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Abstract—Edge prediction is a fundamental challenge in
network science, with broad applications, notably in social
networks. It plays a crucial role in unveiling complex system
dynamics by forecasting connections between entities. Our paper
introduces UniMHe (Unified Multi Hyperedge Prediction), a
novel framework for predicting multiple hyperedges associated
with each node using hypergraph representations. We present a
case study focused on crime network analysis, where UniMHe
reveals intricate patterns in criminal activities, including crime
types, locations, and seasonal variations. Our research leverages
extensive historical crime data encompassing geographical infor-
mation, timestamps, points of interest, and crime categories. In
an extensive evaluation, we benchmark UniMHe against state-
of-the-art hypergraph deep learning techniques, highlighting its
superior performance. These findings underscore the significance
of UniMHe across various domains and problem-solving scenar-
ios.

Index Terms—hypergraph, hyperedge prediction, predictive
modeling, crime networks

I. INTRODUCTION

Crime prediction is a multifaceted challenge that has gar-
nered significant attention from law enforcement agencies,
researchers, and technologists alike. Historically, policing
strategies were largely reactive, responding to crimes after they
occurred. However, with the advent of advanced data analytics
and machine learning, there has been a paradigm shift towards
proactive policing. By analyzing historical crime data, patterns
and trends can be identified, enabling law enforcement to
anticipate where and when crimes are likely to occur. Crime
prediction models often operate by identifying links between
various crimes and the factors that influence them. For in-
stance, certain socioeconomic conditions, temporal patterns,
and geographical locations might be correlated with higher
crime rates. By understanding these relationships, predictive
models can provide insights into potential future hotspots or
periods of increased criminal activity. This predictive approach
aims to allocate resources more efficiently and deter potential
criminal activities, ultimately creating safer communities.

Existing research on crime prediction has increasingly ex-
plored graph-based methods to model the intricate relation-
ships between various crime-related factors[1], [2], [3]. These
studies often represent crime data as nodes and edges in
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a graph, capturing spatial and temporal dependencies be-
tween criminal events. By leveraging graph algorithms and
deep learning techniques, such as Graph Neural Networks
(GNNs5s)[4], researchers have been able to uncover hidden
patterns and predict future criminal activities with enhanced
accuracy. Some of these methods treated the task as a link
prediction problem. Notably, Berlusconi et al. [5] adopted
an approach centered on the scrutiny of judicial source
documents, while Lim et al. [6] leveraged a diverse array
of data sources, including corrupted criminal network data,
arrest warrants, and the proximity of police stations. These
efforts, though commendable, primarily employ traditional
graph structures [6] or bipartite networks [7] to model crime
relationships. These methods suffer from a few limitations:
(1) limited relationship representation since they only capture
pairwise relationships, (2) information loss due to aggregation
to fit pairwise relationships, and (3) lack of flexibility in
modeling different types of relationships.

Recognizing that crime-related networks exhibit complex
and multifaceted relationships that may not be fully captured
by standard graph models or bipartite networks and in an effort
to address the limitations mentioned above, we propose using
hypergraphs to model crime data to capture the high-order
relations, allowing complex relationship representations, and
modeling different types of relationships.

In this paper, we introduce a novel framework called
UniMHe, which stands for Unified Multi Hyperedge Pre-
diction. In contrast to graph models, our proposed approach
leverages a diverse set of features, including crime type, points
of interest, and date-related information, for multiple learning
objectives. We construct three distinct types of hyperedges
within our framework:

Location Hyperedges: These hyperedges are designed to
capture spatial-based interactions among criminal incidents.

Crime Type Hyperedges: Crime type hyperedges provide
insights into the distribution of different types of crimes within
the network.

Season Hyperedges: These hyperedges focus on learning
temporal-based relationships among crimes, particularly with
regard to seasonal variations.

