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JIT-ROP Attack and Fine-grained ASLR

=

JIT-ROP is a powerful attack technique known for bypassing fine-grained ASLR

- Repeated code pointer leak from a single leak

Does JIT-ROP completely break
fine-grained ASLR?

- How much broken the fine-grained ASLR is?

- Are there still good elements of fine-grained ASLR?
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Just-In-Time Return-Oriented Programming (JIT-ROP)
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Motivation 1@2

In-depth questions regarding the impact of fine-grained ASLR on code
reuse attacks is not clear

Unclear to choose re-randomization intervals.
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Key Questions to Answer

(1) What impact do fine-grained ASLR have on the Turing-complete expressiveness of JIT-ROP payloads?
(2) How do attack vectors (e.g., code pointer leaks) impact the code reuse attacks?

(3) How would one compute the re-randomization interval effectively to defeat JIT-ROP attacks?
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We emulate parts of the JIT-ROP attack.

-
Our Measurement Approach e

We evaluated 5 fine-grained ASLR
tools using 20 applications, and 25
dynamic libraries.

'https://git.zephyr-software.com/opensrc/irdb-cookbook-examples

*https://github.com/immunant/selfrando
*https://github.com/kevinkoo001/CCR

*https://github.com/securesystemslab/multicompiler
*https://github.com/orgs/columbia/teams/shuffler-ro
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- Apps/libs run workloads & G
U5 intentionally leak i 0 Gadgets, havest-time, and .
“ 0 codepointers. libc pointers are stored.
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Why NOT Launching JIT-ROP Exploits?

We did not launch JIT-ROP exploits due to

(1) low scalability,
(2) low reproducibility, and

(3) inaccurate measurement issues

i] ' !:I Need specific, relevant, and measurable metrics

i

—

=
-J
C- Require systemic measurement methodologies
]

—
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Our Metrics and Methodologies
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We identifty FOUR security metrics and design FOUR
measurement methodologies. 2 Attack surface reduction
We determine attack surface reduction

using availability of gadgets.

i

Security metrics

g
e J
1 )-Attack time. [z
2 Gadget availability | Upper bound YMethodologies

3 Security impact

NS E R s We determine the upper bound for re- . . .

3 anhtyofgaget randomization intervals using attack We qua1.r1t1fy the se(.:unty impact of defenses
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, time and gadget availability metrics. by varying attack time and attack vectors
R R TSI IPSIR and using quality of gadget chain.

4 Number of libe pointers

4 Critical module
We determining the critical module of a

binary using the number of libc pointers.
VIRGINIA y & P Yao Group on Cyber Security
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Our Gadget Availability and Gadget Quality Metrics e

We represent each gadget using TWO footprints. - Details of gadget
 sets in the paper
(1) Minimum footprint gadgets: mov rax, rbx; ret; I

(2) Extended footprint gadgets: mov rax, rbx; add rax, rsi; ret;

We combine FOUR sets of gadgets for
the gadget availability metric.

We compute gadget corruption rate based on the | |
register corruption in extended footprint gadgets. S e
92 Priority gadget set -
mov edx, dword ptr [rdi]; ASSEESSEESNEBSIBBAtE.
mov eax, edx; core instruction .
shr eax, 0x10; 3 MOV TC gadget set.
xoreax,edx; N
ret; T SIS
4  Payload gadget set
W VIRGINIA Yao Group on Cyber Security
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Our Threat Model

0x08040600
0x08040700
0x08040800
0x08040900
0x08040a00

0x08040b00

Application
address space

TEXT

Heap

Stack

.GOT

.DATA

Library

Run1
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0x08040600
0x08040700
0x08040800
0x08040900
0x08040a00

0x08040b00

<‘§%Qt

Decoupling them helps one better understand

the individual factor’s security impact.

Basic block 1

Basic block 2

Basic block 3

Instruction 1

Instruction 2

Basic block 4

Instruction 3

Instruction 4

Basic block 5

Basic block 6

Instruction 5

Instruction 6

Application
address space
TEXT ~ /| Function1 =~ /
Heap \ Function 2
Stack Function 3
.GOT Function 4
DATA ' Function 5
Library \ | Function 6 \
Run 2 ~ TEXT
Page 9 of 18
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Our Findings
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Our Finding 1: Computing Re-Randomization Upper Bound
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Turing-complete gadget set with a timeline for new gadget type leaks.
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Our Finding 2: Quantification of Attack Surface Reduction
Randomization schemes Granularity L) @)
MIN-FP EX-FP
Main executables
. . . . . Inst. level rando. [50] Inst. | 79.7 82.5 |
Single-round instruction-level randomization  gunc. level rando. [25] - 2763 36.55
limits up to 90% gadgets and restricts Turing_ Func.+Reg. level rando. [53] FB & Reg. 17.62 42.37
. Block level rand. [59] BB 19.58 44.64
comp lete op erations. Dynamic libraries
Inst. level rando. [50] Inst. | 81.3 92.2 |
Func. level rando. [25] FB 46.5 43.8
Func.+Reg. level rando. [53]  FB & Reg. 44.2 43.9
Block level rand. [59] BB 20.98 37.0
Reduction of Turing-complete gadget set with
different randomization schemes
VIRGINIA Yao Group on Cyber Security
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Our Finding 3: Impact of the Location of Pointer Leakage @

No impact on connectivity Has an impact on the attack time: dense code pages
contain diverse set of gadgets
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Impact of starting pointer locations on gadget harvesting time.

Connectivity of libc
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Our Finding 4: Critical Module Determining

A Stack has higher risk than heap or data-segment =]
=
20t e 3 |

—_
(=)

Number of unique libc pointers
9 o

L

\\S\‘bf xS Q S Q 5"& (\‘f* %%\ X d .\éb %g{\ S Q \o'ﬂ
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Stacks contain 16 more libc pointers
than heaps or data segments on average.
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Security metrics and methodologies for
large-scale evaluations
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Instruction-level randomizations
limit Turing-complete operations
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Key Takeaways

ANCE
RITY LEVEL

Methodology to compute effective
re-randomization upper bound

High connectivity in
code, enabler for JIT-
ROP

All leaked pointers are created
equal for gadget availability, but
not for the time to leaks gadgets
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Code availabile on GitHub
https://github.com/salmanyam/jitrop-native
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Thank You
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