preserving patient privacy.

Finally, both VHealth-CNN and VHealth-AC models should
provide a secure, intelligent ecosystem that can transform
traditional hospitals with unstructured disease-centered medi-
cal data and limited cross-hospital information sharing into a
secure and intelligent ecosystem.

V. PERFORMANCE EVALUATION

Performance evaluation was carried out on a 64-bit Core
i5 processor running Windows 10 Pro, with 12 GB of RAM,
using the software SPSS. In this study, a multivariate analysis
was conducted using SPSS to extract health-related features
and lifestyle attributes from the dataset of 10,806 patients.
This efficiently reduced the computational complexity and
decreased the number of attributes from 49 to 20 without
missing any important values. To analyze the model effi-
ciency, various features that affect obesity, hypertension, and
diabetes were explored. The selection of the health features
was based on the correlation between features. We calculated
the correlation coefficient of each feature, and a correla-
tion co-efficient of 0.5 or more was extracted. In this case,
obesity, high blood pressure, and diabetes disease prediction
attributes were selected first. Subsequently, the correlation
between the selected attributes were calculated and classified
into positive and negative relationships. Monitoring such im-
portant positively correlated data could improve a person’s
daily activities by identifying positively related factors. The
PCF study determined the significant relationships between
the selected attributes. An efficient way to analyze regular
correlations between the selected health factors is to use PCF
to define the strength of the connection relationship between
two variables. Additionally, any abnormality can be predicted
by monitoring the negatively correlated feature values. A
CNN was used to subdivide them. Moreover, the common
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factor behavior was analyzed to discover any additional feature
behaviors among the selected correlated features. This reveals
which attributes feature a common or abnormal correlation.
Therefore, the characteristics of the collected features were
analyzed and classified as obesity, hypertension, and diabetes.
This could significantly enhance health status before it happens
by understanding such diseases and their causes.

For the experiments, we used 4,759,777 records in appro-
priate data formats and excluded data with no responses and
missing values, which was 1,499,423 records. The collected
records were divided into 70% training data and 30% test data.
A 10-fold cross-validation algorithm was used to optimize the
hyperparameters (such as early stopping for training). More-
over, The model accuracy was measured by root mean square
error (RMSE). For each model, the RMSE, calculation speed,
and complexity were calculated using the proposed VHealth-
CNN model. In addition, we recorded the same evaluation
criteria in the general CNN model for the prediction of obesity,
hypertension, and diabetes. RMSE was used to measure the
difference between the predicted and observed values [73].
The RMSE was evaluated as follows:

RMSE =

√∑n
1 (PK −OK)2

n

A smaller value of RMSE indicates a high accuracy of the
model prediction; however, an increase in the RMSE value
indicates a low prediction capability of the model. For the
three identified diseases, if obesity was predicted and the
value was 3, applying our model, the actual observed value
was 2 and the error was 1. Table III lists the RMSE results
for the VHealth-CNN model. The predicted RMSE of our
model was compared with that of the general CNN model
for the prediction of obesity, hypertension, and diabetes. The
calculation speed of the proposed model was calculated using
the two hidden layer and the complexity was also calculated.
For each diagnosed disease, the general CNN model has a
high RMSE value, which indicates a low prediction accuracy
with high calculation speed and complexity. For example,
the RMSE of the general CNN model was approximately
0.87 with 1.1 complexity. However, the maximum RMSE
of the proposed model prediction was 0.2562 for diabetes.
Furthermore, to compare the performance of our algorithm,
we trained the following general models:

1) Model1: VHealth-CNN model (our proposal).
2) Model2: Long Short-Term Memory (LSTM) model

which is known for its efficiency in finding correlated
data.

