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Abstract—Automated detection of depression using Electroen-
cephalogram (EEG) signals is crucial for advanced disease
treatment. However, existing EEG detection models still face
challenges. 1) EEG signals are susceptible to noise interference
and exhibit a high level of randomness. 2) Manual denois-
ing and feature selection potentially introduce human bias.
3) The integrated message propagation across both spatial
and temporal domains is not fully explored. Therefore, this
paper proposes LightK-DSGCN, Enhancing Depression Detec-
tion with Lightweight Kalman Filter-aided Dual-Stream Graph
Convolutional Networks, a novel framework for identifying char-
acteristics EEG patterns of depression patients. LightK-DSGCN
leverages dual-stream graph neural networks to simultaneously
explore spatiotemporal features, effectively capturing the distinc-
tive patterns exhibited by depression patients. Firstly, the EEG
signals are decomposed into temporal and spatial components
at each time point. Then, the temporal features are embedded
using a dilation temporal convolutional network, while the spatial
features are obtained through a graph convolutional network.
Moreover, a lightweight Kalman filter combined with recurrent
neural networks is proposed to denoise and align the spatiotempo-
ral features, enabling the extraction of detailed information from
multiple perspectives. Experimental results on two real-world
datasets demonstrate the superiority of our LightK-DSGCN
over state-of-the-art methods in detecting depression using EEG
signals. LightK-DSGCN provides a promising approach for
automated depression detection in clinical practice. The code
can be found here.

Index Terms—depression detection, EEG, lightweight Kalman
Filter, spatiotemporal feature, dual-stream GCN

I. INTRODUCTION

Depression significantly impairs well-being, with over 350
million affected individuals worldwide in 2023 and an annual
mortality rate exceeding one million lives, as the World
Health Organization (WHO) reported [1]. This alarming data
emphasizes the urgent need for effective depression detection
methods due to its high prevalence and substantial under-
identification. Among various neurobiological techniques,
EEG stands out as an affordable and practical biomarker
for investigating the underlying mechanisms of depression,

thanks to its advantages of high temporal resolution, non-
invasiveness, portability, and affordability [2]. Generally, the
detection of depression using EEG signals aims to unveil
distinctive patterns in individuals with depression. Nonethe-
less, this endeavor is fraught with challenges, primarily arising
from the EEG signal’s susceptibility to noise interference, the
signal patterns’ complexity and non-linearity, and the mutual
dependencies among signal channels. Research on depression
detection in EEG signals is still in its early stages and demands
further investigation, leveraging computational intelligence,
optimization techniques, high-performance computing, and
other innovative approaches [3].

Traditional depression detection models primarily concen-
trate on capturing temporal dependencies. Various techniques,
including ARIMA [4], DFT [5], SVR [6], Wavelet Transform
[7], and deep learning-based approaches such as Convolutional
Neural Network (CNN) [8], and Long Short-Term Memory
(LSTM) [9], have been extensively utilized in modeling EEG
series data. However, none of these methods can handle
the intrinsic geographic dependencies in EEG data, even
though some researchers attempted to tackle this issue through
CNN [10], [11]. To address this challenge, recent approaches
have turned to graph neural networks (GNNs) [12], [13].
However, these methods often aggregate temporal features as
the input for GNNs, overlooking the importance of considering
the spatiotemporal co-evolution of EEG patterns.

Presently, dynamic GNN modeling techniques have gar-
nered considerable attention in various tasks, including node
classification, link prediction, and predicting failure paths in
dynamic graphs [14], [15]. Although various dynamic GNN
models have been proposed, most are not explicitly tailored
to handle the substantial variances that can emerge in EEG
signals for depression detection. Detecting depression in EEG
signals faces the following challenges: (1) Existing trainable
EEG denoising neural networks are limited in accurately
identifying valuable signal patterns. It is still an open
question of how to effectively replace the complex and time-
consuming filtering procedures with trainable deep learning
modules. (2) Previous works rely heavily on manual feature
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extraction to handle the noisy nature of EEG signals. How-
ever, manual denoising could be limited by human cognitive
biases and potentially result in the removal of crucial features.
(3) Current methods for analyzing EEG signals fail to
capture the spatiotemporal dependencies adequately. Most
of the existing methods process spatial and temporal relations
separately while neglecting joint spatiotemporal message pass-
ing.