Our contributions can be summarized as follows:

o Development of a hypergraph framework for crime

prediction: We introduce a novel hypergraph framework



that allows us to effectively model and analyze three types
of hyperedges, providing a comprehensive view of the
complex relationships within crime networks leading to
improved crime prediction.

o Design a multitask modeling algorithm for multi-
hyperedge prediction: We propose an efficient multitask
modeling algorithm tailored for the prediction of multiple
hyperedges, enhancing our ability to capture various
aspects of crime-related interactions in terms of location,
crime type, and season.

o We perform extensive experiments to measure the ca-
pabilities of hypergraph-based models in comparison
to traditional graph neural network models, especially
for multi-hyperedge prediction tasks: Our hypergraph-
based approach surpasses conventional graph models in
this context. The experimental results demonstrate the
enhanced performance gained from the proposed hyper-
graph method.

II. RELATED WORK

In this part, we focus on crime prediction and hyperedge
prediction articles.

A. Crime Prediction

Crime prediction involves analyzing diverse factors such
as geographic, spatial, and temporal patterns, socio-economic
indicators, demographic traits, and contextual variables. This
complexity is underscored in the research by Yin [8]. A
significant strand of the literature is dedicated to hotspot anal-
ysis, leveraging spatial analysis and Geographic Information
Systems (GIS) to map crime patterns. This approach has been
championed by researchers like Hajela et al. [9], Borges et
al. [10], and Hajela [11], with Zhang and Cheng [12] even
introducing a deep learning framework for predictive hotspot
mapping.

Another focal point is the prediction of crime occurrences,
where time series analysis stands out, analyzing historical
crime data to discern patterns [13], trends, and seasonality
[14], [15]. This domain has seen the application of super-
vised machine learning algorithms [16], [17] and advanced
deep learning techniques [18], [19]. Particularly, graph and
hypergraph-based predictions have been pivotal in extracting
spatial-temporal and external features, with works like [20],
[21], [22], [1], [23], [24] emphasizing their efficacy. Lastly,
the realm of crime classification seeks to discern causal rela-
tionships and pinpoint anomalies, with methodologies ranging
from deep neural networks [25] to graph-based ensemble
classification [26] and pigeonhole multiclass algorithms [27].

B. Hyperedge Prediction

Hypergraphs have emerged as a versatile tool for repre-
senting intricate relationships, proving invaluable across a
myriad of real-life problem domains. Their ability to depict
connections between nodes that extend beyond mere pairwise
interactions allows for a richer and more realistic represen-
tation. This has found applications in diverse areas such as
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social networks, where they’ve been instrumental in predicting
dynamics [28], mining sparse hypergraphs [29], and enhancing
location-based networks [30]. In recommendation systems,
hypergraphs have been harnessed for anomaly detection [31],
hyperbolic embeddings [32], and knowledge graph leveraging
[33]. Furthermore, the pharmacy and life sciences sectors
have benefited from hypergraph-driven advancements in drug
discovery [34], sparse learning [35], and neural network appli-
cations [36]. A detailed survey by Chen et al. [37] categorizes
hyperedge prediction techniques, emphasizing the significance
of Deep Learning-Based Methods. This study particularly
underscores the profound impact of neural network techniques
in navigating the intricate prediction challenges posed by
hypergraph structures.

IIT. PROPOSED METHOD

In this section, we define our problem and explain our pro-
posed method, UniMHe, including the hypergraph construc-
tion, hypergraph neural network application, and hyperedge
prediction task. Figure 1 shows our proposed framework.

A. Problem Definition

Let G = (H,X) be a hypergraph, where H = (N, E)
represents the hypergraph structure of committed crimes and
X encapsulates the node attributes: location [ € L, crime
type ¢ € C, and season s; € S. In this work, we propose a
method for hyperedge prediction that leverages the hypergraph
G to capture intricate relationships between committed crimes
based on their associated attributes. The goal is to predict the
hyperedge H that connects a subset of crime nodes in A/ based
on their associated location [, crime type ¢, and season s;.

