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Configuration via Adversarial Learning: Quantification,
Generation, and Evaluation

DONGJIE WANG, YANJIE FU, and KUNPENG LIU, University of Central Florida

FANGLAN CHEN, Virginia Tech

PENGYANG WANG, University of Macau

CHANG-TIEN LU, Virginia Tech

Urban planning refers to the efforts of designing land-use configurations given a region. However, to obtain

effective urban plans, urban experts have to spend much time and effort analyzing sophisticated planning

constraints based on domain knowledge and personal experiences. To alleviate the heavy burden of them

and produce consistent urban plans, we want to ask that can AI accelerate the urban planning process, so

that human planners only adjust generated configurations for specific needs? The recent advance of deep

generative models provides a possible answer, which inspires us to automate urban planning from an adver-

sarial learning perspective. However, three major challenges arise: (1) how to define a quantitative land-use

configuration? (2) how to automate configuration planning? (3) how to evaluate the quality of a generated

configuration? In this article, we systematically address the three challenges. Specifically, (1) We define a

land-use configuration as a longitude-latitude-channel tensor. (2) We formulate the automated urban plan-

ning problem into a task of deep generative learning. The objective is to generate a configuration tensor

given the surrounding contexts of a target region. In particular, we first construct spatial graphs using geo-

graphic and human mobility data crawled from websites to learn graph representations. We then combine

each target area and its surrounding context representations as a tuple, and categorize all tuples into positive

(well-planned areas) and negative samples (poorly-planned areas). Next, we develop an adversarial learning

framework, in which a generator takes the surrounding context representations as input to generate a land-

use configuration, and a discriminator learns to distinguish between positive and negative samples. (3) We

provide quantitative evaluation metrics and conduct extensive experiments to demonstrate the effectiveness

of our framework.
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1 INTRODUCTION

We study the problem of machine learning for automated urban planning. Urban planning is an

interdisciplinary and complex process that involves public policy, social science, engineering, ar-

chitecture, landscape, and other related fields. In thisarticle, we refer urban planning to the efforts

of designing land-use configurations of a target region, which is a reduced yet essential task of

urban planning [36]. Effective urban planning can help to mitigate the operational and social vul-

nerability of an urban system, such as high tax, crimes, traffic congestion and accidents, pollution,

depression, and anxiety [52].

This observation motivates us to rethink urban planning in the era of artificial intelligence

(AI): What roles do deep learning play in urban planning? Can machines develop and learn at

a human capability to automatically and quickly calculate land-use configurations? In this way,

machines can be planning assistants and urban planning professionals can finally adjust machine-

generated plans for specific needs.

Due to the high complexity and specificity of urban systems, urban planners need to consider

and balance different various planning requirements, such as proximity metrics (e.g., distances

to important places), access indexes (e.g., accessibility to food, recreation, goods, services, enter-

tainment, transit, municipal services, mobility indexes), mobility indices (e.g., sidewalks, bike lanes,

speed limits, crash rates), emergency responses (e.g., hospitals, fire departments) and, thus, planing

highly replies on empirical experience and domain knowledge [25]. As a result, it is highly appeal-

ing to pursuit a fast, automated, and machine-assisted planning strategy. The recent advance of

deep learning, particularly deep adversarial and generative learning, provide a great potential to

teach a machine at a human capability to design and generate city configurations [10, 24, 55, 56].

This inspiration motivates us to rethink urban planning from the lens of deep learning: can AI

automate the calculation of land-use configuration and the balancing of various planning factors,

so professional planners can finally adjust machine-generated plans for specific needs?

All of the above evidences prompt us to develop a data-driven AI-enabled automated urban

planner as shown in Figure 1. However, three unique challenges arise to achieve the goal: (1)

How can we quantify a land-use configuration plan? (2) How can we develop a deep adversarial

generative learning framework to learn the good and the bad of existing urban communities as

data-driven knowledge, and, moreover, generate quality urban configuration? (3) How can we

evaluate the quality of generated land-use configurations? Next, we will introduce our research

insights and solutions for the three challenges.

First, as the objective is to teach a machine to generate the land-use configuration of a target

region, it is naturally critical to define a machine- perceivable structure for the land-use configu-

ration. In practice, the land-use configuration plan of a region can be geographically defined by a

set of Point of Interests (POIs) and their corresponding locations (e.g., latitudes and longitudes)

and urban functionality categories (e.g., shopping, banks, education, entertainment, residential).

A close look can reveal that a land-use configuration is a high-dimensional indicator that pre-

cisely illustrates what, where, and how many we should build in a target region. After exploring

large-scale land-use data, we observe that there is not just location-location statistical autocorre-

lation but also location-functionality statistical autocorrelation in a land-use configuration. To
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Fig. 1. Our expectation is to build an AI model to generate the land-use configuration automatically by

considering the constraints that are used in traditional urban planning process.

preserve such statistical correlations, we propose to represent a land-use configuration as a

latitude-longitude-channel tensor, where each channel is a specific category of POIs that are dis-

tributed across the target area, and the value of an entry in the tensor is the number of POIs. In

this way, the tensor not just describes the location-location interaction, but also captures location-

function interaction.

Second, after we quantitatively define the land-use configuration, the next question is that how

to teach a machine to automatically generate a land-use configuration? We analyze large-scale

urban residential community data, and find that: (1) an urban community can be viewed as an

attributed node in a socioeconomic network (city as a community-community network), and this

node proactively interacts with surrounding nodes (environments); (2) the coupling, interaction,

and coordination of a community and surrounding environments significantly influence the livabil-

ity, vibrancy, and quality of a community. Based on the above observations, we aim at developing

a function that map the surrounding contexts to a well-planned configuration tensor. Recently,

the development of deep generative and adversarial learning provides a great potential for solving

this problem. We reformulate the task into an adversarial learning paradigm, in which: (1) A neu-

ral generator is analogized as a machine planner that generates a land-use configuration; (2) The

generator generates a configuration in terms of the feature representation of surrounding spatial

contexts; (3) The surrounding context feature representation is learned via self-supervised repre-

sentation learning collectively from spatial graphs. (4) A neural discriminator is to classify whether

the generated land-use configuration is well-planned (positive) or poorly-planned (negative).

