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Abstract— Modeling spatial dependency is crucial to solving
traffic prediction tasks; thus, spatial-temporal graph-based
models have been widely used in this area in recent years. Ex-
isting approaches either rely on a fixed pre-defined graph (e.g.,
a road network) or learn the correlations between locations.
However, most methods suffer from spurious correlation and
do not sufficiently consider the traffic’s causal relationships.
This study proposes a Spatiotemporal Causal Graph Inference
(ST-CGI) framework for traffic prediction tasks that learn both
the causal graph and autoregressive processes. We decouple the
spatiotemporal traffic prediction process into two steps; the
causal graph inference step and the autoregressive step, where
the latter relies on the former. Optimizing the entire framework
on the autoregressive task approximates the Granger causality
test and thus enables excellent interpretability of the predic-
tion. Extensive experimentation using two real-world datasets
demonstrates the outstanding performance of the proposed
models.

I. INTRODUCTION

Highway traffic prediction has long been of interest to
both industry and academia as a typical spatial-temporal data
mining problem. Reliable, accurate, and consistent real-time
traffic information is the key to success in developing and
implementing an Intelligent Transportation System (ITS).
Subsystems of an ITS, such as the Advanced Traveler In-
formation System (ATIS) and the Advanced Traffic Manage-
ment System (ATMS), rely heavily on high-quality real-time
traffic data to provide road users up-to-date advisories and to
implement traffic control schemes. In the past, the collection
of real-time data was the foremost goal, but recently many
agencies have begun to consider taking advantage of the vast
archived datasets for “real-time forward looking analysis.”
With predictive data, proactive transportation management is
a feasible option. For example, adaptive traffic signal control
is more effective if it is based on predicted traffic volume.

A general guideline for most existing traffic prediction
models can be summarized by Tobler’s First Law (TFL),
which says that “Everything is related to everything else, but
things that are nearby are more related than distant things.”
TFL indicates the importance of bridging the spatial depen-
dency and the importance of the statistical spatial correlations
between different locations. Most existing traffic prediction
methods follow TFL by representing the spatial dependency
with a road network or the Euclidean distance. However, road
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networks and Euclidean distances are not accurate for many
real-world circumstances. For example, two nearby traffic
sensors may be positioned in two lanes of traffic moving
in opposite directions on the highway, and thus have quite
a very low spatial dependency. Some other new methods
learn the correlations between locations with history data
and achieve better results. However, these methods suffer
from low interpretability. A moderate correlation between
two locations could be the result of confounding variables or
biased data. Inspired by the work in causal inference in recent
years[1], [2], we propose solving the traffic prediction task
by considering the Granger causal relationship among traffic
sensors. Granger causality is a classical statistical concept
of causality that is based on prediction [3]. By explicitly
modeling the Granger causal relationship between the traffic
sensors, the model becomes more stable and interpretable,
which is highly desirable in academia and industry. Modeling
the causal relationship in traffic prediction tasks is beyond
the scope of TFL and has not been studied yet.

Despite its importance, however, learning causal relation-
ship in traffic data involves significant technical challenges:
1) Learning causal relationships on dynamic data. The
dynamics of traffic data can be considered as the result
of the ground truth causal relationships. Tracing the causes
of continuous dynamic data is difficult. 2) The difficulty
in learning causal relationships and the autoregres-
sive model simultaneously. Inferring interpretable causal
relationships while trying to improve the accuracy of the
autoregressive model is nontrivial. 3) Model scalability on
large spatiotemporal data. The number of entity-to-entity
relationships to infer is O(n2) of the number of locations.

We present a novel Graph Neural Network (GNN)-based
Spatiotemporal Causal Graph Inference (ST-CGI) framework
to address the above challenges. This framework infers the
Granger causality graph for all locations while optimizing the
autoregressive model, which depends on the causality graph.
This study’s significant contributions are as follows: 1) the
design of a novel framework for both traffic prediction and
traffic causal inference; 2) proposal for a more efficient ap-
proximation of Granger causality; 3) Extensive experiments
for both performance and interpretability.

