
Methodologies for Quantifying (Re-)randomization
Security and Timing under JIT-ROP

ACM CCS 2020

Salman Ahmed, Ya Xiao
Ph.D. Students
Virginia Tech

Daphne Yao
Professor

Virginia Tech

Gang Tan
Professor

Penn State University

Kevin Snow
Co-Founder

Zero Point Dynamics

Fabian Monrose
Professor

UNC at Chapel Hill

JIT-ROP is a powerful attack technique known for bypassing fine-grained ASLR
- Repeated code pointer leak from a single leak

JIT-ROP Attack and Fine-grained ASLR

Page 2 of 18

Just-In-Time Return-Oriented Programming (JIT-ROP)

Does JIT-ROP completely break
fine-grained ASLR?
- How much broken the fine-grained ASLR is?

- Are there still good elements of fine-grained ASLR?

Motivation

Page 3 of 18

In-depth questions regarding the impact of fine-grained ASLR on code
reuse attacks is not clear

Unclear to choose re-randomization intervals.

Page 4 of 18

Key Questions to Answer

(1) What impact do fine-grained ASLR have on the Turing-complete expressiveness of JIT-ROP payloads?

(2) How do attack vectors (e.g., code pointer leaks) impact the code reuse attacks?

(3) How would one compute the re-randomization interval effectively to defeat JIT-ROP attacks?

BUILD RUN SCAN ANALYSISDATA

 Fine-grained versions are built using
 Zipr1, SR2, CCR3, MCR4, Shuffler5

 Fine-grained versions are built using
 Zipr1, SR2, CCR3, MCR4, Shuffler5

 Gadgets, havest-time, and
libc pointers are stored.

 Gadgets, havest-time, and
libc pointers are stored.

 Apps/libs run workloads &
intentionally leak

code pointers.

 Apps/libs run workloads &
intentionally leak

code pointers.

 JIT-ROP code harvest
 is performed

 JIT-ROP code harvest
 is performed

Page 10 of 18

APP/LIB

Our Measurement Approach

1https://git.zephyr-software.com/opensrc/irdb-cookbook-examples
2https://github.com/immunant/selfrando
3https://github.com/kevinkoo001/CCR
4https://github.com/securesystemslab/multicompiler
5https://github.com/orgs/columbia/teams/shuffler-ro

We evaluated 5 fine-grained ASLR
tools using 20 applications, and 25

dynamic libraries.

We emulate parts of the JIT-ROP attack.

Need specific, relevant, and measurable metrics

Page 5 of 18

Why NOT Launching JIT-ROP Exploits?

We did not launch JIT-ROP exploits due to
(1) low scalability,

(2) low reproducibility, and

(3) inaccurate measurement issues

Require systemic measurement methodologies

Page 6 of 18

Our Metrics and Methodologies

We identify FOUR security metrics and design FOUR
measurement methodologies.

Security metrics

Upper bound
We determine the upper bound for re-

randomization intervals using attack
time and gadget availability metrics.

 Attack surface reduction
We determine attack surface reduction
using availability of gadgets.

 Security impact
We quantify the security impact of defenses
by varying attack time and attack vectors
and using quality of gadget chain.

 Critical module
We determining the critical module of a
binary using the number of libc pointers.

MethodologiesGadget availability2 1

2

3

4

Page 7 of 18

Attack time1

Quality of gadget3

 Number of libc pointers4

We combine FOUR sets of gadgets for
the gadget availability metric.

Turing-complete (TC) gadget setTuring-complete (TC) gadget set11

Priority gadget setPriority gadget set22

MOV TC gadget setMOV TC gadget set33

Payload gadget setPayload gadget set44

We represent each gadget using TWO footprints.
(1) Minimum footprint gadgets: mov rax, rbx; ret;

(2) Extended footprint gadgets: mov rax, rbx; add rax, rsi; ret;

 Details of gadget
 sets in the paper

 Details of gadget
 sets in the paper

mov edx, dword ptr [rdi];
mov eax, edx;
shr eax, 0x10;
xor eax, edx;
ret;

core instruction

Page 8 of 18

Our Gadget Availability and Gadget Quality Metrics

We compute gadget corruption rate based on the
register corruption in extended footprint gadgets.

• Stack Canary, W⊕X, RELRO
• Fine-grained ASLR
• A leaked pointer is available
• No CFI + XoM + CPI
• Attack model: JIT-ROP

Decoupling them helps one better understand
the individual factor’s security impact.

.TEXT
Heap
Stack
.GOT
.DATA
Library

Application
address space

Run 1

.TEXT
Heap
Stack
.GOT
.DATA
Library

Application
address space

Run 2

Function 1
Function 2
Function 3
Function 4
Function 5
Function 6

.TEXT

0x08040600

0x08040700

0x08040800

0x08040900

0x08040a00

0x08040b00

0x08040600

0x08040700

0x08040800

0x08040900

0x08040a00

0x08040b00

Basic block 1
Basic block 2
Basic block 3
Basic block 4
Basic block 5
Basic block 6
FUNCTION

Instruction 1
Instruction 2
Instruction 3
Instruction 4
Instruction 5
Instruction 6

BASIC BLOCK

Page 9 of 18

Our Threat Model

Page 11 of 18

Our Findings

Our Finding 1: Computing Re-Randomization Upper Bound

The upper bound* ranges from 1.5 to 3.5
seconds in our tested applications such as
nginx, proftpd, firefox, etc.

Turing-complete gadget set with a timeline for new gadget type leaks.

Page 12 of 18

* May vary with
machine configurations

Our Finding 2: Quantification of Attack Surface Reduction

Main executables

Dynamic libraries

Reduction of Turing-complete gadget set with
different randomization schemes

Single-round instruction-level randomization
limits up to 90% gadgets and restricts Turing-
complete operations.

Page 13 of 18

Our Finding 3: Impact of the Location of Pointer Leakage

No impact on connectivity Has an impact on the attack time: dense code pages
contain diverse set of gadgets

Impact of starting pointer locations on gadget harvesting time.

Connectivity of libc

Page 14 of 18

Our Finding 4: Critical Module Determining

Stack

Heap

Data

...

Stacks contain 16 more libc pointers
than heaps or data segments on average.

Page 15 of 18

A Stack has higher risk than heap or data-segment

Key Takeaways

Security metrics and methodologies for
large-scale evaluations

Methodology to compute effective
re-randomization upper bound

Instruction-level randomizations
limit Turing-complete operations

High connectivity in
code, enabler for JIT-
ROP

All leaked pointers are created
equal for gadget availability, but
not for the time to leaks gadgets

Page 16 of 18

Acknowledgment
We thank the anonymous reviewers and our shepherd for their valuable comments and suggestions.

This work was supported in part by the NSF under grant No. CNS-1838271.

Code availabile on GitHub
https://github.com/salmanyam/jitrop-native

Page 17 of 18

Thank You

Page 18 of 18

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