To tackle these challenges, we present LightK-DSGCN,
a novel spatiotemporal graph neural network for depression
detection in EEG signals. Our approach leverages trainable
denoising modules to conduct end-to-end depression signal
classification results. By integrating denoised spatiotemporal
information, our model exploits normal patterns while mini-
mizing the influence of noise. The main contributions of this
paper can be summarized as follows.

• Designing a novel spatiotemporal model for de-
pression EEG signal detection We introduce LightK-
DSGCN, an innovative model for depression detection in
EEG signals that seamlessly incorporates temporal-spatial
networks to capture comprehensive patterns. LightK-
DSGCN combines spatial and temporal features while
preserving the atomicity of training samples. Addition-
ally, the model leverages diverse neural network archi-
tectures and denoising techniques to encode smooth EEG
series effectively.

• Proposing an end-to-end deep learning architecture
with multiple novel trainable denoising modules In-
stead of complex pre-filtering, LightK-DSGCN identifies
depression samples from normalized EEG signals. Specif-
ically, two trainable denoising modules are incorporated
in LightK-DSGCN. The dilation temporal convolution
module smoothens noisy data along the temporal dimen-
sion and the lightweight Kalman filter rectifies high-noise
features while retaining low-noise features, allowing for
seamless spatial and temporal information integration.

• Conducting comprehensive experiments to prove the
effectiveness of LightK-DSGCN Experiments were per-
formed on two real-world EEG depression datasets to
evaluate the effectiveness and efficiency of LightK-
DSGCN. We employed a ten-cross-validation method
and multiple metrics to compare the performance of
LightK-DSGCN against the performances of the other
depression detection models. The experimental results
demonstrate that our LightK-DSGCN outperforms state-
of-the-art techniques across multiple evaluation metrics.

II. RELATED WORK

A. Time-frequency analysis method

Previous methods typically involved extracting temporal and
spectral features from EEG signals using feature engineering
techniques, followed by using machine learning models to
classify individuals into depressed and healthy categories
[16]–[18]. For instance, Movahed et al. [19] extracted power
features from four EEG frequency bands and four nonlinear

features, achieving a 90% accuracy using a combination of
nonlinear features with classifiers like K-nearest neighbor
(KNN), linear discriminant analysis, and logistic regression
(LR). Similarly, Spyrou et al. [20] estimated EEG data using
orthogonal discrete wavelet transform, employing random for-
est, decision tree, multilayer perceptron (MLP), and Support
Vector Machine (SVM) classifiers with recognition accuracies
ranging from 92.42% to 95.45% [21], [22].

B. Deep learning method
Deep learning approaches have emerged as powerful tools

for depression detection [23]–[25]. Li et al. [26] proposed a
mild depression recognition method based on convolutional
neural networks (CNN), emphasizing the significance of spa-
tiotemporal features in EEG signals. Sharma et al. [27] and
Song et al. [28], combined CNN with LSTM models. Liu et
al. [29] utilized CNN and gated recurrent unit (GRU) to ex-
tract EEG sequence features for depression recognition. Other
studies have focused on constructing brain functional networks
based on EEG signals for depression classification [30]–[32].
Chen et al. [12] developed a GCN with attention mechanisms
for depression detection. Wu et al. [33] introduced a deep
learning method combining a spatiotemporal graph convolu-
tion network (ST-GCN) with a depression-related functional
connectivity network. Zhu et al. [13] calculated coherence-
based functional connectivity features for depression classifi-
cation.

Existing approaches have underutilized the potential of
graph neural networks in analyzing dynamic spatiotemporal
features. In this paper, we propose a novel method called
LightK-DSGCN. By leveraging dynamic graph neural net-
works, LightK-DSGCN effectively explores spatiotemporal
features, enabling the identification of patterns indicating
depression. Through the integration of denoised spatial and
temporal information, LightK-DSGCN restores normal pat-
terns while reducing the impact of noises.