(5) A new mini-max loss function is constructed to guide the generator to learn the configuration

patterns of well-planned areas, compared to poorly-planned areas.

Third, how can we evaluate the quality of a generated land-use configuration? This has been

a long-standing challenging question. The most solid and sound validation is to collaborate with

urban developers and city agencies to implement a machine-generated configuration into a target

region to observe the development of the region in the following years. However, the validation

method is not practical in reality. In this article, we design and develop three strategies to assess

the generated configurations: (1) We leverage different distance measurements to measure the

similarity between generated configurations and well-planned configurations. If the distance

is small, it indicates that our generated configurations preserve the overarching distribution

characteristics of well-planned configurations. (2) We develop a scoring model to score the

quality of the generated configurations. Specifically, since we have collected a set of existing

land-use configurations and 0–1 labels (1: well-planned 0: poorly-planned) as training data, we

train a regression model to predict the quality score ranging from 0 to 1. After that, given a

machine-generated configuration as testing data, we use the regression model to predict its
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corresponding score. (3) We use a variety of visualization approaches to visualize the generated

configurations, so domain experts can evaluate the generated quality and rationality.

Our preliminary work in [38] proposed a fundamental automated urban planning framework

to automatically generate land-use configurations. The preliminary framework can be further im-

proved to enhance its stability and efficiency from a computational perspective. For this purpose,

in this journal version, we develop a new conditioning augmentation module adding to the prelim-

inary framework to enhance its performance. Specifically, we first estimate the distribution of the

embedding space of surrounding spatial contexts. Then, we sample embedding vectors from the

estimated distribution of the embedding space to replace the embeddings of surrounding spatial

contexts. The benefit is to use embedding space distribution estimation to augment data and over-

come the sparsity of surrounding spatial context data. Later, we propose a new loss function that

considers the embedding space regularization and standardization of surrounding spatial contexts.

The new loss function can accelerate the convergence and improve the efficiency of learning. In

addition, aside from prediction-based and visualization-based valuation approaches [38], in this

article, we design a distance-based strategy to evaluate the quality of machine-generated configu-

ration plans.

In summary, in both our preliminary work [38] and this extended version, we develop an ad-

versarial learning framework to generate effective land-use configurations by learning from urban

geography, human mobility, and socioeconomic data. Specifically, our contributions are: (1) We de-

velop a latitude-longitude-channel tensor to quantify a land-use configuration plan. (2) We propose

a socioeconomic interaction perspective to understand urban planning as a process of optimizing

the coupling between a community and surrounding environments. (3) We reformulate the au-

tomated urban planning problem into an adversarial learning framework that maps surrounding

spatial contexts into a configuration tensor. (4) We computationally enhance the efficiency and sta-

bility of the proposed framework by devising a conditioning augmentation module via leveraging

a new sampling technique and a new optimization loss function. (5) We develop multiple strategies

(i.e., distance-based, prediction-based, and visualization-based) to validate the effectiveness of our

framework on real-world data.

2 PROBLEM STATEMENT AND FRAMEWORK OVERVIEW

2.1 Definitions

2.1.1 Target Area. Refers to a geographical area, where is centered on a geographical location

(described by latitude and longitude), and the shape of the area is square.

2.1.2 Surrounding Contexts. Refer to the surrounding squares, which wraps the target area

from different directions. The shape of each square in the surrounding contexts is same as the tar-

get area. In our research assumption, we have known the information such as demographic data,

social activity, traffic volume, and so on, of the surrounding contexts. According to the geograph-

ical vicinity and the information of the surrounding contexts, we construct a spatial attributed

graph, in which the vertices are the squares of the surrounding contexts and the attributes of each

vertex are extracted from the information of each square. Figure 2 shows the geographical spatial

relations between a target area and the surrounding contexts, in which different contexts have

different urban utility and characteristics. Our framework aims to generate the land-use configu-

ration of the target area based on the surrounding contexts.

2.2 Problem Statement

As mentioned before, we aim at building up an automated generation framework that generates

land-use configuration of the target area based on the surrounding contexts. Formally, assuming
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Fig. 2. The geographical spatial relations between a target area and the surrounding contexts.

Fig. 3. An overview of the proposed framework. The proposed framework includes four steps: 1) we first col-

lect multiple data sources such as urban community related data (housing prices), point of interests data, and

human mobility data (taxicab GPS traces). We then utilize a spatial graph representation learning module to

learn the representations of surrounding contexts. Finally, we develop an adversarial land-use configuration

generation model to automate planning and generate recommended configurations.

a target area is R, the surrounding contexts of R are [C1 ∼ CK ], and the land-use configuration

for R is M that is a longitude-latitude-channel tensor. Given a spatial attributed graph G that is

constructed by extracting explicit features such as traffic condition, economic development, and

so on, from surrounding contexts [C1 ∼ CK ], we aim at finding the mapping function f : G → M.

The function takes the spatial attributed graphG as input, and outputs the land-use configuration

M. In this article, owing to the shape of the target area is square, the number of the squares in the

surrounding contexts is determined as K = 8.

2.3 Framework Overview

Figure 3 shows an overview of our proposed method (LUCGAN). This framework has two main

phases: (i) surrounding contexts embedding phase; (ii) land-use configuration generation phase.

In the surrounding contexts embedding phase, we first extract explicit features of the surrounding

contexts from multiple aspects, such as value-added space, POI distribution. Then, we model the

eight squares of the surrounding contexts as eight vertices and map the explicit features to the ver-

tices as the corresponding attribute to construct a spatial attributed graph. Next, we employ a graph
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embedding model to preserve the information of the graph into an embedding vector. Through the

above procedures, the final embedding vector represents the whole surrounding contexts. In the

land-use configuration generation phase, we first input the embedding of the contexts into an ex-

tended generative adversarial networks (GANs). Then, the GAN model learns to formulate the

distribution of the well-planned land-use configurations instead of poorly-planned configurations

gradually. Finally, when the model converges, the extended GAN can produce suitable and desired

land-use configurations based on the embeddings of the surrounding contexts.