The rest of this paper is organized as follows: Section 2 re-
views the background and related work. Section 3 introduces
the preliminaries. Section 4 presents all the components of
our ST-CGI framework. The experiments on real-world data
are presented in Section 5, and the paper concludes with a
summary of the research in Section 6.
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II. RELATED WORK

In this section, we provide a detailed review of the current
state of research for traffic forecasting tasks.

A. Traffic Forecasting

Modeling spatial dependency is critical to the success of
the traffic prediction task. In recent years, GNNs have been
widely used to model spatial dependency. As GNNs require
a pre-defined graph structure, researchers have proposed
different ways to construct the graph in traffic prediction
tasks. GEML defines the adjacent square areas in a grid
and uses pre-weighted aggregators as the GNN kernel [4].
TGC-LSTM defines the traffic graph convolution based on
the physical network topology (i.e., the road network) and
applies K-order Graph Convolution Network (GCN)[5] in the
model. Other studies have defined semantic similarities in a
graph according to their respective data and application [6],
[7], [4]. ST-MGCN utilized all three of the graphs mentioned
above in its model and defined the GNN kernel as the
aggregation of all graphs [6]. DCRNN defines the graph
by thresholding the Euclidean distance and applies diffusion
convolution as the GNN kernel, while STGCN defines the
graph in a similar way and applies ChebyNet on it. In the
last two years, researchers have noticed the importance of the
graph structure in a model and have proposed calculating the
attention scores as the correlation strength among different
geo-locations. ASTGCN calculates the graph with trainable
matrices and input data from two nodes [8]. AGCRN [9],
GMAN [10], and Graph WaveNet [11] all calculate corre-
lations with trainable node embeddings. SLCNN also uses
trainable matrices but splits the graphs into four categories:
dynamic global graph, dynamic local graph, static global
graph, and static local graph [12].

B. Causal Inference

Traditional constraint-based causal inference methods
construct DAGs using conditional independence tests and
Markov equivalence classes. Some examples include the ker-
nel method [13] and the PC algorithm [14]. These methods
involve a multiple testing problem where the tests are usually
conducted independently. The testing results may conflict,
and they require sophisticated post-processing. Recently,
Zhu et al. proposed an End-to-End Reinforcement Learning
model to infer the graph-structured causal relationship, but
the source data they used were static [15]. For dynamic data
(e.g., time series data), Granger causality based methods also
involve multiple tests and are not scalable on large datasets.
Moreover, traditional Granger causality-based methods (e.g.,
VAR or spectral based) are inaccurate when the sparsity
of the ground truth causal graph is unknown [16]. Some
researchers have tried to extend Granger causality by replac-
ing the VAR with recurrent neural networks [17], but the
scalability issues are still unsolved.

III. PROBLEM FORMULATION

In this section, we introduce the basics of causal inference
on time series data. Then we formulate the traffic prediction

and causal inference task in an optimization problem in a
single framework.

A. Preliminaries

We target on the spatial temporal traffic forecasting
problem by following the same formulation as previ-
ous work [11], [12], [18]. Consider multitudinous traffic
series that contains N correlated univariate time series
represented as X = {X0,−,X1,−, ...,Xt,−, ...}, where Xt,− =
{Xt,1,Xt,2, ...,Xt,N}T ∈ RN×1 is the traffic data of N traffic
sensors at time step t, our target is to predict the future values
of the traffic time series based on the observed historical
values. We formulate the problem as finding a function g to
forecast the future step traffic flow based on the past S steps
historical data:

Xt+1,− = g(X[t−S:t],−) (1)

Definition 1: Granger Causality: A time series Xt,i is
Granger causal of another time series Xt, j if including the
history of X−,i improves prediction of X−, j over knowing
of the history of X−, j alone. Specifically, this is quantified
by comparing the prediction error variances of the one-
step linear predictor, X̂t, j, under two different models, the
restricted model and the unrestricted model. The unre-
stricted model gu(X[t−S:t],−) j = X̂t+1, j uses the full histories
of all the time series for prediction. The restricted model
gr(X[t−S:t],−i) j = X̂t+1, j omits the putatively causal time series
from the set of predictive time series. X−,i Granger causes
X−, j if

var(|Xt+1, j −gu(X[t−S:t],−) j| | X[t−S:t],−)>

var(|Xt+1, j −gr(X[t−S:t],−i) j| | X[t−S:t],−i)
(2)

here var(|Xt+1, j − gu(X[t−S:t],−i) j| | X[t−S:t],−i denotes the
prediction performance of model gu given histories data on
all the nodes except for node i, i.e., X[t−S:t],−i.