III. PRELIMINARY (LIGHTWEIGHT KALMAN FILTER)
The classic Kalman filter is widely employed in regression

and deep learning models, thanks to its capability to combine
two estimates by minimizing their covariance. Inspired by
[34], we leverage the principal concept of the Kalman filter for
aligning the outputs of the spatial and temporal analysis mod-
ules. The idea of the lightweight Kalman filter is described as
follows. For a value x, consider that there are two independent
estimations x1 and x2, and x is a weighted combination of x1

and x2, described as (1).

x̂ = w1x1 + w2x2 (1)

where w1 and w2 are weights of x1 and x2, w1+w2 = 1. The
expectation of x̂, E(x̂) = w1E(x1)+w2E(x2). As E(x1) and
E(x2) are independent, E([x1 − E(x1)][x2 − E(x2)]) = 0 .
σ2 can then be written as (2).

σ2 = E([x̂− E(x̂)]2)

= w2
1E([x1 − E(x1)]

2) + w2
2E([x2 − E(x2)]

2)

= w1σ
2
1 + w2σ

2
2

(2)
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Let w2 = w and w1 = 1 − w. To minimize σ2, let the
differential between σ2 and w be zero:

dσ2

dw
= −2(1− w)σ2

1 + 2wσ2
2 = 0 (3)

The analytical solution of w is:

w =
σ2
1

σ2
1 + σ2

2

(4)

x̂ and σ2 are:

x̂ =
σ2
2x1 + σ2

1x2

σ2
1 + σ2

2

, σ2 =
σ2
1σ

2
2

σ2
1 + σ2

2

(5)

Based on this mechanism, our LightK-DSGCN model con-
siders two estimations, x1 and x2, generated by two different
models. From Equation 5, it can be inferred that the merged
estimation x̂ is the weighted sum of x1 and x2, where the
weights are σ2

2

σ2
1+σ2

2
and σ2

1

σ2
1+σ2

2
respectively.

IV. LIGHTK-DSGCN MODEL

Our LightK-DSGCN framework comprises five modules:
feature acquisition (F-acquisition), spatial feature stream (SF-
stream), temporal feature stream (TF-stream), Lightweight
Kalman filter alignment (LKF-alignment), and detection mod-
ule, as shown in Fig. 1.

At each timestamp t, the SF-stream module takes the adja-
cency matrix and time sequence data as input, while the TF-
stream module processes the preprocessed time sequence data.
The SF-stream module uses a GCN block to encode spatial-
dependency features, followed by an LSTM layer. Similarly,
the TF-stream module encodes multi-scale temporal features
using a dilation TCN block and an LSTM layer. In the LKF-
alignment module, the outputs from the SF-stream and TF-
stream modules are merged using the lightweight Kalman filter
and LSTM layers, and these merged features are then passed to
the next timestamp t+1. At the final timestamp T , the outputs
from the LKF-alignment module are fed into the detection
module, which generates the final detection results.

A. Feature acquisition

This module extracts distinctive spatiotemporal character-
istics from EEG signals captured by each electrode. The
extracted temporal features are used in the TF-stream module,
while the EEG networks are utilized in the SF-stream module
to obtain spatial features of the EEG signal.

1) Temporal feature extraction: EEG signals are always
prone to contamination and artifacts due to environmental
and physiological factors. Therefore, it needs to preprocess
the raw EEG data to obtain clean and artifact-free signals
for further research, including re-referencing, filtering, in-
terpolating bad channels, and removing EEG artifacts [35].
After this preprocessing pipeline, we successfully eliminate
unwanted components, such as eye blinks, muscle artifacts,
and environmental interference. The process concludes with
the extraction of more refined data, ready for subsequent
feature extraction.

Temporal feature extraction aims to construct a feature
matrix for each participant. Assuming there are N electrodes
on the EEG cap, each participant can provide N EEG signal
sequences. We divided each signal series into T segments of
length l. According to the predetermined sampling frequency,
each segment comprises F sampled values of the EEG signal,
thereby encompassing F dimensional features in each seg-
ment. Consequently, the EEG matrix attributed to each par-
ticipant is represented as X ∈ RN×T×F , wherein N denotes
the count of electrodes affixed to the EEG cap, T signifies
the quantity of segments in an EEG signal sequence, and
F represents the number of EEG sampling values contained
within each piece.