3 AUTOMATIC PLANNER FOR LAND-USE CONFIGURATION

In this section, we first introduce the strategy to represent surrounding contexts. Then, we de-

tail how to quantify and evaluate the quality of land-use configurations. Finally, we develop an

automated urban planner based on deep generative adversarial paradigm.

3.1 Extraction of Explicit Features of Surrounding Contexts

The surrounding contexts affect the land-use configuration of a target area. For instance, if the sur-

rounding contexts own lots of recreational facilities, in order to avoid waste of resources, we will

not plan lots of recreational buildings in the target area. Instead, we prefer to choose other kinds

of buildings such as commercial or educational buildings to make the target area coexist with the

surrounding contexts in harmony. Thus, based on the observation, during land-use configuration

generation process, it is necessary to take surrounding contexts into consideration. In this article,

we extract the explicit features of surrounding contexts from four aspects:

(1) Value-Added Space. Commonly, the variation of housing price reflects the value-added

space of one area. Thus, we calculate the dynamically changing trend of housing price of the

contexts [C1 ∼ C8] in continuous t months. Here, we take the context C1 as an example to

explain the calculation process. First, we obtain the housing price list among t months. Then,

we calculate the changing trend of housing price by using the current housing price to sub-

tract the previous housing price. So we get the changing trend ofC1 as v1 = [v1
1 ,v

2
1 , . . . ,v

t−1
1 ],

where vi
1 represents the value of the changing trend at ith month. Finally, we collect the

housing price changing trend of all contexts together. The collected result is denoted as

V = [v1, v2, . . . , v8], where V ∈ R8×(t−1) .

(2) POI Ratio. Since different POIs provide different services for residents, the ratio of different

kinds of POIs can reflect the utility of one area. Therefore, we calculate the POI ratio of the

contexts [C1 ∼ C8]. Here, we take C1 as an example to explain the calculation process. First,

we count the total number of POI belonging to each POI category inC1, respectively, to form

a vector. Then, we divide each item in the vector by the number of all POIs in C1 to obtain

the POI ratio vector, denoted by r1 = [r 1
1 , r

2
1 , . . . , r

m
1 ], where r i

1 represents the ratio of ith POI

category and m is the number of POI categories. Finally, we collect the POI ratio vector of

all contexts together, denoted as R = [r1, r2, . . . , r8], where R ∈ R8×m .

(3) Public Transportation. Public transportation (i.e., bus, subway) is one of the most impor-

tant travel modes due to its convenience and economy. We need to consider the public trans-

portation of the contexts C1 ∼ C8. Here, we take C1 as an example to show the calculation

details. To capture the characteristics of public transportation, we extract features based on

bus trajectory and bus station data from five perspectives: (1) the leaving volume of C1 in

one day, denoted by o
1
1; (2) the arriving volume ofC1 in one day, denoted by o

2
1; (3) the transi-

tion volume ofC1 in one day, denoted by o
3
1; (4) the density of bus stop ofC1, denoted by o

4
1;

(5) the average balance of smart card ofC1, denoted by o
5
1. Thus, the feature vector ofC1 can
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Fig. 4. The spatial structural relation between a target area and its surrounding contexts.

be denoted as [o1
1,o

2
1, . . . ,o

5
1]. Finally, we collect the feature vectors of all contexts together.

The collected result is denoted as O = [o1, o2, . . . , o8], where O ∈ R8×5.

(4) Private Transportation. Private transportation (i.e., taxi, cab) is another important travel

mode for individuals due to its flexibility. We extract the features of private transportation of

the contexts [C1 ∼ C8] based on taxi trajectory data from five perspectives. Taking C1 as an

example, the definitions of the fie features are as follows: (1) the leaving volume ofC1 in one

day, denoted byu1
1; (2) the arriving volume ofC1 in one day, denoted by u2

1; (3) the transition

volume ofC1 in one day, denoted by u3
1; (4) inC1, the average driving velocity of taxis in one

hour, denoted byu4
1; (5) inC1, the average commute distance of taxis in one hour, denoted by

u5
1; Then, the feature vector of private transportation is denoted as [u1

1,u
2
1, . . . ,u

5
1]. Finally,

we collect all context features together, denoted as U = [u1, u2, . . . , u8], where U ∈ R8×5.

After that, we obtain an explicit feature set from the contexts C1 ∼ C8. The set contains four

kinds of features [V,R,O,U], which describes the surrounding contexts from aforementioned per-

spectives.

3.2 Constructing Spatial Attributed Graphs with Explicit Features as Node Attributes

The surrounding contexts wrap the target area from different directions, resulting in spatial cor-

relation among areas. To capture the spatial correlations among the areas, we construct a spatial

attributed graph. Specifically, Figure 4 shows the graph structural relation between a target area

and its surrounding contexts, where the blue vertices represent the surrounding contexts; the or-

ange vertex indicates the target area; the edge between two vertices reflects the spatial connectivity

between them.

Then, we map the explicit features [V,R,O,U] to the spatial graph structure as the correspond-

ing node attributes. Figure 5 expresses the mapping process. The final spatial attributed graph not

only reflects the spatial correlation among different context squares but also depicts the utility

characteristics of each square.

3.3 Learning Representation of Spatial Attributed Graphs

Figure 6 shows the spatial representation learning framework that preserves explicit features and

spatial relations of the spatial attributed graph into a low-dimensional vector. Formally, we denote

the spatial attributed graph as G = (X,A), where A ∈ R8×8 is the adjacency matrix that expresses

the accessibility among different nodes; X ∈ R8×(t+m+9) is the feature matrix of the graph, here,

X = [V,R,O,U]. In order to get the latent graph embedding z, we minimize the reconstruction

loss between the original graph G and the reconstructed graph Ĝ through the encoding-decoding

paradigm.
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Fig. 5. The illustration of constructing a spatial attributed graph: Each feature vector is mapped to the cor-

responding vertex by a column-wise strategy.