Granger formulated a statistical definition of causality
based on the premise that (i) a cause occurs before its
effect, and (ii) knowledge of a cause improves prediction
of its effect. However, a determination of Granger causality
does not guarantee true causality. The Granger causality
tests fulfill only the Humean definition of causality, which
identifies cause and effect relations as those having constant
conjunctions. If a common third process drives both X and Y
with different lags, one may still fail to reject the alternative
hypothesis of Granger causality. Figure (1) shows two cases
of causal inference. In Case 1, node A is the confounder of
both nodes B and node C. If all three nodes are all included
in the data, even though node B and node C are correlated,
Granger causality can identify that node B and C do not
have a causal relationship. However, in Case 2, when the
confounder is not included in the observational data, Granger
causality cannot discover the hidden confounding node, A.
As a result, Granger causality may infer an inaccurate causal
relationship between nodes B and C. Each of the components
will be introduced in the following sections.
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Fig. 1. Granger causality can identify confounders (Case 1) but cannot
identify hidden confounders (Case 2).

While Granger causality is a potential method for causal
discovery, it depends highly on the selection of a multivari-
ate autoregressive function. In traditional Granger causality
methods, the multivariate autoregressive function is typically
a linear model that cannot capture nonlinear interactions
between entities. Furthermore, Granger causality requires
running the autoregressive function multiple times to de-
termine the marginal predictability when including and ex-
cluding different variables, which is complicated and time-
consuming. To resolve all of these issues, we propose to
build an end-to-end neural network model.

The Granger causality inference problem can be formu-
lated as the following optimization problem:

GC = argmin
G

(
T

∑
t=S

|Xt+1 −gW ∗(G,X[t−S:t])|+λR(G))

where W ∗(G) = argmin
W

T

∑
t=S

|Xt+1 −gW (G,X[t−S:t])|
(3)

where g is the neural network model parameterized with
W . R is the regularization term on the causal graph, which
enforces fewer edges in the graph. A concrete solution for g
is introduced in the following sections.

The autoregressive function g takes the time series data
and causal graph as input. When g only considers one-
hop neighbors in G, the conditional log-likelihood given
the embedding of nodes for predicting the graph signal
LL(X−, j|ei, j) is equal to LL(X−,−|ei, j) because edge ei, j can
only affect the prediction for node j. As a result, optimizing
(3) guarantees that each edge ei, j in G indicates the Granger
causality from node i to node j.

There are two terms in the outer optimization. The first
term optimizes for the best autoregressive function G, which
depends on the causal graph G. The second term λR(G)
penalizes the number of edges in the graph. As a result, if
the edge does not contribute to the first term’s prediction,
the edge will be removed in the outer optimization problem.
According to the analysis above, the problem in 3 is a bi-
level optimization problem.

B. ST-CGI Framework

The bi-level optimization problem in equation (3) is ex-
pensive to solve. For every causal relationship i→ j, i ̸= j, we
need to build a restricted model and an unrestricted model.
Therefore, the computational complexity is at least O(n2).
The causal graph we are trying to learn is a relatively stable

relationship
[
X(t−S):t

] G−→ Xt+1. According to Norbert Wiener,
whose work Granger cauaslity work built upon, “if a time
series X causes a time series Y, then past values of X should
contain information that help predict Y above and beyond
the information contained in past values of Y alone”. That
inspired us to decouple the bi-level optimization problem
as a multi-goal optimization problem that can be solved
iteratively. The causal graph could be approximated with the
relationship

[
X(t−S):t

] G′
−→ Xt . Instead of optimizing on the

causal graph directly, we propose to optimize the weight of
a GNN that generates the causal graph. This approximation
can be represented as a single-layer optimization problem in
the following equation (4):

argmin
Θ,W

(
T

∑
t=S

|Xt+1 −g(W,G∗,X[t−S:t])|+λR(G∗
t ))

G∗
t =CGI(Θ,X[t−S:t])

(4)

where CGI is the causal graph estimator parameterized
with Θ, and R is the L1 regularization of the causal graph.