2) EEG network construction: The EEG network is de-
fined as an undirected graph, denoted as G = (V,E, Â). The
set of nodes V consists of N nodes, each defined by the
fixed position of an electrode. The edges connecting the nodes
are captured in E, and the adjacency matrix representation of
these edges is denoted as Â ∈ RN×N which is obtained by
sparsifying the initial adjacency matrix A ∈ RN×N .

We first constructed initial adjacency matrix A =
{(ai,j)} , i = 0..N − 1, j = 0..N − 1, where ai,j is defined
as the Euclidean distance between nodes i and node j. This
is a dense, weighted, and fully connected graph, where edge
weights indicate the degree of node proximity. Based on
domain knowledge, although each electrode exhibits a certain
level of adjacency with all electrodes, most electrodes are
highly adjacent to a few and weakly adjacent to others.
This property inspires us to perform sparsification on the
initial adjacency matrix A to get our needed EEG network
G = (V,E, Â).

Sparsification techniques retain connections to the near-
est neighbors while breaking connections to less similar
nodes. This approach effectively leverages local information to
counter the low spatial resolution in EEG signals, providing a
more comprehensive and accurate representation of electrode
pair correlations. Moreover, it reduces the impact of noise and
outliers. So, adjacency matrix Â retains only the connections
between each electrode and its K nearest neighboring elec-
trodes. To simplify the process, we set the edge weights be-
tween each electrode and its K nearest neighbors to 1, and the
weights for the remaining edges to 0. After experimentation,
we determined k=4 in this study.

B. SF-stream module

Once the EEG networks are constructed, they are fed to the
SF-stream module, which integrates GCN and LSTM. Unlike
the traditional GCN approach that performs graph convolution
in the frequency domain using the Laplacian matrix and
approximates the aggregation of ”k-hop neighbors” [36], the
SF-stream module employs a straightforward version of GCN
without any approximation.

The method can be seen as a linear combination of weights
assigned to the 1, 2, ..., k-nearest neighbors of each node. This
allows for dynamic adjustment of the neighbor effects through
the coefficients. To compute the weights of the kth nearest
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Fig. 1. LightK-DSGCN model framework. (A) The F-acquisition module extracts spatial and temporal features from raw EEG data, producing the k-hop
adjacent matrix and temporal features X. (B) The SF-stream module integrates GCN and LSTM to encode spatial relations. It takes the k-hop adjacent matrix
and temporal features X as input from the F-acquisition module. (C) The TF-stream module embeds temporal relations using integrated TCN and LSTM.
It takes the temporal features X extracted from the F-acquisition module as input. (D) The LKF-alignment module denoises and merges feature embeddings
from the SF-stream and TF-stream modules using a lightweight Kalman filter and LSTM layers. The output consists of integrated spatiotemporal feature
vectors. (E) The detection module generates detection results based on the feature vectors obtained from module (D).

neighbors, the adjacency matrix is self-multiplied k times. The
resulting matrices A,A2, ..., Ak from the 1 to the kth power
of the adjacency matrix are stacked together, forming an N ×
(k × N) matrix. Next, row-wise normalization is applied to
the stacked matrix, taking into account the spatial relations
of each node independently. The graph convolution feature
GCt ∈ RN×N is computed as (6).

GCt = (Wgc ⊙ norm([A⊕A2 ⊕ ...⊕Ak])Xt (6)

Where Wgc ∈ RN×(k∗N) represents a trainable weight matrix
for the elements in the adjacency matrices. Xt ∈ RN refers to
the input data at timestamp t. ⊕ denotes a vertical concatena-
tion of matrices, and the row-wise normalization, denoted as
norm, is applied to A⊕A2 ⊕ ...⊕Ak.

The output graph convolution features of each timestamp
are then fed into an LSTM layer. For the recurrent unit of
timestamp t, the input gate it, the output gate ot, the forget
fate ft, and the memory cell state C̃t are computed as (7)-(10).

it = σ(Wi[Ht−1 ⊕GCt] + bi) (7)

ot = σ(Wo[Ht−1 ⊕GCt] + bo) (8)

ft = σ(Wf [Ht−1 ⊕GCt] + bf ) (9)

C̃t = tanh(Wc[Ht−1 ⊕GCt] + bc) (10)

Where Wi, Wo, Wf , and Wc are weights of the matrices and
bi, bo, bf , adn bc are bias. Ht−1 is the hidden state of the last
timestamp. Both of Ht−1 and GCt are of RN×N features.