Fig. 6. The proposed representation learning module to obtain surrounding context representations by min-

imizing the reconstruction loss of spatial attributed graphs.

The encoding part has two GCN layers. The first GCN layer takes X and A as input and outputs

the feature matrix of low-dimensional space X̂. Thus, the encoding module can be formulated as

X̂ = GCN1 (X,A) = RELU
(
D̂
− 1

2 AD̂
− 1

2 XW1

)
, (1)

where D̂ ∈ R8×8 is the diagonal degree matrix, W1 ∈ R8×M is the weight matrix of theGCN1 where

M is the output dimension of the layer, and the whole layer is activated by RELU function. The

second GCN layer takes X̂ and A as input and then outputs the mean value μ and the variance value

δ2 of normal distribution. So the calculation process of the second GCN layer can be formulated as

μ, loд(δ2) = GCN2 (X̂,A) = D̂
− 1

2 AD̂
− 1

2 X̂W2, (2)

where W2 ∈ RM×H is the weight matrix of GCN2. Here, H is the output dimension of the GCN2

layer. Next, we use the reparameterization trick to obtain the latent representation z ∈ R8×H :

z = μ + δ × ϵ, (3)

where ϵ ∼ N (0, 1).
The decoding module takes the z as input and then outputs the reconstructed adjacent matrix

Â. Hence, the decoding step can be formulated as

Â = σ (zz
T ), (4)
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Fig. 7. The construction of longitude-latitude-channel configuration tensor. Specifically, we first collect the

information such as dwelling, market, and so on, of an area. Then, we extract and quantify the information

of the area as a multi-channel tensor, where the value of each entry is the number of POIs with respect to a

specific category in a specific latitude range and longitude range.

where σ represents the decoding layer activated by sigmoid function. Moreover, zz
T can be con-

verted to ‖z‖‖zT ‖ cosθ . The inner product operation is beneficial to capture the spatial correlation

among different contexts.

During the training phase, we minimize the joint loss function L, denoted as

L =
N∑

i=1

KL[q(z|X,A) | |p (z)]︸�������������������︷︷�������������������︸
KL Divergence between q (.) and p (.)

+

Loss between A and Â︷����������︸︸����������︷
S∑

j=1

���A − Â
���

2
, (5)

where N is the dimension of z; S is the total number of the vertices in A; q represents the real

distribution of z; p represents the prior distribution of z. L includes two parts, the first part is

the Kullback–Leibler (KL) divergence between the standard prior distribution N (0, 1) and the

distribution of z, and the second part is the squared error between A and Â. The training process

try to make Â get close to A and let the distribution of z get close to N (0, 1). When the model

converges, z contains all information of the surrounding contexts.

3.4 Land-Use Configuration Quantification and Quality Measurement

Land-use configuration indicates the location of different kinds of POIs in one area. To make a

machine perceive and understand the configuration, we construct a longitude-latitude-channel

tensor as the format of the configuration, where one channel denotes one POI category and the

whole tensor represents the POI distribution in the area. Figure 7 shows the construction process

of the longitude-latitude-channel configuration tensor. We first divide an unplanned target area

into n × n squares. Then we count the number of POIs belonging to each POI category in each

square entry and fill the number into the corresponding entry, respectively. In this way, we obtain

the land-use configuration tensor. If we pick up one channel from the tensor, we can learn about

the POI distribution of the corresponding POI category in the whole area.

Owing to we expect the generation framework can generate well-planned land-use configura-

tion, the next big question is how to evaluate the quality of the configuration? In the classical

urban planning domain, there are no general evaluation standards since the complexity of urban

systems. To make our framework can produce the land-use configurations that people satisfied

with, we provide a quality hyper-parameter Q to evaluate the quality of land-use configurations.

In our experiment,Q is the combination of the POI diversity and the check-in frequency. Formally,

we first count the total frequency number of mobile check-in events of an area, which reflect the

social activity intensity, denoted by f req. Then, we calculate the total number of different POI

categories of the area as the POI diversity, which depicts the completeness of urban functions,
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Fig. 8. The model structure of LUCGAN.

denoted by div . Next, we incorporate the two indicators together by the formula Q =
2×f r eq×div

f r eq+div

[51]. If Q > threshold, the configuration of the area is regarded as a well-planned configuration,

otherwise, it is justified as a poorly-planned configuration. Here, the value of threshold is deter-

mined by given requirements.

3.5 Land-Use Configuration Generative Adversarial Networks

Recently, GANs achieve tremendous achievements and reveal strong imaginative and generative

abilities. It motivates us to formulate the land-use configuration generation task into the learning

paradigm of GAN.

In our preliminary version [38], we propose a land-use configuration GAN (LUCGAN), and

the network structure of LUCGAN as illustrated in Figure 8. In LUCGAN, the generator generates

land-use configuration based on the embeddings of surrounding contexts. The discriminator pro-

vides feedback to the generator for generating configurations close to well-planned configurations

instead of poorly-planned configurations.

The Algorithm 1 shows the training process of LUCGAN. Specifically, in one training iteration,

we first update the parameters of the discriminator for κ times, then learn the parameters of the

generator for one time based on the current discriminator. For the updating process of the discrim-

inator, we sample m well-planned configurations, surrounding context embeddings, and poorly-

planned configurations, respectively. We utilize them to maximize the loss function illustrated in

line 10 of Algorithm 1. Intuitively, we expect the discriminator to provide positive feedback for

well-planned configurations, and negative feedback for poorly-planned and generated configura-

tions. In this way, the discriminator improves the distinguishing ability for land-use configurations.

For the updating process of the generator, we sample m surrounding context embeddings firstly.

Then, we minimize the loss function shown in line 14 of Algorithm 1. Intuitively, we aim at utilizing

the discriminator to improve the generative ability of the generator for producing data structures

similar to well-planned configurations.