B. Framework Overview

We introduce UniMHe (Unified Multi-Hyperedge) as a
solution for predicting multi-hyperedges for each node, as
illustrated in Figure 1 and in Algorithm 1. Our framework
begins with the collection of datasets comprising crime and
points of interest data. Subsequently, we extract various at-
tributes, including crime types, months, years, latitude, lon-
gitude, and region. We proceed to construct a hypergraph in
which nodes represent committed crimes, and the edge types
encompass location edges, crime type edges, and season edges.
The hypergraph neural network is then applied in Shared
Layer. After that, we implement linear layers in Seperated
Layers shown in in Figure 1 to get results for multi-hyperedge
prediction. We describe the details of our framework below:

C. Hypergraph Construction

In our proposed method, a hypergraph H (N, H)
is constructed. The set N denotes the collection of crime
nodes, where each individual node encapsulates information
about a specific crime event, characterized by its location [,
crime type ¢, and season s;. Conversely, I represents the
set of hyperedges. Each hyperedge within the set H is a
specific subset of A/ and symbolizes a potential connection or
relationship amongst the crime events based on their shared
attributes or patterns.
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In our hypergraph construction, we introduce three distinct
types of hyperedges: location hyperedges, crime type hyper-
edges, and season hyperedges.

1. Location Hyperedges: For each unique location /; in the
dataset, we define a location hyperedge Ej, such that:

(1

This hyperedge groups all crime nodes that occur in the
same location ;.

2. Crime Type Hyperedges: Similarly, for each unique
crime type c;, we define a crime type hyperedge E.; as

E;, = {n € N'| n is associated with location /;}

2

This hyperedge groups all crime nodes that are of the same
crime type c¢;.

3. Season Hyperedges: For each unique season si, we
define a season hyperedge E,, such that:

E.;, = {n € N | n is of crime type c;}

3)

This hyperedge groups all crime nodes that took place in the
same season Sy.

These hyperedges allow us to capture relationships and
patterns among crime nodes based on their shared attributes,
facilitating more nuanced and detailed analyses.

E;, = {n € N'| n occurred in season sy}

D. Model Description:

Our proposed model operates on a hypergraph H = (N, H)
where nodes A represent individual crime events and hy-
peredges H capture relationships based on location, crime
type, and season. The model aims to learn a comprehensive
representation of each crime node by aggregating information
from its neighboring nodes and the hyperedges it is associated
with.

Feature Aggregation: The primary step in the model is the
aggregation of features from neighboring nodes. For a given
node n, its updated feature z,, is computed by aggregating
information from all hyperedges it is part of. Specifically, for
each type of hyperedge F; (where t € {l, ¢, s} corresponds to
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Proposed Framework

location, crime type, and season, respectively), the aggregation
is defined as:
1

1
he
YV dn,Et egE:t \/d_e

Here, d,, g, represents the degree of node n concerning
hyperedge type E;, and d. is the degree of hyperedge e. The
aggregated feature &, g, captures the essence of node n with
respect to the hyperedge type E.

Feature Transformation: After aggregating features for
each hyperedge type, the model applies a transformation to
combine these features and refine the node representation. This
transformation is formulated as:

“4)

Tn, B, =

E T Et—i—am

te{l,c,s}

= ((1=B)I+pW) [ (1 - ) 5)

In this equation, 20 is the initial feature of node n, while «
and 3 are hyperparameters that control the balance between the
aggregated features and the original node features. The matrix
W is a learnable weight matrix that adjusts the importance of
different hyperedge types in the final node representation.

Through this methodology, the model effectively integrates
information from all three hyperedge types, yielding a robust
representation of crime nodes that encompasses their location,
crime type, and season.

E. Hyperedge Prediction:

Once the model has learned a comprehensive representation
for each crime node, the next step is to predict the presence or
absence of hyperedges in the hypergraph. This prediction pro-
cess aims to determine potential relationships or connections
between crime nodes based on their refined representations.

For a potential hyperedge I, consisting of a subset of nodes
N, C N, the prediction score S(E),) is computed as a function
of the aggregated node representations within that subset:

>

neN,

S(Ep) = f (6)
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TABLE I
DATASET DESCRIPTION

Node Features
Crime category

Types
Robbery, Burglary, Felony Assault and Dangerous Drugs

Months From January to December
Location 77 disjointed police districts
POI Arts - Entertainment, Automotive - Vehicles etc.