We propose to solve the causal inference and the au-
toregressive tasks simultaneously in a single end-to-end
framework. Both the causal graph and the prediction for
the next timestamp are inferred from the input data. The
prediction for the next timestamp is dependent on the inferred
causal graph. According to this requirement, we propose a
framework, shown in Figure (2), with three modules trained
jointly, namely a time series encoder, e, a causal graph
estimator, and a causal graph-based autoregressive module.

The time series encoder e learns the high-dimensional
representations of the multivariate input time series data. As
shown in equation (5), the input data from P nodes X ∈
RP×D×S are transformed into an embedding representation
h∈RP×R, where D is the input dimension and R is the hidden
dimension.

ht−S:t = e(Xt−S:t) (5)

As shown in equation (6), the causal graph estimator f
learns the affinity matrix of the causal graph A ∈RP×P from
the embedding.

At−S,t = f (ht−S:t) (6)

Given the causal graph, the autoregressive model g tries
to approximate the underlying linear/nonlinear mapping from
historical traffic to future traffic.

X̂t+1 = g(At−S,t ,Xt−S:t) (7)

The model’s overall formulation can be written as equation
(8).

X̂t+1 =Fθ (Xt−S:t)

=g( f (e(Xt−S:t)),Xt−S:t)
(8)

Given a long period of historical time series data and the
problem formulation, we optimize the function in equation
(9)
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Fig. 2. ST-CGI framework: The left module is the TCN-based time series encoder. The middle module is the deep graph neural network-based causal
graph estimator. The right module is the single layer GCN for traffic forecasting. The traffic forecasting is based on both the traffic data embedding from
the left module and the inferred causal graph from the middle module.

f ,g,e = argmin
f ,g,e

L ( f ,g,e,Xtrain)

where L ( f ,g,e,Xtrain) =

1
ST

S

∑
s=1

T

∑
t=S

(Xt+1,s −g( f (e(Xt−S:t)),Xt−S:t))

(9)

IV. METHODOLOGY

In this section, we demonstrate the detailed implemen-
tations of the ST-CGI framework’s three components men-
tioned in Section III-B.

A. Causal Convolution for Time Series Encoding

The left module in Figure 2 demonstrates the structure of
the time series encoder. Given raw multivariate time series
data with lag S, the first step is to encode the time series into
unified embeddings. The embedding should be a condensed
vector that contains information about the temporal trends,
temporal dependency, and temporal delays of the time series.
The embedding must retain as much information as possible
about the causal relationships between nodes.

Instead of using RNN-based units (e.g., LSTM, GRU),
we opt to use dilated causal convolution network as our
temporal convolution network (TCN) for encoding the time
series data[19]. Dilated causal convolution networks allow
an exponentially larger receptive field when the layer depth
increases.

As shown in equation 10, gated dilated causal convolution
[20] is utilized on every layer of the module. Because the
model can become very deep when the input time series data
is long, skip connections [21] are also used for each layer of
convolutions. This way, the residual functions can be more
easily learned during the optimization.

h = tanh(Wf ,k ∗ x)⊙σ(Wg,k ∗ x) (10)

where W is the learnable parameter, k is the layer index,
f and g denote filter and gate, ∗ is the convolution operator,
⊙ denotes an element-wise multiplication operator, and σ is
a sigmoid function.