3) Model3: Support Vector Machines (SVM) model.
4) Model4: Traditional neural network.
Owing to the effect of the CNN structure accuracy and

efficiency, we constructed a CNN model with two layers to
extract and classify regular health-related data. Using multi-
variate analysis, the proposed method extracted all relevant
information from the training dataset without transforming it
and then passes it to the deep learning system for feature

TABLE III
ACCURACY OF PC-CNN-VHealth MODEL

Disease RMSE Complexity Calculation speed
Apply None Apply None Apply None

Presence of hypertension 0.1793 0.2027 0.454 0.956 16.452 52.27
Presence of obesity 0.0919 0.7681 0.452 1.100 15.525 36.681
Presence of diabetes 0.2562 0.5976 0.654 1.923 16.964 62.13

TABLE IV
DIFFERENT LEARNING MODEL ACCURACY COMPARISON

Disease Learning Model
Model1 Model2 Model3 Model4

Presence of hypertension 93.5 90.01 91.3 73
Presence of diabetes 95 91 60 82
Presence of obesity 91.3 89 76 73

extraction and classification. In addition, accurate knowledge
was obtained from n the collected information. A health
factor that is important for health status analysis was extracted
through multivariate analysis. To identify chronic diseases
related to obesity, high blood pressure, and diabetes, the
correlation between f the collected factors was determined d.
Finally, the regular behavior of each disease factor and the
knowledge related to the regular co-occurring health factors
were analyzed.

We propose a VHealth-CNN model for the diagnosis of
three common chronic diseases by discovering the com-
mon behavior of correlated health features. By exploiting
this knowledge of common correlated features, our model
demonstrated competitive analysis performance for 4,759,777
medical records. Table IV presents the performance analysis of
the model. The results show that the proposed model predicts
obesity, hypertension, and diabetes diagnoses with 91.3%,
93.5%, and 95% accuracy, respectively. In contrast, Model2
(LSTM model), when trained with the collected data after
preprocessing and removing only irrelevant data, proved to
not be as effective as our proposed model Model1. Moreover,
the model represents a potential accuracy when compared
with other traditional machine-learning algorithms’ (Model3
and Model4) learning model. Therefore, effective knowledge
mining and analysis of biomedical big data are of great
significance for the discovery and diagnosis of health status
and medical conditions. The proposed model can extract
features from the collected data, which enables it to deliver
accurate and robust results to deduce the presence of obesity,
hypertension, or diabetes.

VI. CONCLUSION AND FUTURE WORK

In this article, we proposed a holistic virtual hospital ecosys-
tem design that can help address the inadequacy of hospitals’
legacy information systems that hinder the flow of medical
data for PC care continuity. In this study, we developed two
models. First, the VHealth-CNN model extracts PC knowledge
from multi-sourced biomedical big data to extract disease
health-related features and then trains a CNN double-layer
structure. The second model is a granular VHealth-AC model
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that seamlessly grants healthcare practitioners at a hub hospital
remote access to PC knowledge at the right point of care.
Moreover, the feasibility of the proposed design was examined
through a tele-monitoring service experimental case study to
predict obesity, hypertension, and diabetes. We used real-
world biomedical data containing health-related and lifestyle
behavioral data features. The experimental results showed
that the proposed model predicts obesity, hypertension, and
diabetes diagnoses with 91.3%, 93.5%, and 95% accuracy,
respectively. Finally, the results showed that effective PC
knowledge mining and analysis of biomedical big data are of
great significance to the prediction and diagnosis of health
status and medical conditions. Therefore, our novel virtual
hospital ecosystem design should empower patients, healthcare
providers, and healthcare practitioners to deliver accessible,
affordable, and comprehensive PC care.

However, there are some potential limitations to the perfor-
mance of this ecosystem. First, bandwidth limitations due to
the extensive sharing of huge amounts of data over the cloud
between the hub and spoke hospitals may cause delays in data
delivery. Therefore, we plan to improve the performance of
this system in the future by using fog computing and non-
real-time edge computing to enhance factors such as limited
bandwidth and capacity. Moreover, we plan to optimize the
CNN to improve the learning accuracy using various recently
published pattern classifiers or by adding multiple classifiers
and evaluating the performance accordingly and studying
multimodality data and preprocessing methods.
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