Here, f is a nonlinear function that maps the aggregated
node representations to a score indicating the likelihood of the
hyperedge’s existence. The model is then trained to optimize
this score using a cross-entropy for classification tasks.

Thresholding and Decision Making: After computing the
prediction scores for all potential hyperedges, a threshold 7T’
is set to decide the presence or absence of each hyperedge.
If S(E,) > T, the hyperedge E, is predicted to be present;
otherwise, it is predicted to be absent. The choice of T is
based on the trade-off between precision and recall.

IV. EXPERIMENTS

To assess the performance of our proposed model, UniMHe,
we conducted extensive experiments to validate its effective-
ness.

A. Dataset

We combined crime data [38] and points of interest [39]
dataset collected from the New York City (NYC) Open-Data
portal. In points of interest dataset, there are information
including education, cultural, and recreational facilities. The
crime dataset includes all the crimes committed from Jan 1,
2018, to Dec 31, 2022. Each crime record has crime category,
latitude, longitude, and timestamp information. We focus on
four crime categories in the top 10. We propose to examine
the inherent correlations between regions, crime categories,
and seasons. New York City is divided into 77 disjointed
police districts. We defined these districts using latitude and
longitude. The node features for our model are shown in
Table 1. For each hyperedge, all crimes corresponding to
the characteristics of that hyperedge were collected, and the
ground truth values were labeled accordingly. The hypergraph
includes 124,967 nodes for training and 31,276 nodes for
testing. Test nodes are selected randomly from all data with a
20/80 split.

B. Baselines

We compared our proposed method with seven baselines
that can be categorized into two groups: graph-based methods
and deep hypergraph methods. For the graph-based methods,
we converted our constructed hypergraph to a bipartite graph,
which ensures a fair comparison. In the bipartite graph,
hyperedges are transformed into node types.

Graph-based methods:

e GNN [4]: Predicts crime occurrences by learning node
representations based on the underlying graph structure
and historical crime data.
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Algorithm 1 Unified Multi-Hyperedge Prediction (UniMHe)

Require: Crime dataset with attributes: location [, crime type
¢, season s;
Ensure: Predicted hyperedges for each node
1: Construct hypergraph H = (N, H)
2: for [; in unique locations do
3: Define location hyperedge £,
based on locations
4: for c; in unique crime types do
5: Define crime type hyperedge E. > Create hyperedges
based on crime types

> Create hyperedges

6: for sy in unique seasons do
7: Define season hyperedge Ej,
based on seasons
8: for node n do
for hyperedge type F; do
Compute aggregated feature 7, p,
features from hyperedges

> Create hyperedges

10: > Aggregate

11: Update node feature z,, > Update node feature based
on aggregated hyperedge features
: for potential hyperedge F, do
Compute score S(E,) > Compute prediction score
for potential hyperedges
if S(E,) > T then
Mark hyperedge I, as present > Threshold-based
decision for hyperedge presence
else
Mark hyperedge E), as absent

14:
15:

16:
17:

return Predicted hyperedges> Final set of predicted
hyperedges

e GCN [40]: Classifies crime nodes by leveraging their
spatial and temporal features along with the features of
their neighboring nodes.

o GAT [41]: Predicts crime events by assigning different
importance to different nodes in a neighborhood, allowing
for a more flexible representation.

Deep hypergraph methods:

o UniSAGE [42]: Predicts crime occurrences by aggre-
gating features from a node’s local neighborhood using
sampling-based methods.

o UniGCN [42]: Classifies crime nodes by leveraging their
inherent features and the features of their neighboring
nodes in a unified manner.

o UniGAT [42]: Enhances crime prediction by assigning
varying importance to different neighboring nodes using
an attention mechanism.

o UniGIN [42]: Predicts crime events by employing a graph
isomorphism network that captures structural equivalence
among nodes.