B. Causal Graph Estimator

After the time series on each location/node has been
encoded as embeddings, we assume the embeddings contain
essential information about the dynamics of the time series.
The next step is to infer the causal relationship between the
embeddings. As the causal relationship lies in a discrete
space, GNN models are suitable for inferring the causal
graph. GNNs have been shown to capture the relational
connectivity between nodes [22].

It is natural to assume that the causal graph is related to a
transportation road network in the spatial environment. For
example, locations in closer proximity to one another have a
higher chance of impacting one another. Different from the
NRI model [22], we applied GNN models on the existing
network structure rather than the complete graph. There are
several benefits of starting from an existing graph. First,
the computational costs can be greatly reduced. Second, the
GNN model converges faster. By stacking k GNN layers, the
GNN model’s receptive field is k-hops over neighbors in the
existing graph, which is sufficient for inferring most of the
causal relationships. In other words, the formula in (6) can
be changed to At−S,t = f (A′,ht−S:t) where A′ is the affinity
matrix of the existing graph and f is a GNN model. Given
the traffic flow embeddings h from the time series encoder
in Eq. (10), the GNN model computes the following node
to edge (v → e) and edge to node (e → v) message passing
operations:

input : h(0)v = h

v → e : h(m)′
e = σ(W (m)

e

 h(m)
v R

h(m)
v S.

h(m−1)
e

+b(m)
e )

e → v : h(m)′
v = σ(W (m)

v

[
h(m)

e RT

h(m−1)
v

]
+b(m)

v )

out put : A = fout(h
(n)
e )

(11)

where h(m)
v is the m-th layer node embedding, h(m)

e is the
m-th layer edge embedding, fout is the read-out function that
transforms the last layer of the edge embeddings into the
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affinity matrix of the causal graph. R and S are the receiver
and sender matrices of edges (detailed in the Appendix)

The middle module in Figure 2 demonstrates the structure
of the causal graph estimator. The node to edge message
passing and the edge to node message passing can be
repeated multiple times to increase the receptive field of the
graph neural network.

C. Causal Graph Based Autoregressive Model

After the causal graph is inferred, we apply only one layer
of GCN on the temporal embeddings of the input. The reason
for this is that we focus on only inferring direct Granger
causal relations rather than indirect causal relations. Using
a single-layer GCN in the autoregressive stage enforces the
causal graph estimator to learn a Granger causal graph. Given
the traffic embeddings from the time series encoder and the
affinity matrix inferred from the causal graph estimator, the
final forecasting step

Xt+1 = σ(AhW ) (12)

where h is the embedding representation of nodes learned
from Eq. (5), and W is the parameter to optimize in this step.

D. Relationship with Other Models

Our proposed method is totally different from those who
only used pre-defined graph structure (e.g., road networks,
distance-based graphs, similarity graphs) for modeling the
spatial dependency. Such methods include DCRNN[18],
GEML [4], TGC-LSTM [5], ST-MGCN[6], STG2Seq[7].
The existing or pre-defined graph structures are helpful for
learning the spatial dependency. However, it is inevitable
that such graphs are noisy or miss certain information for
different applications.

The most similar methods to our work are those that try
to learn/optimize a graph structure for modeling the spatial
dependency. Such methods include ASTGCN [8], AGCRN
[9], GMAN [10], Graph WaveNet [11], and SLCNN [12].
Compared with these studies, our work has several unique
features. Firstly, our framework is based on the Granger
causality theory, which formulates the causality relationship,
while the others depend on correlation relationships that
are difficult to interpret. Secondly, the causal relationship
we learn in the ST-CGI framework is directed, while most
of the other methods regard the spatial dependency from
a to b and from b to a are the same. Thirdly, ST-CGI
decouples the spatial dependency modeling and the traffic
data autoregressive task, which makes the model easy to
interpret.

V. EXPERIMENT

In this section, we introduce the experiment settings,
performance comparison, and interpretability illustration.

