DETECTING CHANGE IN DATA STREAM: USING SAMPLING TECHNIQUE

By Wei Li , Xiaoming Jin and Xiaojun Ye Presented by Mark Everline

Outline

Overview
A-Distance
DCDDS Algorithm
Experimental Results
Schedule

Introduction

- Probability distribution as the key character of a data stream in detecting change
- Data stream changed PD has changed.
- Detecting Change in the Distribution (most common)
 - Willcoxom test
 - Lp distance
 - Jensen-Shannon Divergence (information distance)
- Using A-Distance.

A-Distance

- Definition 1 Change: $S < s_1, s_2, s_3, ..., s_t >, tc$ (current time) at anytime t, t < tc there are $S1 < s_1, s_2, s_3, ..., s_t >$ and $S2 < s_{t+1}, s_{t+2}, s_{t+3}, ..., s_{tc} >, \text{ if } f(S1, S2) > \text{ ethere is change a}$ time t.
 - f is distance function
 - ε is threshold
 - R1 and R2 are the subset of the complete data stream.

A-Distance[1] defined

$$f_{A}(P_{1},P_{2}) = 2 \sup_{a \in A} \frac{|P_{1}(a) - P_{2}(a)|}{\{\min\{\frac{P_{1}(a) - P_{2}(a)}{2}, 1 - \frac{P_{1}(a) - P_{2}(a)}{2}\}\}^{\frac{1}{2}}}$$

• Replace $P_i(a)$ with $S_i(a) = |S_i \land a| / |S_i|$

DCDDS Algorithm

Find_Change For I = 1 ... k do $C_0 = 0$ $S_{1,i} = \text{first m point from time C0}$ $S_{2,i} = \text{next m point in stream}$ End for While not at end of stream do For I = 1...K do Sampling the new data into S1,i if ($f(S_{1,i'}, S_{2,i}) > \epsilon i$ then $C_0 = \text{current time}$ Report change at time C_0 Clear all windows and GOTO 1 end if End of End while

- f Distance function
- m sample size.
- Set of Triples $\{(p_1, \varepsilon_1), (p_2, \varepsilon_2)..., (p_k, \varepsilon_k)\}$
- Meta Algorithm is running K independent algorithms
- Compare Random X with Sample probability p. (sample algorithm)

When Sample is full discard oldest point in sample size.

DCDDS Advantages

Provide tighter statistical guarantees
 Less missing detections and false alarms
 Works better with sliding window model on detecting small changes
 Better time cost then sliding window
 Time cost is 1/p same as sliding window.

Experimental Results

Experiment 2 Mill points, uniform distribution, time span=20,000, window size 200-300 drift r=2 and p=5

Experimental Results

- The Normal distribution with μ=50, σ=5, with the change drift r=0.5
- The time cost statistics using the uniform distribution with *p* = 5 and *r* = 2.The time span is 20,000, and size of windows(sampled-sets) is 1600.

Questions/Conclusion

- W. L. X. J. X. Ye, "Detecting Change in Data Stream: Using Sampling Technique," Natural Computation, 2007. ICNC 2007. Third International Conference on vol. 1, pp. 130-134, Aug 2007, 2007.
- [1] S. B.-D. Daniel Kifer, Johannes Gehrke "Detecting change in data streams," *Proceedings of the Thirtieth international conference on Very large data bases*, vol. 30, no. 13, pp. 180-191, 2004

Schedule

- Continue Lit Search
- Implementing Multi Variant KDE: #Crime, Lat Lon
- Scrubbing the Data:
 - Adding: Town of Herndon, Fairfax City Vienna