σ is the sigmoid activation function and tanh is the tangent
activation function.

To address varying weights of relations among nodes at
each timestamp, we introduce a cell state gate into the original
LSTM model. The cell state gate is defined as shown in (11).

C∗
t = (WN ⊙ norm([A⊕A2 ⊕ ...⊕Ak])Ct−1 (11)

Where WN is the matrix used to re-weight the impact of
each node’s neighbors. The final cell state and hidden state
of timestamp t is computed as (12) and -(13).

Ct = ft ⊙ C∗
t−1 + it ⊙ C̃t (12)

Ht = ot ⊙ tanh(Ct) (13)

C. TF-stream module

As mentioned in Section IV-A, the temporal features ex-
tracted at each point serve as input to the TF-stream module,
which combines TCN and LSTM. The TF-stream module
begins with a dilation convolution module that incorporates
original data with multi-scale features and temporal correla-
tions.

The dilation convolution module comprises two branches.
The first branch smoothens the input temporal feature with
three dilation convolution layers. Consider an EEG signal
sample X ∈ RF×N×T with F original features, N channels,
and T timestamps. The convolution layers within this branch
retain the number of timestamps while mixing the features
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ofeach timestamp with its neighboring timestamps, i.e., Xci =
conv(Xci−1), Xci−1 ∈ RFci−1

×N×T , Xci ∈ RFci
×N×T ,

where Fci > F is the number of latent features in convolution
layer i, and Xc0 = X. The feature map can then be considered
as features extracted from segments of timestamps.

The second branch computes node-wise correlations for
each timestamp using the expanded features. Specifically,
the features are first normalized to be distributed as stan-
dard normal distributions. Therefore, the node-wise correla-
tion is analogous to Pearson correlation over temporal seg-
ments, given the Pearson correlation equation Xpc(t, (i, j)) =
E[(Xt,i−X̄t,i)(Xt,j− ¯Xt,j)]

σXt,i
σXt,j

and Xt,i ∼ N (0, 1), Xt,j ∼ N (0, 1).
The effectiveness of Pearson correlation among channels is
proved to be effective in [21]. However, we employ local,
adaptive features instead of global, statistical features.

Finally, Xc3 ∈ RFc3
×N×T and Xpc ∈ RN×N×T are

concatenated along the feature dimension and reshaped into
a F ×N × T tensor for next step.

Following the dilation TCN module, the resulting output is
fed into an LSTM layer. The LSTM implementation is the
same as described in Section IV-B.

D. LKF-alignment module

As mentioned, the EEG data is analyzed separately for
its temporal and spatial characteristics at each time point.
However, this separation of learning can result in slight dispar-
ities between the temporal and spatial relationships within the
data. In this module, we employ a lightweight Kalman filter
approach (described in Section III) to address this issue. The
purpose is to minimize discrepancies between the statistical
distributions of the feature embeddings generated by the TF-
stream and SF-stream modules.

The lightweight Kalman filter approach avoids computa-
tionally intensive matrix multiplications typically found in
traditional filters. Its objective is to scale the output of both the
TF-stream and SF-stream modules at each timestamp with the
corresponding variance of their outcomes. This scaling ensures
a more consistent alignment between the temporal and spatial
feature embeddings. Based on Equation 5, the merged hidden
state is formulated as (14).

Hkf,t =
c ∗ V artc,t ∗Hgc,t + (1− c) ∗ V argc,t ∗Htc,t

V artc,t + V argc,t + c
(14)

where w is a trained parameter in the model. Hkf,t is the
merged hidden state. V argc,t and V artc,t are the variances of
the hidden states of the TF-stream module and the SF-stream
module, respectively. Hgc,t and Htc,t are hidden states of
the TF-stream module and the SF-stream module. The hidden
states of these two modules are then updated as (15) and (16).