A. Datasets

We verify ST-CGI on two public traffic network datasets,
METR-LA and PEMS-BAY. METR-LA contains four
months of statistics on traffic speed from 207 sensors on
Los Angeles County’s highways. PEMS-BAY contains six
months of traffic speed information from 325 sensors in the
Bay area. We adopt the same data pre-processing procedures
as in [11]. The raw time series data are aggregated into
five-minute windows. Z-score normalization is applied to the
aggregated data. The datasets are split in chronological order,
with 70% used for training, 10% for validation, and 20% for
testing.

B. Baseline Methods

SLCNN is compared with a traditional method, Auto-
Regressive Integrated Moving Average (ARIMA), and
the state-of-the-art methods including DCRNN[18],
STGCN[23], SLCNN[12], and Graph Wavenet (GWN)[11].

C. Experiment Settings

For the time series encoder, similar to [11], we use
sequence of dilation factors 1, 2, 1, 2, 1, 2, 1, 2. Dropout with
p=0.3 is applied to the outputs of the time series encoder.
For the causal graph estimator, We apply a sequence of
v → e,e → v,v → e,e → v,v → e message passing GNN
operations. The read-out function fout in equation (11) is
set to be two dense layers. The initial graph is the same
distance-based graph used in [18], [11]. We train our model
using Adam optimization algorithm with an initial learning
rate of 0.001.

D. Performance Comparison

Following the same settings used by DCRNN, GWN,
and SLCNN, the forecasting tasks are set in three levels,
including 15 minutes, 30 minutes, and 1 hour ahead of fore-
casting. Table I and Table II show the comparison of different
approaches for short term (15 minutes) traffic forecasting on
both datasets. Table III and Table IV show the comparison
of different approaches for long term (30/60 minutes) traffic
forecasting on both datasets. All of the methods are evaluated
based on three commonly used metrics in traffic forecasting
tasks, including Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and Mean Absolute Percentage Error
(MAPE). We have the following observations.

(1) For short term (15 minutes) traffic prediction, our pro-
posed ST-CGI method achieves overall the best performance
among all the methods.

(2) For long term (30/60 minutes) traffic prediction, GWN
and SLCNN have very competitive performance. On METR-
LA data, ST-CGI performs better than GWN but fails to beat
SLCNN. On PEMS-BAY data, ST-CGI performs better than
SLCNN but fails to beat GWN. The performance difference
between ST-CGI and the best performed models is minor.

It is noteworthy that ARIMA is the only interpretable
method among the baseline methods, as ARIMA can be
considered as a linear method. All of the rest baseline
methods lack a theoretical foundation for interpretation. Our
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TABLE I
PERFORMANCE COMPARISON FOR 15 MINUTES TRAFFIC PREDICTION ON

THE METR-LA DATASET

Model METR-LA (15 min)
MAE RMSE MAPE

ARIMA 3.99 8.21 9.6%
DCRNN 2.77 5.38 7.3%
STGCN 2.87 5.54 7.4%
SLCNN 2.53 5.18 6.7%
GWN 2.69 5.15 6.9%

ST-CGI 2.60 5.14 6.7%

TABLE II
PERFORMANCE COMPARISON FOR 15 MINUTES TRAFFIC PREDICTION ON

THE PEMS-BAY DATASET

Model PeMS-BAY (15 min)
MAE RMSE MAPE

ARIMA 1.62 3.30 3.5%
DCRNN 1.38 2.95 2.9%
STGCN 1.46 3.01 2.9%
SLCNN 1.44 2.90 3.0%
GWN 1.30 2.74 2.7%

SG-CGI 1.29 2.69 2.7%

proposed ST-CGI method not only outperforms the only
interpretable method but also performs better or on par with
the non-interpretable deep neural network methods.

E. Interpretability Investigation

The theoretical foundations in causal inference enable
ST-CGI great power in interpretability. After the model is
trained, the first two modules in the framework can estimate
the causal graph of given data. Causal graphs are directed
graphs where an edge from node i to node j indicates
the Granger causal relationship from i to j. In the traffic
forecasting task, an edge with a high weight from traffic
sensor i to traffic sensor j means that the traffic flow at
location j is heavily affected by the traffic flow at location
i.