However, the embeddings of the surrounding contexts come from a feature space constructed

by spatial attributed graphs. Owing to the small number of graphs, the distribution of them in

the feature space is sparse and discrete, which causes the learning process of the GAN model

unstable. To overcome this limitation and improve model performance, we propose an enhanced

framework, namely LUCGAN+, and the network structure as shown in Figure 9. Compared with

Figure 8, we add a conditioning augmentation module [54] into our framework. Specifically, we

first assume the prior distribution of the surrounding contexts embeddings is a normal distribution.
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Fig. 9. The model structure of LUCGAN+.

ALGORITHM 1: The training process of LUCGAN. Here, G denotes the generator, D denotes the dis-

criminator. We adjust the hyperparameter κ to change the updating frequencies of the parameters of the

discriminator.

1 // start training.

2 for number of training iterations do

3 // update discriminator firstly.

4 for κ steps do

5 Samplem well-planned land-use configuration samples
{
E

1,E2, . . . ,Em
}
.

6 Samplem surrounding context embeddings
{
z

1, z2, . . . , zm
}
.

7 Generate land-use configurations by generator,
{
F

1, F2, . . . , Fm
}
, F

i = G (zi ).

8 Samplem poorly-planned land-use configurations
{
T

1,T2, . . . ,Tm
}
.

9 Update the discriminator by maximizing the following loss:

10 �θd

1
m

∑m
i=1[loд(D (Ei )) + loд(D (1 − F

i )) + loд(D (1 − T
i ))].

11 // update generator secondly.

12 Samplem context information embedding samples
{
z

1, z2, . . . , zm
}
.

13 Update the generator by minimizing the following loss:

14 �θд

1
m

∑m
i=1 loд(1 − D (G (zi ))).

Then, we estimate the mean and variance of the distribution based on the original embeddings.

Next, we sample a vector from the distribution and combine it with a vector sampled from standard

normal distribution as the input vector of the model. This process improves the model performance

because it mitigates the discreteness and sparsity of original graphs in the feature space.

In addition, owing to the differences of the model structure between LUCGAN and LUCGAN+,

we customize a new training algorithm for LUCGAN+ as shown in Algorithm 2. Compared with

Algorithm 1, there are two improvements: (1) conditioning augmentation module (line 4–7 in Algo-

rithm 2); (2) loss function of the generator (line 19 in Algorithm 2). For the conditioning augmenta-

tion module, we calculate the mean μs and the variance δs based on original surrounding context

embeddings, respectively. Then, we utilize reparametrization trick to sample a vector from normal

distributionN (μs ,δs ), and concatenate the vector with a vector sampled from normal distribution

N (0, 1) as the surrogate context embeddings η. For the learning process of the discriminator, the

main logic is the same as Algorithm 1, we only replace the surrounding context embeddings z with

η. For the loss of the generator, besides improving the generative capability of the generator, we
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ALGORITHM 2: The training process of LUCGAN+. Here, G denotes the generator, D denotes the

discriminator. We adjust the hyperparameter κ to change the updating frequencies of the parameters of

the discriminator.

1 // start training.

2 for number of training iterations do

3 // Conditioning Augmentation.μs ,δs are mean and variance respectively. W() , b()

are weight and bias of the corresponding item respectively. ϵ () indicates that
sampling a vector from normal distribution N (0, 1).

4 Samplem context information embedding samples Z =
{
z

1, z2, . . . , zm
}
.

5 μs = RELU (Wμ · Z + bμ );

6 δs = RELU (Wδ · Z + bδ ).

7 η = Concatenate ((μs + δs · ϵs ), ϵc ).

8 // update discriminator firstly

9 for κ steps do

10 Samplem well-planned land-use configurations
{
E

1,E2, . . . ,Em
}
.

11 Collectm vectors as context embeddings thorough line 6
{
η1,η2, . . . ,ηm

}
.

12 Generate land-use configurations by generator,
{
F

1, F2, . . . , Fm
}
, F

i = G (ηi ).

13 Samplem poorly-planned land-use configurations
{
T

1,T2, . . . ,Tm
}
.

14 Update the discriminator by maximizing the following loss:

15 �θd

1
m

∑m
i=1[loд(D (Ei )) + loд(D (1 − F

i )) + loд(D (1 − T
i ))].

16 // update generator secondly.KL means Kullback-Leibler divergence

17 Collectm vectors as contexts embeddings thorough line 6
{
η1,η2, . . . ,ηm

}
.

18 Update the generator by minimizing the following loss:

19 �θд

1
m

∑m
i=1 loд(1 − D (G (ηi ))) + KL(N (μs ,δs ) | | N (0, 1)).

also minimize the KL divergence betweenN (μs ,δs ) andN (0, 1), which enhances the smoothness

of the surrounding context embeddings in the feature space and avoids overfitting.

4 EXPERIMENT RESULTS

In this section, we conduct extensive experiments and case studies to answer the following ques-

tions: Q1. Is our proposed automatic planner effective for generating land-use configurations? Q2.

We split an area into n × n squares for quantifying land-use configurations. What is the influ-

ence of the square size for generating configurations? Q3. What are the differences between the

contexts of well-planned configurations poorly-planned configurations? Q4. What are the differ-

ences of land-use configurations generated by our framework when facing with different planning

goals? Q5. What does the generated result for each POI category look like in a generated land-use

configuration?

4.1 Data Description

We use the following datasets for evaluation: Residential Community: The residential commu-

nity dataset contains 2990 residential communities in Beijing.1 Each community is centered by

a geographic point (described by latitude and longitude). POI: The POI dataset includes 328668

POIs in Beijing.2 Each POI item includes latitude, longitude, and the corresponding POI category.

1http://www.soufun.com/.
2https://www.openstreetmap.org/.
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Table 1. POI Category List

code POI category code POI category

0 road 10 tourist attraction

1 car service 11 real estate

2 car repair 12 government place

3 motorbike service 13 education

4 food service 14 transportation

5 shopping 15 finance

6 daily life service 16 company

7 recreation service 17 road furniture

8 medical service 18 specific address

9 lodging 19 public service

Table 1 shows the detailed information of POI category. Taxi Trajectories: The taxi trajecto-

ries are collected from a Beijing taxi company.3 Each trajectory contains trip ID, distance (m),

travel time (s), average speed (km/h), pick-up and drop-off time, pick-up and drop-off point. Pub-

lic Transportation: The public transportation dataset includes bus transactions in Beijing from

2012 to 2013, which contains 718 bus lines, 1734,247 bus trips.4 Housing Price: The housing price

dataset is collected from a Chinese real estate website,5 which contains the housing price of res-

idential communities of Beijing from 2011 to 2012. Check-In: The check-in dataset contains the

Weibo6 check-in records in Beijing from 2011 to 2013. The data format of one record is: longitude,

latitude, check-in time, and check-in place.