H ′
gc,t = (Hgc,t −Hkf,t)⊕Hkf,t (15)

H ′
tc,t = (Htc,t −Hkf,t)⊕Hkf,t (16)

Finally, The output of the TF-stream module and the SF-
stream module is merged with the historical data.

E. Detection module

After merging the spatiotemporal features, the next and final
step is to choose a classifier for detecting depression in EEG
signals.

We design a three-layer MLP with fully connected layers
to serve as the classifier. The MLP processes the input data,
specifically, the merged spatiotemporal features obtained from
the LKF-alignment module. The MLP generates detection
results at the output layer by learning from this input data.
These results indicate the presence or absence of depression
based on the learned patterns from the input data.

V. EXPERIMENT

A. Dataset

The study utilized data from two publicly available datasets:
MODMA [35] and EDRA [21].

The MODMA dataset included a total of 53 participants,
with 24 individuals diagnosed with Major Depressive Disorder
(MDD) and 29 individuals without depression serving as nor-
mal controls. To assess depression, all subjects completed the
Patient Health Questionnaire-9 (PHQ-9) and Generalized Anx-
iety Disorder-7 (GAD-7) [37], with scores above 5 indicating
depression. EEG signals were recorded for a duration of five
minutes while the participants were in a resting state with their
eyes closed. The EEG signals were captured using 128 channel
electrodes placed according to the standard international 10/20
system, and the sampling frequency was set at 250 Hz.

The EDRA dataset included EEG recordings from 50 indi-
viduals, divided into two groups: 26 individuals classified as
high-risk for depression and 24 individuals classified as low-
risk controls. EEG signals were obtained using a 62-electrode
international standard cap positioned above the right eye. The
signals were sampled at a frequency of 500 Hz.

B. Evaluation metrics

We used multiple metrics to evaluate the performance of
our proposed model, including Accuracy (ACC), Sensitivity
(SEN), and Specificity (SPE), as defined in (17)-(19).

ACC =
TP + TN

TP + FN + TN + FP
(17)

SEN =
TP

TP + FN
(18)

SPE =
TN

FP + TN
(19)

Where TP represents the count of accurately classified depres-
sion samples, FN denotes the count of depression samples
that were misclassified as healthy ones, FP denotes the count
of healthy instances that were misclassified as depression
cases, and TN indicates the count of correctly classified
healthy cases.
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C. Experimental settings

The experiments were conducted in a 64-bit Linux system
with an Intel(R) Core(TM) i7-6800k processor and 62GB of
memory. The data was divided into training, validation, and
test sets in the ratio of 8:1:1. And we conducted a ten-fold
cross-validation. Table I shows the values of the parameters in
our proposed framework.

TABLE I
PARAMETER SETTINGS IN OUR KFST-GNN MODEL.

Parameters Description Value
lr Learning rate of our framework 2e-5

epoch Number of epochs to train 500
hidden Number of units in hidden layer 32, 64
dropout Dropout rate 0.1

weight decay Weight on embedding matrix 1e-4
k k-hop neighbors for GCN 4

kernel size kernel size along the time axis for TCN 5
batch size batch size in training process 64
optimizer optimizer in training process RMSprop

D. Baselines

To evaluate the effectiveness of our model, we compared
LightK-DSGCN with the models proposed in the other 19
works. These models encompass a variety of categories,
including three basic machine learning models, two basic
deep learning models, six state-of-the-art (SOTA) machine
learning models, and eight SOTA deep learning models. To
maintain fairness in our performance evaluation, we extracted
experiment results directly from the papers introducing these
SOTA models.

Among the baselines, SVM, LR, MLP, GCN, and GAT
are classical algorithms to classify depression-related fea-
tures. The success of the machine learning models in EEG
classification lies in their adept utilization of sophisticated
pre-processing methods. These methods empower extracting
intricate and abstract feature representations from EEG signals,
leading to improved identification of depression-related pat-
terns. ChSel+SVM [22] performs channel selection and SVM-
based for classification. MBFCN [31] adopts multi-layer brain
functional connectivity networks. FC+CFS+RF [19] employs
the random forest (RF) for classification with a functional
connectivity network and featured selection. PSD+MF [22]
integrates multimodal features with power spectrum den-
sity, and then does classification. Node2vec+ED [16] uses
the Node2vec algorithm for feature extraction, and classifies
depressed patients and healthy controls with the Euclidean
distance. FC+LASSO+SVM [21] builds a detection model
with a functional connectivity graph and LASSO operator, and
uses SVM for classification.