Figure 3 shows a causal graph inferred by ST-CGI on
the METR-LA dataset. Despite that the directed edges are
difficult to spot due to a large number of nodes, we can still
get some information from the Figure. The first observation
is that there are some “hubs” with large numbers of outgoing
edges. This means that the traffic flow in this area is
mainly influenced by a small number of locations. To better

TABLE III
PERFORMANCE COMPARISON FOR 30/60 MINUTES TRAFFIC PREDICTION

ON THE METR-LA DATASET

Model METR-LA (30/60 min)
MAE RMSE MAPE

ARIMA 5.15/6.90 10.45/13.23 12.7%/17.4%
DCRNN 3.15/3.60 6.45/7.60 8.8%/10.5%
STGCN 3.48/4.45 6.84/8.41 9.4%/11.8%
SLCNN 2.88/3.30 6.15/7.20 8.0%/9.7%
GWN 3.07/3.53 6.22/7.37 8.4%/10.0%

ST-CGI 3.01/3.44 6.19/7.28 8.3%/9.8%

TABLE IV
PERFORMANCE COMPARISON FOR 30/60 MINUTES TRAFFIC PREDICTION

ON THE PEMS-BAY DATASET

Model PeMS-BAY (30/60 min)
MAE RMSE MAPE

ARIMA 2.33/3.38 4.76/6.50 5.4%/8.3%
DCRNN 1.74/2.07 3.97/4.74 3.9%/4.9%
STGCN 2.00/2.67 4.31/5.73 4.1%/5.4%
SLCNN 1.72/2.03 3.81/4.53 3.9%/4.8%
GWN 1.63/1.95 3.70/4.52 3.7%/4.6%

SG-CGI 1.68/2.01 3.77/4.65 3.8%/4.8%

demonstrate whether the hubs make sense or not, we picked
two nodes with denser outgoing edges in the graph and
showed them in Figure 4 in the Appendix. The node 202
(coordinate: 34.14604, -118.2243) in Figure 4 (a) is the free-
way exit/entrance of Glendale Freeway according to Google
Map. The node 177 (coordinate: 34.11966, -118.23143) in
Figure 4 is a very crowded freeway interchange. We also
checked some less important hubs with less outgoing edges,
and they turn out to be places like Home Depot and residence
communities.

One important observation is that the Granger causal
relationship between two adjacent locations is usually not
strong, which appears counterintuitive. According to the
inferred causal graphs, a distant hub may have a greater
impact on traffic flow in one location than the closest traffic
sensor on the same road. It makes sense because the nature of
Granger causality is to eliminate the indirect causes which
have no incremental benefit on the predictions. In a real-
world scenario, the traffic flow 15 minutes later near one
traffic sensor should come from locations that are further
than its closest traffic sensors.

Fig. 3. Visualization of an inferred causal graph on the METR-LA dataset.

VI. CONCLUSION

In this study, we propose a novel interpretable model (ST-
CGI) for traffic prediction tasks based on Granger causality.
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Specially, we formulate the traffic prediction task a bi-level
optimization task with a causal inference module and an
autoregressive module, where the latter module depends
on the former module. The model does not only make
predictions of the traffic flow but also provides evidence
of the predictions which are based on. Experiments on
two real-world datasets show that ST-CGI achieves state-
of-the-art results and has advantages in making shorter-term
predictions. The interpretability and visualization function of
ST-CGI is highly desired by domain experts and decision-
makers.

APPENDIX

Matrices in the Causal Graph Estimator
A is the adjacency matrix of the road network. We adopt

the same implementation of A in DCRNN[18] and Graph
Wavenet (GWN) [11] which is based on pre-calculated road
network distances between sensors.

R is the receiver-edge matrix. It can be calculated with
numpy-like pseudocode as R = onehot(where(A)[0]).

S is the sender-edge matrix. It can be calculated with
numpy-like pseudocode as S = onehot(where(A)[1]).

Case Study
The example in the case study is illustrated in Fig. 4.

(a) Node 202 (ID: 7175920) (b) Node 177 (ID: 767554)

Fig. 4. Example of “hubs” in the causal graph
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