C. Evaluation Metrics

The prediction of hyperedges for each node is a clas-
sification problem. Fl-score and accuracy are computed to
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TABLE II
MULTI HYPEREDGE PREDICTION PERFORMANCE

Overall Location Crime Season
Accurac F1 Score Edge Edge Edge
Yy
Accuracy | Accuracy | Accuracy

GNN 31% 5% 2% 37% 56%
GAT 35% 6% 2% 51% 52%
GCN 25% 1% 3% 37% 34%
UniSAGE 63% 47% 36% 57% 97%
UniGCN 50% 11% 10% 58% 82%
UniGAT 54% 45% 50% 54% 57%
UniGIN 64% 62% 55% 59% 79%
UniMHe 83% 96 % 97 % 51% 99%

evaluate the performance. We calculated the overall F1-score
and accuracy for each model.

TABLE III
ABLATION STUDY

Location | Crime | Season Overall F1 Score
Accuracy
First Task + + 73% 92%
Second Task + + 94% 90%
Third Task + + 76% 76%
Forth Task + 98% 98%
Fifth Task + 51% 50%
Sixth Task + 99% 99%

V. RESULTS AND DISCUSSION
A. Multi Hyperedge Prediction Performance

As shown in Table II, our proposed methodology demon-
strates notable superiority when compared to existing graph
and hypergraph neural network models. Although the overall
accuracy and location edge accuracy of GNN, GAT, and
GCN exhibit similar performance levels, each of these models
excels in specific hyperedges. Specifically, GNN achieves
better results in season edge accuracy compared to other
edge types. On the other hand, GAT demonstrates nearly
equal performance in season and crime edge accuracy re-
sults. In contrast, GCN yields the least favorable outcomes.
Comparing between our model and UniGNN approaches, our
model exhibits superior performance across various metrics.
Particularly, it outperforms all models in terms of overall
accuracy, location edge prediction, and season edge prediction.
Notably, the accuracy in crime edge prediction is quite similar
among the models, with negligible variations.

The success of the UniMHe framework heavily relies on
the quality and completeness of the crime and points of
interest data. Incomplete or inaccurate data may lead to biased
hypergraph construction and impact the overall predictive
performance of the model.

B. Ablation Study

We conducted an ablation study to systematically investigate
the impact of different types of hyperedges on the performance
of our model. The results of this study are presented in
Table III, showcasing the model’s performance under various
combinations of hyperedges. In cases of season and location
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hyperedge types, the model is overfit. This insight emphasizes
the need for a balanced and diverse set of hyperedges to
prevent overfitting issues. Conversely, when using only crime
hyperedges, the model does not learn enough to predict
correctly. This emphasizes the complementary nature of the
information encoded in different hyperedge types. The inclu-
sion of diverse hyperedge types enriches the learning process,
enabling the model to capture intricate relationships within the
hypergraph.

VI. CASE STUDY

In the city of New York, a multitude of criminal activities
takes place on a regular basis. The visualization presented in
Figure 2 provides an overview of the incidents of crime that
occurred in the year 2022, categorized by their types. Within
the context of our model, each recorded criminal occurrence
is represented as a node. The attributes associated with these
nodes encompass critical information such as location, lati-
tude, longitude, time, season, and points of interest linked to
their geographical coordinates. For the purpose of our analysis,
we have identified four distinct crime types, each of which
can be conceptualized as a hyperedge within the hypergraph
model. The primary objective of this paper is to predict the
edges of each crime, determining the location, the crime type,
and the season in which it is likely to transpire.

VII. CONCLUSION

In conclusion, this paper introduces UniMHe, a novel
framework for Unified Multi Hyperedge Prediction, addressing
challenges in hypergraph-based crime network analysis. We
tackle feature extraction and multi-class hyperedge prediction
complexities, advancing predictive models in this domain.
Our innovative framework incorporates crime type, points of
interest, and temporal information, facilitating the construction
of various hyperedge types. Through extensive experiments
and comparisons, UniMHe outperforms traditional graph mod-
els and hypergraph neural networks, particularly in overall
accuracy.
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