4.2 Evaluation Metrics

We aim at generating land-use configurations that are similar to well-planned configurations. To

evaluate the generative performance, we calculate the difference between the distribution of well-

planned configurations Y and the distribution of generated configurations Ŷ . The less distribution

difference is, the better generative performance will be.

(1) Kullback–Leibler (KL) Divergence: KL(Y | |Ŷ ) =
∑
Y (x ) · lnY (x )

Ŷ (x )
, where x is a test sample.

(2) Jensen–Shannon (JS) Divergence: JS(Y | |Ŷ ) = 1
2 KL(Y | | Y+Ŷ

2 ) + 1
2 KL(Ŷ | | Y+Ŷ

2 ).

(3) Hellinger Distance (HD) : HD (Y | |Ŷ ) = 1√
2
‖
√
Y −
√
Ŷ ‖2.

(4) Wasserstein Distance (WD) :WD (Y | |Ŷ ) = in f
γ∼Γ(Y ,Ŷ )E(x,y )∼γ ‖x − y‖, where Γ(Y , Ŷ ) is a

set of joint distribution between Y and Ŷ ; γ is a joint distribution of Γ; x ,y are two samples

sampled from γ ; E| |(.) | | is the expectation of distances between any two samples.

4.3 Baseline Methods

We compare the performance of our journal version framework (LUCGAN+) against the following

baseline models:

(1) DCGAN: is an extension for traditional GAN, which utilizes convolutional layer and convo-

lutional transpose layer in the generator and discriminator, respectively [32].

3https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/.
4https://www.beijingcitylab.com/data-released-1/data1-20/.
5http://www.soufun.com/.
6https://open.weibo.com/wiki/2/place/pois/add_checkin.
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(2) WGAN: is a new GAN training framework, which improves the stability of learning and

provides meaningful learning curve for debugging and hyperparameter adjustment [4].

(3) WGANG P : utilizes gradient penalty to replace clipping weights of WGAN, which enhances

the performance of WGAN further [16].

(4) LUCGAN: is the conference version of our land-use configuration GAN, which is capable

of generating the configurations based on the surrounding contexts [38].

To further study the generated land-use configurations, we adopt two new methods: scoring

model and visualization. For the scoring model, we train a machine learning model to learn the

scoring criteria that provide high score for well-planned configurations and low score for poorly-

planned configurations. After we obtain all testing samples, the model can be used to evaluate

the quality of generated results. For the visualization, we visualize the generated results in heat

map, pie chart, 3d-bar chart for checking the POI distribution. We conduct all experiments on a

x64 machine with Intel i9-9920 × 3.50 GHz CPU, 128 GB RAM, and Ubuntu 18.04.

4.4 Hyperparameters and Reproducibility

In our experiments, first, to obtain the embedding of surrounding contexts (Section 3.3), we employ

a VGAE [20] composed of an encoder and a decoder. The encoder contains three graph convolu-

tional neural layers. The decoder only has one reconstructed layer. We perform Adaptive Moment

Estimation (Adam) to optimize the VGAE model with a learning rate of 0.005 for 300 epochs. The

dimension of surrounding contexts’ embedding is set to 100. Second, to quantify the quality of

land-use configurations (Section 3.4), we set the value of the hyper-parameter Q to 0.5. Third, our

planner LUCGAN+ consists of a generator and a discriminator (Section 3.5). We optimize the gen-

erator by Adam with a learning rate of 0.0001. We perform Stochastic Gradient Descent (SGD)

to optimize the discriminator with a learning rate of 0.0001 and a momentum of 0.95. The whole

optimizing process continues for 50 epochs. To make other researchers easily reproduce our ex-

periments, we release the code and data by Dropbox.7

4.5 Overall Performance (Q1)

To validate the effectiveness of our model, we evaluate the gap between the distribution of well-

planned configurations and the distribution of generated configurations in terms of KL Divergence

(KL), JS Divergence (JS), Hellinger Distance (HD), and Wasserstein Distance (WD). As Figure 10

shows, compared with the best performance of baseline models (WGAN, WGANGP , DCGAN),

LUCGAN+ improves 16.2%, 0.25%, 28.4%, 48.6% in terms of KL, JS, HD, and, WD, respectively. This

observation indicates that LUCGAN+ can capture more characteristics of the well-planned con-

figurations compared with other baseline models. In addition, another interesting observation is

that compared with LUCGAN, LUCGAN+ increases 8.92%, 0.23%, 8.43%, 4.32% in terms of KL, JS,

HD, and WD, respectively. A potential interpretation for the observation is that the conditioning

augmentation module and the new training approach of LUCGAN+ makes the learning process

more stable and effective.

4.6 Study the Influence of the Square Size for Generating Land-Use

Configurations (Q2)

To quantify the land-use configuration, we divide an area into n × n squares to collect the POI

distribution information. To study the influence of the square size for generation, we vary n = 5,

n = 10, n = 25, n = 50, n = 100 to conduct experiments. Here, the smaller value of n is, the larger

7https://www.dropbox.com/sh/16pk55efb9fzm2j/AACsosXxHtfQKXKjmL0NrOn1a?dl=0.
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Fig. 10. Overall performance for land-use configuration generation.

size of square is. Figure 11 shows the performance of all models when facing different square sizes

in terms of KL Divergence, JS Divergence, HD, and WD. We find that with the increase of the

square size, the value of all metrics decreases. A possible explanation for the observation is that

when the square size is larger, the distribution of the land-use configurations becomes simpler.