The deep learning methods can construct brain graphs and
extract local or global features, which leads to enhanced
performance compared to traditional machine learning tech-
niques. Furthermore, a growing body of evidence highlights
the extraction of temporal or spatial features from EEG sig-
nals for identifying patterns associated with depression. This
extraction provides valuable insights into the underlying neural

mechanisms of depression. Specifically, CNN+GA+GRU [29]
combines CNN, GRU, and GA to extract features selected
from brain networks. MS2-GNN [32] is a multimodal MDD
detection method incorporating modal-shared and modal-
specific GNNs. ST-GCN [33] is a spatial-temporal graph
convolutional network for brain functional connectivity graphs.
DeepConvNet [30] is an effective and versatile framework for
deep convolutional neural networks. ShallowConvNet [30] is a
shallow architecture of convolutional neural networks. SparNet
[23] employs a sparse convolutional neural network to learn
EEG frequency features and performs depression detection.
EEGNet [24] is an EEG-based brain-computer interface frame-
work based on a compact convolutional neural network. SGP-
SL [12] employs self-attention graph pooling and soft labels.

E. Results Analysis
In this section, we compared the performance of our

LightK-DSGCN with baselines. As shown in Table II and
Table III.

TABLE II
PERFORMANCE OF LIGHTK-DSGCN AGAINST COMPARATIVE

APPROACHES ON THE MODMA DATASET. BOLDED AND BLUE RESULTS
INDICATE THE BEST AND THE SECOND.

Method Acc(%) Sen(%) Spe(%)
SVM 70.16 71.05 69.38
LR 82.16 81.05 82.38

MLP 91.02 91.53 89.38
GCN 95.37 95.82 94.56
GAT 94.31 93.64 94.92

ChSel+SVM [22] 81.60 - -
MBFCN [31] 92.86 - -

FC+CFS+RF [19] 93.20 93.90 92.80
PSD+MF [22] 92.13 93.94 89.63

Node2vec+ED [16] 88.80 - -
CNN+GA+GRU [29] 89.63 90.24 89.63

MS2-GNN [32] 86.49 - -
ST-GCN [33] 93.85 - -

DeepConvNet [30] 94.17 93.63 94.58
SparNet [23] 94.37 95.07 93.66
EEGNet [24] 92.90 92.07 93.56
SGP-SL [12] 84.91 - -

FC+LASSO+SVM [21] 97.43 96.99 97.77
LightK-DSGCN (our) 97.22 96.57 97.86

TABLE III
PERFORMANCE OF LIGHTK-DSGCN AGAINST COMPARATIVE

APPROACHES ON THE EDRA DATASET. BOLDED AND BLUE RESULTS
INDICATE THE BEST AND THE SECOND.

Method Acc(%) Sen(%) Spe(%)
SVM 68.59 67.83 69.05
LR 80.16 79.53 81.26

MLP 89.53 90.25 88.6
GCN 93.86 94.52 93.28
GAT 92.51 92.04 93.65

ShallowConvNet 84.69 80.80 82.50
EEGNet 94.67 92.33 93.70

DeepConvNet [30] 95.94 94.68 95.17
FC+LASSO+SVM [21] 97.33 98.68 96.06
LightK-DSGCN (our) 99.41 99.29 99.60

Overall, LightK-DSGCN outperforms other baseline models
on both of the two datasets, especially on the EDRA dataset.
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Specifically, our method improves accuracy by about 20%
compared to the basic machine learning-based methods. This
improvement can be attributed to the limitations of traditional
machine learning approaches like SVM, LR, and ChSel+SVM,
which rely on straightforward extraction of linear or non-
linear features and struggle to effectively learn complex spatial
features. Compared to deep learning baseline methods, our
approach outperforms them with remarkable results. For ex-
ample, our practice demonstrates an improvement in accuracy
of approximately 5% compared to GCN.