The generative models can capture the characteristics of the distribution of the configurations

very easily, thus, the values of all metrics become smaller. However, the large square size loses

much information about urban planning details of the land-use configuration. Another interesting

observation is that LUCGAN+ outperforms other baseline models in terms of all evaluation metrics

when n = 100. But for some smaller n values, LUCGAN + is slightly worse than LUCGAN. A

potential reason for the observation is that LUCGAN is enough to capture the pattern of land-use

configurations collected by smaller n values. Although the conditional augmentation module of

LUCGAN+ can improve robustness, in this situation, such module may cause the model to a slightly

underfitting. However, in reality, we should avoid collecting land-use configurations under small

n values. Because such configurations lose many planning details, which is harmful to producing

effective urban plans.

4.7 Study the Surrounding Contexts of Different Configurations (Q3)

Our framework generates land-use configurations based on the corresponding surrounding con-

texts. Thus, the surrounding contexts have strong influence on the generation of the land-use

configuration. To observe the distribution of the surrounding contexts, we visualize the embed-

dings of the surrounding contexts on 2-dimensional space. Specifically, we first randomly choose

500 embeddings of the surrounding context of well-planned configurations and poorly-planned

configurations, respectively. Then, we utilize T-SNE algorithm [37] to reduce the dimension of the

embeddings into two. Next, we visualize the embeddings on 2-dimensional space, as illustrated in

Figure 12. We find that the pattern of the well-planned configurations contexts is different from the

pattern of the poorly-planned configurations contexts, which indicates that our research intuition,

that generates the land-use configurations based on the surrounding contexts is reasonable.
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Fig. 11. The influence of square size for the generation of land-use configurations.

Fig. 12. Visualization for the surrounding contexts of well-planned and poorly-planned configurations.

4.8 Scoring Model Evaluation for Generated Land-Use Configurations (Q1)

To validate the effectiveness of LUCGAN+ further, we build a scoring model. As illustrated in

Figure 13, LUCGAN+ owns the highest quality score compared with other baseline models, which

indicates the superiority of LUCGAN+. Meanwhile, it also shows that the scoring model can be

regarded as an evaluation method for evaluating the generation of the land-use configurations.

4.9 Study the POI Ratio of Generated Configurations Under Different Q (Q4)

In our framework, we leverage a hyperparameter Q to evaluate whether a land-use configura-

tion is well-planned or poorly-planned. When individuals have different urban planning goals, the

meanings of Q are different. To validate the utility of Q , we conduct two generative tasks: (1) Q is

used to determine whether a land-use configuration is vibrant; (2) Q is used to validate whether a
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Fig. 13. The quality score for different generated methods.

Fig. 14. Comparison of POI ratio between generated and original configurations under different Q .

land-use configuration is living convenient. We visualize the POI ratio of generated configurations

and original configurations under the twoQ settings as shown in Figure 14, in which the numbers

0 ∼ 19 denote different POI categories that are shown in Table 1, and the grey percentiles indicate

the proportions of different POI categories in the corresponding configuration. Compared with

Figures 14(a) and (c), we find that for the vibrant configuration, POI category 4 (food service), 5

(shopping), 7 (recreation service), and 11 (real estate) cover a large portion. This is reasonable be-

cause a vibrant configuration always owns many POIs related to economics and social activities;

For the living convenient configuration, POI category 12 (government place), 17 (road furniture),

and 19 (public service) occupy the majority. A reasonable explanation is that a configuration is

living convenient when it contains many POIs related to public services and traffic conditions.

The two observations validate that LUCGAN+ can produce the customized land-use configuration

utilizing Q according to people’s requirements. In addition, compared with Figures 14(a), (b), (c),
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Fig. 15. Comparison of POI distribution between generated and original configurations under different Q .

and (d), another interesting observation is that the POI categories in generated configurations are

more complete than the original configurations. A potential interpretation is that LUCGAN+ not

only captures the characteristics of the specific kind of land-use configuration but also includes

new design elements into the generated configuration.

4.10 Study the POI Distribution of Generated Configurations Under Different Q (Q4)

To further understand the utility of Q and observe the differences between generated and original

land-use configurations, we visualize the configurations into a 3-dimensional space as shown in

Figure 15, in which the left color bar indicates the mapping relations between the number of POI

categories and colors; the right part reflects the POI distribution of the configuration; the height

of each bar indicates the number of POIs at the corresponding position. A careful inspection for

Figure 15(a) and (c) shows that the generated configurations are organized and contain enough

planning information for implementation in realistic. In addition, another interesting observation

is that the generated configurations contain more dense POI distribution compared with original

configurations. A potential interpretation is that LUCGAN+ prefers to produce dense POI distri-

bution, because it’s easy to capture the correlation among different POIs.

4.11 Study the Generated Situation of Each Channel in Generated Configurations (Q5)

We quantify a land-use configuration as a longitude-latitude-channel tensor. So, what is the gen-

erated situation for each channel (POI category)? To check it, we visualize the POI distribution of
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Fig. 16. Visualization for different POI categories of one generated configuration.

each channel. The visualization results are shown in Figure 16, in which the darker color of the

block indicates the number of POI in the corresponding block is larger. An interesting observa-

tion standing out is that the POI distributions of different categories show their unique patterns.

For example, transportation pots are more concentrated, while food service related POIs are more

dispersed across the area; the distribution of car service spots is very similar to the recreation ser-

vice, and the possible reason is that recreation service spots may occupy many parking lots which

potentially attract car services. The observation shows that LUCGAN+ is capable of capturing char-

acteristics of POI distribution of different categories at the same time. From another perspective,

the observation also reflects that LUCGAN+ is able to capture the mutual interactions and con-

straints among different kinds of POIs. Thus, LUCGAN+ is superior and effective for generating

land-use configurations automatically.

5 RELATED WORK

Spatio-Temporal Data Mining. Spatio-temporal data mining refers to the process of discover-

ing the pattern and knowledge from the data related to space and time [5]. Owing to the spatio-

temporal data is closely relevant to our real life, many researchers attempted to extract the patterns

hidden behind the data for improving the urban life quality [22, 40–42, 45, 58]. For instance, Wang

et al. employed deep learning approaches to forecast the travel demand of individuals based on the

travel order data collected by car-hailing company [44]. Zhao et al. predicted the air quality index

by considering spatio-temporal relatedness [57]. Wang et al. employed reinforcement learning

(RL) and spatial knowledge graph to conduct mobile user profiling [50]. Yuan et al. utilized topic
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model to discover urban functional zone based on POI data and taxi trajectories data [53]. Wang

et al. used peer and temporal-aware representation learning to analyze the driving behavior based

on GPS trajectory data [47]. Liu et al. studied the mobility patterns of traffic flows for bus routing

optimization [23]. Du et al. provided a systematic study to capture the spatio-temporal dynamics

of passenger transfers for crowdedness-aware route recommendations [11]. In this article, to re-

duce the heavy workload of urban planners and accelerate the urban planning process, we expect

to utilize spatio-temporal data for the urban planning pattern discovering.

Representation Learning. The objective of representation learning is to preserve the infor-

mation of original data into a low-dimensional feature space. In general, there are three types of

representation learning models: (1) probabilistic graphical models; (2) manifold learning models;

(3) auto-encoder models. The probabilistic graphical models build a complex Bayesian network sys-

tem to learn the representation of uncertain knowledge buried in original data [31]. The manifold

learning models infer low-dimensional manifold of original data based on neighborhood infor-

mation by non-parametric approaches [59]. The auto-encoder models learn the latent representa-

tion by minimizing the reconstruction loss between original and reconstructed data [30]. In the

spatio-temporal data mining domain, to capture the characteristics of spatial entity (i.e., city, geo-

graphical area), representation learning achieves great success [8, 13, 14, 46, 48]. For instance, to

analyze the individual driving behaviors, Wang et al. utilized representation learning to mine the

spatio-temporal characteristics of GPS trajectory data. [49]. Du et al. proposed a new spatial repre-

sentation learning framework to capture the static and dynamic characteristics among the spatial

entities for predicting housing price [12]. Wang et al. employed a spatio-temporal representation

learning module to extract the features of cyber attack in a graph for cyber attack detection [43]. In

this article, to incorporate the surrounding context characteristics into our framework, we employ

representation learning to preserve the spatial attributed graphs constructed by the contexts into

low-dimensional vectors.

Generative Adversarial Networks. Recently, GANs attract tremendous attention of re-

searchers [55, 56]. GAN algorithms can be classified into three categories from the task-driven

perspective. (1) Semi-supervised learning GANs. Usually, a complete labeled dataset is difficult

to obtain, and the semi-supervised learning GANs can utilize unlabeled data or partially labeled

data to train an excellent classifier [10, 24]. For instance, Akcay et al. designed a semi-supervised

GAN anomaly detection framework that achieved good performance [2]. (2) Transfer learning

GANs. Many researchers utilize the transfer learning GANs to transfer knowledge among differ-

ent domains [18, 35]. For instance, Choi et al. built an unified GAN to translate the images among

different style fields [9]. (3) RL GANs. RL is incorporated into GANs to improve the generative

performance [34]. For instance, Ganin et al. combined reinforce learning and GAN to synthesize

high-resolution images [15]. Aforementioned works indicate that GANs are capable of capturing

the characteristics of the original data distribution and generate new data samples based on the

distribution. Such observation motivates us to utilize the learning paradigm of GANs as the main

framework of our automatic urban planner.

Urban Planning. Urbanplanning is a complex and interdisciplinary research domain [1]. Urban

experts need to consider lots of factors such as government policy, environmental protection,

and more for designing appropriate land-use configurations [1, 27, 29, 39]. Meanwhile, different

areas have various planning goals. For example, Barton et al. focused on constructing an urban

planning solution for human health and well-being [7]. John et al. discussed the relationship

between urban planning and real estate development [33]. Indeed, it is difficult to generate a good

urban planning solution objectively. Recently, with the development of AI, many researchers

focus on making the process of urban planning become smart and automated. These methods

always build up a GAN model to generate the layout of a space based on the realistic architecture
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or designing image [21, 26, 28]. For instance, Albert et al. utilized GANs to generate the complex

and spatial organizations observed in global urban patterns based on footprint data [3]. Bachl et al.

proposed a new conditional GAN framework to learn the architecture features of major cities for

generating the image of buildings, which do not exist before [6]. These works have had a lot of

success, but they have one drawback: they require expert layout data in order to train AI models.

In addition, some researchers use transfer learning to transfer spatial knowledge across many

cities to increase the generalization of spatial AI models and learning efficiency [17, 19]. These

works are capable of perceiving human mobility patterns, which gives a decent foundation for

urban planning, but they are unable to immediately develop successful urban layouts. Compared

to these works, our framework LUCGAN+ has no strict condition for data collection. We focus

on producing customized land-use configurations based on geographical spatial data such as POI,

traffic data, economic data, demographic data, and so on. These data resources are always publicly

available, which makes our framework have good flexibility and generalization.

6 CONCLUSION REMARKS

In order to generate a suitable and excellent land-use configuration solution objectively and reduce

the heavy burden of urban planning specialists, we propose an automatic land-use configuration

planner framework. This framework generates the land-use configuration based on the surround-

ing contexts. Specifically, we first collect a set of land-use configurations and corresponding sur-

rounding contexts. Then, we construct spatial attributed graphs that contain explicit features such

as value-added space, POI distribution, traffic conditions, and more of surrounding contexts, and

preserve the information of the graphs into the surrounding embeddings. Next, we employ our

proposed automatic urban planner model to generate well-planned land-use configurations based

on the embeddings. Finally, through extensive experiments, we find that LUCGAN+ is more effec-

tive and robust than other baseline models. In addition, different square sizes affect the generative

ability of LUCGAN+, so users should adopt a suitable segmentation scheme for land-use config-

urations based on their requirements. Moreover, LUCGAN+ is capable of customizing land-use

configurations based on hyperparameter Q . Furthermore, LUCGAN+ not only generates the POI

distribution of whole area but also provides the generation of each POI category.
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