Our method stands out with a 2% increase in EDRA while
showing a similar performance compared to the most recent
advancements in machine learning, i.e., FC+LASSO+SVM.
Two factors could potentially explain this result. Firstly,
MODMA has twice the number of electrodes compared to
EDRA, and this increment in the number of electrodes may
weaken the capabilities of the Graph Neural Network (GNN).
Secondly, the input data for LightK-DSGCN is notably noisier
compared to FC+LASSO+SVM, which might lead to a slight
decrease in the performance of LightK-DSGCN. Nevertheless,
it’s worth highlighting that, on average, LightK-DSGCN ex-
hibits the best performance. Besides, the other methods often
focus on static functional connectivity while overlooking dy-
namic changes. In contrast, our approach harnesses the power
of dynamic graph neural networks to simultaneously explore
spatiotemporal features, enabling a more detailed identifica-
tion of representative patterns in individuals with depression.
Additionally, our LightK-DSGCN ensures the restoration of
normal patterns while minimizing the influence of noises.
Our approach provides a more comprehensive and accurate
analysis of depression-related patterns.

F. Ablation Experiments

1) Setting 1. Effect of different modules: The purpose
of these experiments is to systematically analyze the impact
of removing specific modules and features on the overall
performance of our model.
• Variant a. LightK-DSGCN without SF-stream and LKF-

alignment module.
• Variant b. LightK-DSGCN without TF-stream and LKF-

alignment module.
• Variant c. LightK-DSGCN without LKF-alignment mod-

ule.
• Variant d. LightK-DSGCN without TCN module.
• Variant e. LightK-DSGCN (our)
As shown in Fig. 2, ”Variant e” outperforms the others,

indicating the positive impact of all modules on our model’s
detection performance. ”Variant a, b, c” shows a considerable
drop in performance, underscoring the pivotal role of syner-
gizing LKF-alignment and the dual-stream modules. While the
performance of ”Variant d” is comparable, it notably falls
behind ”Variant e”, suggesting that the TCN module also
makes a meaningful contribution to the overall performance.
The results show that the spatial information is important while
the smoothened temporal features are also useful. Despite
not using both spatial and temporal features simultaneously,
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Fig. 2. Ablation study results for different modules on EDRA dataset.

the LKF-alignment module’s denoising capability enables the
model to learn effective feature embeddings, resulting in
minimal performance degradation.

2) Setting 2. Effect of the number of neighbors K:
Here, we conducted experiments to investigate the influence
of different values of K on the performance of our model.

0.6
0.7
0.8
0.9

1

K=3 K=4 K=6 K=8 K=10

K = # of NeighborsACC SEN SPE

Fig. 3. The influence of different values of K on the accuracy in our LightK-
DSGCN model over the EDRA dataset. The upper section showcases the
channel layouts corresponding to K = 3, 4, 6, 8, 10, presented from left to
right.

As illustrated in Fig. 3, when K is set to 4, the model
achieves the highest accuracy performance. This can be at-
tributed to the fact that a large value of K can introduce
irrelevant connections between channels, while a small value
of K may lead to the loss of essential correlations.

The optimization process of K consists of two stages.
Initially, with a step size of 2 within the range of [2,10], we
drew the graph layouts with edges. Notably, for K = 2, the
resulting subgraph was disconnected, prompting us to replace
it with K = 3. Subsequently, we conducted experiments
with different values of K. We observed that the model’s
performance demonstrated sensitivity to the chosen value of
K. However, again, we stress that selecting the appropriate
value for K can be accomplished easily by visually inspecting
the layout of the constructed graph, i.e., the optimal K
is acquired when each channel is exclusively connected to
adjacent channels in the up, down, left, and right directions.

VI. CONCLUSION

This paper introduces LightK-DSGCN, a novel depres-
sion prediction model. LightK-DSGCN combines dual-stream
graph neural networks to explore spatiotemporal features and
utilizes time series decomposition and a lightweight Kalman
filter for denoising. The EEG signals are decomposed into
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temporal and spatial features, which are then processed sep-
arately using a dilation temporal convolutional network and
a functional-connectivity-based graph convolutional network,
respectively. The model’s effectiveness is demonstrated on
two depression detection datasets, outperforming all baseline
models.
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